Intersection Cuts for Bilevel Optimization

Matteo Fischetti *!, Ivana Ljubi¢ T2, Michele Monaci 2, and Markus Sinnl®*

YDEI, University of Padua, Italy.
2ESSEC Business School of Paris, France.
3DEI, University of Bologna, Italy.
4ISOR, University of Vienna, Austria.

Abstract

The exact solution of bilevel optimization problems is a very challenging task that received more
and more attention in recent years, as witnessed by the flourishing recent literature on this topic. In
this paper we present ideas and algorithms to solve to proven optimality generic Mixed-Integer Bilevel
Linear Programs (MIBLP’s) where all constraints are linear, and some/all variables are required to take
integer values. In doing so, we look for a general-purpose approach applicable to any MIBLP (under
mild conditions), rather than ad-hoc methods for specific cases. Our approach concentrates on minimal
additions required to convert an effective branch-and-cut MILP exact code into a valid MIBLP solver,
thus inheriting the wide arsenal of MILP tools (cuts, branching rules, heuristics) available in modern
solvers.

1 Introduction

A general bilevel optimization problem is defined as

meR"r{l}g?eR"zF(x’y) (1)
Gla,y) <0 (2)
y €arg min {f(x,y): g(x.y") <0}, (3)

where F, f : Rmtn2 5 R G : Rmt"2 5 R™ and g : R™T"2 — R™2. Let n = ny + ny denote the total
number of decision variables.

We will refer to F(x,y) and G(z,y) < 0 as the leader objective function and constraints, respectively,
and to as the follower subproblem. In case the follower subproblem has multiple optimal solutions, we
assume that one with minimum leader cost among those with G(z,y) < 0 is chosen—i.e. we consider the
optimistic version of bilevel optimization.

By defining the follower value function for a given x € R™

@(x) = min {f(z,9) : g(e,y) <0}, @)

*matteo.fischettiQunipd.it
fivana.ljubic@essec.edu
¥michele.monaci@unibo.it
$markus.sinnl@univie.ac.at

one can restate the bilevel optimization problem as follows:

min F(x,y) (5)
G(z,y) <0 (6)
g9(z,y) <0 (7)
(z,y) €R" (8)

flzy) < @(x). (9)

Note that the above optimization problem would be hard (both theoretically and in practice) even if one
would assume convexity of F, G, f and g (which would imply that of ®), due to the intrinsic nonconvexity
of (9)).

(]]%Dropping condition @[) leads the so-called High Point Relazation (HPR). As customary in the bilevel
context, we assume that HPR is feasible and bounded, and that the minimization problem in is bounded
for each feasible solution of HPR—while its feasibility follows directly from the definition of HPR. As HPR
contains all the follower constraints, any HPR solution (z,y) satisfies f(z,y) > ®(z), hence (9) actually
implies f(z,y) = ®(x,y).

A point (z,y) € R will be called bilevel infeasible if it violates (9). A point (z,y) € R™ will be called
bilevel feasible if it is satisfies all constraints @f@

2 Literature overview

In this paper we will mainly focus on Mixed-Integer Bilevel Linear Programs (MIBLP’s) where some/all
variables are required to be integer, and all HPR constraints (plus objective function) are linear.

The first generic branch-and-bound approach to the MIBLP’s has been given in [7], where the authors
propose to solve HPR embedded into a branch-and-bound scheme and basically enumerate bilevel feasible
solutions. Recently, [4, 5] proposed a sound branch-and-cut approach that builds upon the ideas from [7]
and cuts off integer bilevel infeasible solutions, by adding cuts that exploit the integrality property of the
leader and the follower variables. The authors provide an open-source MIBLP solver MibS [§]. More recently,
[3] again propose to embed HPR into a branch-and-bound tree, bilevel infeasible solutions being cut off by
adding a continuous follower subproblem into HPR, each time a new bilevel infeasible solution is detected.
Continuous follower subproblems are then reformulated using KKT conditions and linearized in a standard
way. Another generic approach for MIBLP’s is a branch-and-sandwich method in [6], where the authors
propose novel ideas for deriving lower and upper bounds of the follower’s value function.

As this is usually the case with intersection cuts for MILPs, our IC’s for MIBLP’s also use disjunctive
arguments. Disjunctive cuts in connection to bilevel linear programming have been investigated in [I], where
the continuous follower subproblem is reformulated using KKT conditions, and disjunctive cuts are used to
enforce complementary slackness conditions.

3 Bilevel-free sets

The following result is valid for generic bilevel problems and was implicit in some early references (including
[9]) where it was only used as a guide for branching.

Lemma 3.1. For any y € R™?, the set
S@) ={(z.y) €eR™: f(z,y) = f(2,9), g(z,§) <0} (10)

does not contain any bilevel feasible point in its interior.

Proof. Tt is enough to prove that no bilevel feasible (z,y) exists such that f(z,y) > f(z,4) and g(x,y) < 0.
We will in fact prove a tighter result where the latter condition is replaced by g(x,3) < 0, as this will be
required in the proof of the next theorem. Indeed, for any bilevel feasible solution (x,y) with g(z,g) < 0,

one has f(z,y) < ®(z) = miny, {f(z,y’) : g(x,y") <0} < f(=,9). O

In some relevant settings, the above result can be strengthened to obtain the following enlarged bilevel-free
set.

Theorem 3.1. Assume that g(x,y) is integer for all HPR solutions (x,y). Then, for any § € R"2, the
extended set

ST(@) = {(z,y) €R™: f(z,y) = f(x,9), g(,9) < 1} (11)
does not contain any bilevel feasible point in its interior, where 1 denotes a vector of all ones.

Proof. To be in the interior of ST (%), a bilevel feasible (z,y) should satisfy f(z,y) > f(z,9) and g(z,9) < 1.
By assumption, the latter condition can be replaced by g(x,y) < 0, hence the claim follows from the proof
of previous lemma. O

As far as we know, the above result is new. In spite of its simplicity, it will play a fundamental role in
our solution method.

4 Mixed-integer bilevel linear programming

In the remaining part of the paper we will focus on the case where some/all variables are required to be
integer, and all HPR constraints (plus objective function) are linear. This leads to the following Mixed-
Integer Bilevel Linear Program (MIBLP):

min F(x,y) (12)

G(z,y) <0 (13)

g9(z,y) <0 (14)

(z,y) ER" (15)

f(z,y) < @(x) (16)

x; integer, Vj € J; (17)

y; integer, Vj € Jo, (18)

where F, G, f, g are now assumed to be affine functions, sets J; C {1,--- ,n1} and Jo C {1, ,no} identify

the (possibly empty) indices of the integer-constrained variables in z and y, respectively, and the value
function reads

®x) = min {f(z,y): 9(x,y) <0, y; €Z Vj € Jo}. (19)

Dropping leads to the HPR, which is a MILP in this setting. Dropping integrality conditions as well
leads to the LP relaxation of HPR, namely 7, an LP which will be denoted by HPR.

Our main goal is to solve the above MIBLP by using a standard simplex-based branch-and-cut algorithm
where the hard constraint is enforced, on the fly, by adding cutting planes. The minimal requisite for
the correctness of such an approach is the ability of cutting any verter, say (x*,y*), of HPR which satisfies
the integrality requirements f but is bilevel infeasible because

f@®y) > @(a7), (20)

thus preventing a wrong update of the incumbent. To this end, we will propose a novel application of Balas’
intersection cuts [2] in the MIBLP context.

5 A new family of cuts for MIBLP

Intersection cuts (IC’s) for a given (z*,y*) require the definition of two sets: (1) a cone pointed at (z*, y*)
that contains all the bilevel feasible solutions, and (2) a convex set S* that contains (z*,y*) but no bilevel
feasible solutions in its interior. The reader is referred to [2] for technical details.

As customary in mixed-integer programming, IC’s are generated for vertices (z*,y*) of an LP relaxation
of the problem to be solved, so a suitable cone is just the corner polyhedron associated with the corresponding
optimal basis. All relevant information in this cone is readily available in the “optimal tableau” and requires
no additional computational effort.

As to the convex set S*, we propose to use the set defined in Lemma (or, better, in Theorem if
applicable) by choosing

9 = argm?}n{f(x*,y) tg(z*,y) <0, y; € ZVj e Jo} (21)

(assuming this problem is not unbounded). Indeed, such a set S* does not contain any bilevel feasible point
in its interior, as required, while (z*,y*) € S* because of and ®(z*) = f(z*,§) by definition. Note that
7§ is well defined when (z*, y*) is a solution of HPR, and that S* is a convex polyhedron in the MIBLP case.

However, an important property is still missing, namely, (z*, y*) must belong to the interior of S* if we
want to generate a violated intersection cut. This is always the case for MILBP’s for which S* is the extended
set defined as in Theorem This includes problems with all-integer follower where Jo = {1,--- ;na}, all
g-coefficients are integer, and j € J; for all z;’s appearing with nonzero coeflicient in some follower constraint.

A relevant consequence of the above discussion is that, at least in the all-integer follower case, an exact
branch-and-cut MIBLP solver can be obtained from a MILP solver by just adding a separation function for
IC’s based on the extended set ST () defined by and (2I). Indeed, observe that an exact MIBLP solver
can be obtained by applying a general-purpose simplex-based MILP solver to HPR. To avoid the incumbent
be updated with bilevel infeasible solutions, it is enough to cut any HPR solution (z*,y*) with f(z*,y*)
> ®(2*). Without loss of generality, by disabling internal MILP heuristics, we can assume that (z*,y*) is a
vertez of the current HPR so we can always cut it by an (locally-valid) IC as, by definition, (z*,y*) is in the
interior of the extended ST (§) when § is defined as in (21]). In addition, assuming that all leader’s variables
x are integer and bounded, the number of HPR solutions to cut is finite, so a finite number of branching
nodes (and hence of IC’s) will be generated, i.e., the method converges in a finite number of iterations.

In the heuristic attempt of producing violated IC’s for a generic vertex (z*,y*) of the HPR polyhedron,
one could also consider the following alternative definition of the point g that defines the bilevel-free sets

(9,d) = argnyw}iX{d: fx*,y) +od < f(z*,y"),
g(z",y) +vd <0, y; € ZVj € Jo}, (22)

where ¢ € R, and v € R''* are suitable normalization factors, e.g., the Euclidean norm of the corresponding
left-hand-side coefficient vectors. The rationale of this definition is that one wants to detect a bilevel-free
set S(§) whose closest face to (z*,y*) has a maximum distance from it.

Example. Figure|l]illustrates the application of IC’s on an example given in [7], which is frequently used
in the literature:

min —z — 10y (23)
y € argmin{ ' : (24)
25z + 20y’ < 30 (25)

z+2) <10 (26)

2z —y' <15 (27)

2z + 10y > 15 }. (28)

In this all-integer example, there are 8 bilevel feasible points (depicted as crossed squares in Figure [1)),
and the optimal bilevel solution is (2,2). The drawn polytope corresponds to the HPR feasible set.

We first apply the definition of the bilevel-free set from Lemma with ¢ defined as in . After
solving the first HPR, the point A = (2,4) is found. This point is bilevel infeasible, as for z* = 2 we have
fl@*,y*) = y* = 4 while ®(z*) = 2. From we compute § = 2 and the intersection cut derived from
the associated S(y) is depicted in Figure (a). In the next iteration, the optimal HPR solution moves to
B = (6,2). Again, for 2* = 6, f(z*,y*) = y* = 2 while &(2*) = 1. So we compute § = 1 and generate
the IC induced by the associated S(§), namely 2z + 11y < 27 (cf. Figure[[[b)). In the next iteration, the
fractional point C' = (5/2,2) is found and § = 1 is again computed. In this case, C is not in the interior of
S(g) so we cannot generate an IC cut from C but we should proceed and optimize HPR to integrality by
using standard MILP tools such as MILP cuts or branching. This produces the optimal HPR solution (2, 2)
which is bilevel feasible and hence optimal.

We next apply the definition of the enlarged bilevel-free set from Theorem (whose assumption is
fulfilled) with § defined again as in (21)); see Figures [I{c) and (d). After the first iteration, the point
A =(2,4) is cut off by a slightly larger ST(§ = 2), but with the same IC as before (y < 2). After the second
iteration, from the bilevel infeasible point B = (6,2) we derive a larger set ST(j = 1) and a stronger IC
(x + 6y < 14). In the third iteration, solution D = (2,2) is found which is the optimal bilevel solution, so
no branching at all is required in this example.

6 Informed no-good cuts

A known drawback of IC’s is their dependency on the LP basis associated with the point to cut, which can
create cut accumulation in the LP relaxation and hence shallow cuts and numerical issues. Moreover, I1C’s
are not directly applicable if the point to cut is not a vertex of a certain LP relaxation of the problem at
hand, as it happens e.g. when it is computed by the internal MILP heuristics.

We next describe a general-purpose variant of IC’s whose derivation does not require any LP basis and is
based on the well-known interpretation of IC’s as disjunctive cuts. It turns out that the resulting inequality
is valid and violated by any bilevel infeasible solution of HPR in the relevant special case where all and y
variables are binary.

Suppose we are given a point ¢* = (z*,y*) € R™ and a polyhedron S* = {¢ € R" : af¢ < g, i =
1,--+, k} whose interior contains £* but no feasible points. Assume that variable-bound constraints [< £ < u
are present, where some entries of [or v can be —oo or +00, respectively. Given £*, define L := {j : §—1; <

uj — &5} and U := {1,--- ,n} \ L and the corresponding linear mapping { & € R with Ej =& — 1 for
je€L,and §; :=u; — & for j € U (variable shift and complement).
By assumption, any feasible point £ must satisfy the disjunction

k n
\/ {€eR": Zaz‘jfj > aip }, (29)
i=1 =1

whereas £* violates all the above inequalities. Now, each term of can be rewritten in terms of £ as

n

Z @i &5 > B =g — Z%‘jlj - Z QjUy, (30)
7=1 jeL jeUu

with @;; = a;; if j € L, &;; = —ay; otherwise. If B; >0 foralli=1,---,k, one can normalize the above

inequalities to get Y"_, (@;;/B;) €; > 1 and derive the valid disjunctive cut in the & space

7j=1

1+ © © ® § n 14 2z + 11y <27

r+6y <14

Figure 1: Tlustration of the effect of alternative intersection cuts for a notorious example from [7]. Shaded
regions correspond to the bilevel-free sets for which the cut is derived.

where 7, := max{@a;;/B; : i = 1,--- ,k}, and then one can transform it back to the ¢ space in the obvious
way. It is easy to see that, in case {; € {lj,u;} for all j =1,---,n, the above cut is indeed valid (because

B > 0) and obviously violated as E* = 0. In all other cases, the above cut separation is just heuristic.

Inequality will be called Informed No-Good (ING) cut as it can be viewed as a strengthening of the
following no-good cut often used for bilevel problems with all-binary variables—and in many other Constraint
Programming (CP) and Mathematical Programming (MP) contexts:

Yo+ (1-¢)>1. (32)
JEL JEU
The cut above corresponds to the very generic choice

S*={(eR":¢ <1VjeLl, 1-¢ <1VjeU}

and is violated by &* but is satisfied by any other binary point, hence resulting into a very weak cut. To the
best our knowledge, ING cuts are new; they will hopefully be useful in other CP and MP contexts.

7 Preliminary computational results

To evaluate the performance of our new cuts, we embedded them within the general-purpose MILP solver
IBM ILOG Cplex 12.6.2 using callbacks, resulting into a branch-and-cut (B&C) MIBLP approach. Internal
Cplex’s heuristics as well preprocessing have been deactivated in all experiments. IC separation is applied at
the root node on all LP solutions (in the so-called usercut callback), while for the remaining nodes it is only
applied to integer solutions (lazycut callback). For fractional solutions, IC’s whose normalized violation is
too small are just skipped. All generated cuts are treated as local cuts (even if no-good and ING cuts would
be globally valid) as this reduces the node LP size and significantly improves node throughput. To improve
the quality of IC cuts, the bilevel-free set is enlarged by removing all its defining inequalities a” (z,y) < ag
(say) such that imposing the reverse condition a”(z,y) > ag would trivially lead to an infeasible HPR
relaxation due to the current bounds on the x and y variables (this step turns out to be very important for
the success of our method). More implementation details will be given in the full paper.

We first compared our code with the one in [3] on the testbed proposed therein. All such instances
turned out to be very easy, both for our approach and for MibS. More precisely, each instance could be
solved in less than a second by our code and in at most 3 seconds by Mibs, i.e., both codes were 2-3 orders
of magnitude faster than the one in [3]. Therefore we addressed more difficult instances, obtained according
to the following procedure.

We took a familiar testbed (MILPLIB 3.0) that contains instances that are easily solvable by modern
MILP solvers (except instance seymour which is very hard even as a MILP). As we planned to also run
the open-source MIBLP solver MibS [§] to check our code, we skipped all instances involving equations
or continuous variables, as well as those involving noninteger coefficients—all the above cases being not
supported by the current release of MibS. This produced a set of 10 basic 0-1 MILP instances, that we
converted into bilevel problems by labeling the first Y% (rounded up) variables as y’s, and the remaining
ones as x’s. In our test, we considered the three cases with Y € {10,50,90} leading to instances named
name-0.1.mps, name-0.5.mps, and name-0.9.mps, respectively. All constraints in the resulting model belong
to the follower subproblem, as MibS cannot handle leader-specific constraints G(z,y) < 0, while the objective
function is used as the leader’s objective F(x,y). Finally, the follower’s objective is defined as f(z,y) =
—F(z,y).

In Table [I} we use MibS to assess the computational difficulty of the instances we generated. The table
also reports results for our basic B&C code (with IC’s but not ING cuts) when run in single-thread mode
and with internal Cplex cuts disabled. Note that the two solvers cannot be compared directly, as they are
based on a different underlying MILP code, namely: Cplex for our code, and COIN-OR (BLIS) plus Cplex
for MibS. For both codes, we report in Table [If the following values: the best obtained upper bound (UB),
the best obtained lower bound (LB), the final percentage gap (%gap) calculated as (UB - LB) / UB x 100.
Computing times (t.[s]) are wall-clock seconds on an Intel Xeon E5-2670v2 @ 2.5Ghz computer with 12GB
ram. The timelimit was set to 600 sec.s as larger values produced memory issues for some instances where
the number of tree nodes is very large. If the time-limit was reached, this is notified as “TL” in the time
column. These results clearly indicate that we managed to generate a testbed which is sufficiently challenging
for state-of-the-art MIBLP solvers.

Table [2| compares four settings for our code: (1) only no-good cuts are generated, (2) only ING cuts are
generated, (3) only IC’s are generated, and (4) IC’s are generated for fractional solutions at root node, while
only ING cuts generated for integer ones. Note that all settings lead to an exact method as all instances
in our testbed are pure binary. All versions were run in 4-thread opportunistic mode, without disabling
internal Cplex cuts, on a Intel Xeon E3-1220V2 quadcore PC @ 3.10GHz with 16GB of RAM. Setting (1) is
intended to assess the difficulty of the created data set for a method built on top of Cplex, but using the most
basic MIBLP cuts (no-good). Setting (2) is intended to measure the performance improvement obtained by
replacing generic no-good cuts with bilevel-specific ING cuts, while the impact of IC’s is addressed in setting
(3). Finally, setting (4) combines IC’s and ING cuts to limit the negative effect of cut accumulation in the
LP basis.

For each of the four setting and for each instance, in Table [2| we report the same information as in Table
plus the overall number of branch-and-bound nodes (#nodes).

Table 1: Instance difficulty when using two different MIBLP solvers

Mibs B&C with IC’s
name UB LB %gap t.[s] UB LB %gap t.[s]
fast0507-0.1 - 173 100.00 TL 12553 173 98.62 TL
fast0507-0.5 - 173 100.00 TL 61503 174 99.72 TL
fast0507-0.9 - 173 100.00 TL | 109916 109916 0.00 7
Iseu-0.1 1120 1120 0.00 4 1120 1120 0.00 2
Iseu-0.5 2400 1205 49.79 TL 2263 1235 45.43 TL
Iseu-0.9 5838 1171 79.94 TL 5838 1275 78.75 TL
p0033-0.1 3089 3089 0.00 0 3089 3089 0.00 0
p0033-0.5 3095 3095 0.00 0 3095 3095 0.00 0
p0033-0.9 4679 4679 0.00 90 4679 4679 0.00 3
p0201-0.1 12615 7859 37.70 TL 12465 7931 36.37 TL
p0201-0.5 14220 7832 4492 TL 13910 7925 43.03 TL
p0201-0.9 15025 7809 48.03 TL 15025 7925 47.25 TL

p0282-0.1 261188 258435 1.05 TL | 260781 260067 0.27 TL
p0282-0.5 276338 258432 6.48 TL | 272659 259331 489 TL
p0282-0.9 724572 258427 64.33 TL | 636846 284519 55.32 TL

p0548-0.1 - 317 100.00 TL 10982 8691 20.86 TL
p0548-0.5 - 317 100.00 TL 22450 8620 61.60 TL
p0548-0.9 - 317 100.00 TL 48959 8694 82.24 TL
p2756-0.1 - 2691 100.00 TL 12765 2734 78.58 TL
p2756-0.5 - 2691 100.00 TL 23976 2723 88.64 TL
p2756-0.9 - 2691 100.00 TL 35867 2733 9238 TL
seymour-0.1 - 407 100.00 TL 480 407 1521 TL
seymour-0.5 - 407 100.00 TL 823 408 50.43 TL
seymour-0.9 - 407 100.00 TL 1251 1251 0.00 2
stein27-0.1 18 18 0.00 0 18 18 0.00 1
stein27-0.5 19 19 0.00 7 19 19 0.00 3
stein27-0.9 24 20 16.67 TL 24 24 0.00 0
stein45-0.1 30 30 0.00 103 30 30 0.00 32
stein45-0.5 33 31 6.06 TL 32 32 0.00 205
stein45-0.9 40 31 22.50 TL 40 40 0.00 0

The influence of IC’s to the performance of the B&C can be measured by comparing the quality of lower
bounds of the setting (3), with the settings (1) and (2). In 14, respectively 11 cases, the LBs obtained by
IC’s are strictly stronger than those obtained by pure no-good and ING cuts, respectively. The quality of
lower bounds when IC’s are combined with ING cuts remains roughly the same across all instances. As
expected, the setting (1) exhibits the worst performance with 22 instances remaining unsolved within the
given time-limit. ING cuts perform better (in particular considering the quality of lower bounds), but still
with 20 instances remaining unsolved. Both settings with IC’s and IC’s with ING cuts manage to solve 12
instances to optimality. The number of enumerated branch-and-bound nodes varies strongly between the
instances, even between those being derived from the same MIPLIB source. This indicates that, despite the
fact that some instances are derived from the identical HPR formulation, the difficulty is mainly determined
by the structure of the follower subproblem.

Table 2: Comparison of different settings of our B&C approach.

No-good cuts only ING cuts only I1C’s only IC’s and ING cuts
name UB LB %gap t.[s] #nodes UB LB %gap t.[s] #nodes UB LB Y%gap t.[s] #nodes | UB LB %gap t.[s] #nodes
fast0507-0.1 | 12547 173 98.62 TL 2766 | 12548 173 98.62 TL 11k | 12550 173 98.62 TL 4451 | 12552 173 98.62 TL 5371
fast0507-0.5 | 61485 173 99.72 TL 2699 | 61485 173 99.72 TL 5215 - 5440 100.00 TL 33k - 5440 100.00 TL 33k
fast0507-0.9 | 109928 173 99.84 TL 2697 | 109928 173 99.84 TL 864 | 109916 109916 0.00 4 21109916 109916 0.00 4 2
Iseu-0.1 1120 1120 0.00 0 38 1120 1120 0.00 0 40 1120 1120 0.00 0 39 1120 1120 0.00 0 40
Iseu-0.5 2314 1219 47.32 TL 141k 2263 1324 41.49 TL 1M 2263 1318 41.76 TL 2M 2274 1323 41.82 TL 1M
Iseu-0.9 5838 1213 79.22 TL 128k 5838 1355 76.79 TL 2M 5838 1384 76.29 TL 2M 5838 1385 76.28 TL 2M
p0033-0.1 3089 3089 0.00 0 2 3089 3089 0.00 0 2 3089 3089 0.00 0 2 3089 3089 0.00 0 2
p0033-0.5 3095 3095 0.00 0 42 3095 3095 0.00 0 45 3095 3095 0.00 0 41 3095 3095 0.00 0 43
p0033-0.9 4679 4679 0.00 9 11k 4679 4679 0.00 1 4646 4679 4679 0.00 1 4071 4679 4679 0.00 1 3355
p0201-0.1 12610 7802 38.13 TL 126k | 12495 7915 36.65 TL 794k | 12345 7945 35.64 TL 944k | 12345 7922 35.83 TL 738k
p0201-0.5 13925 7803 43.96 TL 117k | 13910 7932 42,98 TL 922k | 13920 7944 4293 TL 1M | 13850 7945 42.64 TL 965k
p0201-0.9 15025 7804 48.06 TL 115k | 15025 7925 47.25 TL 718k | 15025 7933 47.20 TL 722k | 15025 7927 47.24 TL 716k
p0282-0.1 260781 258431 0.90 TL 102k | 260781 258448 0.89 TL 2M | 260781 258449 0.89 TL 3M 260781 258448 0.89 TL 2M
p0282-0.5 274422 258432 5.83 TL 120k | 274422 258447 5.82 TL 2M | 274422 258448 5.82 TL 3M | 274422 258447 5.82 TL 2M
p0282-0.9 685640 258432 62.31 TL 124k | 638243 258446 59.51 TL 2M | 639964 271734 57.54 TL 15M | 644113 271734 57.81 TL 15M
p0548-0.1 11100 8691 21.70 TL 123k | 11100 8691 21.70 TL 365k | 11348 8691 23.41 TL 1M | 11348 8691 23.41 TL 494k
p0548-0.5 22083 8691 60.64 TL 64k | 22078 8691 60.64 TL 76k | 22083 8691 60.64 TL 74k | 22083 8691 60.64 TL 70k
p0548-0.9 50162 8691 82.67 TL 103k | 50162 8691 82.67 TL 220k | 50253 9147 81.80 TL 42k | 50253 9147 81.80 TL 44k
p2756-0.1 14540 3124 78.51 TL 20k | 14430 3124 78.35 TL 38k | 13936 3124 77.58 TL 65k | 14500 3124 78.46 TL 32k
p2756-0.5 25654 3124 87.82 TL 19k | 25654 3124 87.82 TL 44k | 23931 3124 86.95 TL 66k | 24181 3124 87.08 TL 49k
p2756-0.9 36449 3124 91.43 TL 17k | 35242 3124 91.14 TL 182k | 34092 3124 90.84 TL 95k | 34703 3124 91.00 TL 175k
seymour-0.1 477 415 13.00 TL 29k 477 415 13.00 TL 25k 477 415 13.00 TL 27k 478 415 13.18 TL 25k
seymour-0.5 823 415 49.57 TL 31k 816 415 49.14 TL 37k 823 415 49.57 TL 34k 814 415 49.02 TL 39k
seymour-0.9 1252 415 66.85 TL 31k 1252 415 66.85 TL 23k 1251 1251 0.00 5 2 1251 1251 0.00 5 2
stein27-0.1 18 18 0.00 0 1202 18 18 0.00 0 1244 18 18 0.00 0 1209 18 18 0.00 1247
stein27-0.5 19 19 0.00 1 7377 19 19 0.00 1 7060 19 19 0.00 1 6465 19 19 0.00 1 7001
stein27-0.9 24 19 20.83 TL 110k 24 24 0.00 2 13k 24 24 0.00 0 2 24 24 0.00 0 2
stein45-0.1 30 30 0.00 4 14k 30 30 0.00 4 14k 30 30 0.00 5 13k 30 30 0.00 5 14k
stein45-0.5 32 32 0.00 176 211k 32 32 0.00 31 133k 32 32 0.00 37 161k 32 32 0.00 47 202k
stein45-0.9 40 30 25.00 TL 158k 40 40 0.00 234 1M 40 40 0.00 0 2 40 40 0.00 0 2

References

1]

C. Audet, J. Haddad, and G. Savard. Disjunctive cuts for continuous linear bilevel programming. Opti-
mization Letters, 1(3):259-267, 2007.

[2] E. Balas. Intersection cuts—a new type of cutting planes for integer programming. Operations Research,
19(1):19-39, 1971.

[3] M. Caramia and R. Mari. Enhanced exact algorithms for discrete bilevel linear problems. Optimization
Letters, 9(7):1447-1468, 2015.

[4] S. DeNegre. Interdiction and Discrete Bilevel Linear Programming. PhD thesis, Lehigh University, 2011.

[5] S. DeNegre and T. K. Ralphs. A branch-and-cut algorithm for integer bilevel linear programs. In
Operations research and cyber-infrastructure, pages 65—78. Springer, 2009.

[6] P.-M. Kleniati and C. S. Adjiman. A generalization of the branch-and-sandwich algorithm: From con-
tinuous to mixed-integer nonlinear bilevel problems. Computers & Chemical Engineering, 72:373 — 386,
2015.

[7] J. Moore and J. Bard. The mixed integer linear bilevel programming problem. Operations Research,
38(5):911-921, 1990.

[8] T. K. Ralphs. MibS. https://github.com/tkralphs/Mibs.

[9] P. Xu and L. Wang. An exact algorithm for the bilevel mixed integer linear programming problem under
three simplifying assumptions. Computers & Operations Research, 41:309-318, 2014.

Acknowledgment

This research was funded by the Vienna Science and Technology Fund (WWTF) through project ICT15-
014. The work of M. Fischetti and M. Monaci was also supported by the University of Padova (Progetto
di Ateneo “Exploiting randomness in Mixed Integer Linear Programming”), and by MiUR, Italy (PRIN
project “Mixed-Integer Nonlinear Optimization: Approaches and Applications”). The work of I. Ljubi¢ and

M.

Sinnl was also supported by the Austrian Research Fund (FWF, Project P 26755-N19). The authors

thank Ted Ralphs for his technical support and instructions regarding MibS, and Massimiliano Caramia for
providing the instances used in [3].

10

https://github.com/tkralphs/MibS

	Introduction
	Literature overview
	Bilevel-free sets
	Mixed-integer bilevel linear programming
	A new family of cuts for MIBLP
	Informed no-good cuts
	Preliminary computational results

