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Abstract

Finding maximum weight connected subgraphs within networks is a fundamental combinatorial op-
timization problem both from a theoretical and a practical standpoint. One of the most prominent
applications of this problem appears in Systems Biology and it corresponds to the detection of active
subnetworks within gene interaction networks.

Due to its importance, several modeling and algorithmic strategies have been proposed for tackling the
maximum weight connected subgraph problem (MWCS) over the last years; the most effective strategies
typically depend on the use of integer linear programming (ILP). Nonetheless, this implies that large-
scale networks (such as those appearing in Systems Biology) can become burdensome; moreover, not
all practitioners may have access to an ILP solver. In this paper, a unified modeling and algorithmic
scheme is designed to solve the MWCS and some of its application-oriented variants with cardinality or
budget constraints. The proposed framework is based on a general node-based model which is tackled
by Relax-and-Cut, i.e., Lagrangian relaxation combined with constraint generation. The approach is
enhanced by additional valid inequalities, lifted valid inequalities, primal heuristics and variable-fixing
procedures.

Computational results on instances from the literature, as well as on additional large-scale instances,
show that the proposed framework is competitive with respect to the existing approaches and it allows
to find improved solutions for some unsolved instances from literature. The implemented approach is
made available online.

1 Introduction and Motivation

The problem of finding active subnetworks has recently received considerable attention from the bionformatics
community [see, e.g. Andreotti, 2015, Backes et al., 2011, Dittrich et al., 2008, El-Kebir, 2015, Hatem, 2014,
Huang, 2011, Ideker et al., 2002, Yamamoto et al., 2009, and the references therein]. In this problem, one
is given a gene interaction network (also known as interactome), and the goal is to find active subnetworks
associated with a particular biological process (e.g., a cancer). In Dittrich et al. [2008], this problem was
formalized as the maximum weight connected subgraph problem (MWCS). One is given a graph G(V,E), with
node-weights wv ∈ R, ∀v ∈ V , and the goal is to find a connected subgraph G′ with maximum node-weight.
In a biological context, the nodes model genes and a particular node-weights wv is a score that represents
the significance of gene v for the biological process under investigation. The scores are typically based on
data obtained by DNA-microarray experiments.
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Aside from its importance in bioinformatics, the MWCS appears as a basic optimization problem in
wildlife corridor design [Dilkina and Gomes, 2010], forestry planning [Carvajal et al., 2013], object and
activity saliency detection [Adluru et al., 2014, Chen and Grauman, 2012, Vijayanarasimhan and Grauman,
2011], wireless network deployment planning [Kuo et al., 2015], among others.

Dittrich et al. [2008] showed that the MWCS can be transformed into the prize-collecting Steiner tree
problem (PCSTP) and developed an exact integer linear programming (ILP)-based solution approach built on
the PCSTP framework of [Ljubić et al., 2006]. After Dittrich et al. [2008], further exact solution approaches
based on ILPs have been proposed by [Althaus and Blumenstock, 2014, Álvarez-Miranda et al., 2013a,b,
Backes et al., 2011, El-Kebir and Klau, 2014, Fischetti et al., 2014]; in contrast to [Dittrich et al., 2008],
where arc- and node-variables are used, these latter approaches are based on formulations using only node-
variables. Such models have much less variables which is particularly useful in highly dense networks as
those appearing in the identification of functional modules in gene regulatory networks. Complementary to
these algorithms, polyhedral studies on the connected subgraph polytope are carried out in [Wang et al.,
2014].

Depending on the area of application, there may be additional side-constraints like a cardinality constraint
or a budget constraint. In [Backes et al., 2011], the cardinality-constrained counterpart of the MWCS was
tackled via integer programming considering an arc-based model; in a latter work, the same variant was
approached in [Álvarez-Miranda et al., 2013a] using a much more efficient node-based model. Similarly,
an arc-based ILP model was proposed in [Dilkina and Gomes, 2010] for the budget-constrained variant;
in a more recent work, considerably better computational results were obtained by means of a node-based
model [see Álvarez-Miranda et al., 2013b].

In this work, a Relax-and-Cut (R&C) approach, i.e., Lagrangian relaxation combined with constraint
generation, is designed for the MWCS, and its cardinality- and budget-constrained versions. The use of such
algorithm is motivated by the following two observations. First, the previously proposed ILP approaches need
an exponential number of constraints, hence, they are tackled by means of branch-and-cut. As a consequence,
these strategies typically fail in providing acceptable gaps for massive instances, as those appearing from
bioinformatics, mainly due to time consuming separations. And second, practitioners may not have access
to an ILP solver or may not have the expertise to use it, and thus there is need for alternative approaches.
As a matter of fact, for this reason the R-package BioNet [see Beisser et al., 2010, in addition to [Dittrich
et al., 2008]], also contains a heuristic for the MWCS, for users without access to an ILP solver. Another
example of a heuristic for an equivalent problem arising in Bioinformatics corresponds to the hybrid ILP-
based heuristic proposed in [Akhmedov et al., 2016]; the approach is based on embedding the resolution of
small size PCSTP instances within a clustering strategy in a divide-and-conquer scheme. In contrast to the
heuristics in [Akhmedov et al., 2016, Beisser et al., 2010], the approach proposed in this paper also provides
a dual bound which allows to judge the quality of the attained (primal) solutions; furthermore, the proposed
scheme can be embedded within a branch-and-bound framework, allowing an exact resolution of the problem.
Note that implementations of Lagrangian relaxation-based algorithms have been successfully applied to solve
problems related to the MWCS. Sophisticated Lagrangian relaxation schemes (without cut generation) are
designed in [Haouari et al., 2008, 2010] for the PCST. Complementary, R&C implementations are devised
in [Lucena, 2005, 2006] for the Steiner tree problem, and in [da Cunha et al., 2009] for the PCSTP.

In order to assess the efficiency of the R&C algorithm proposed in this paper, both from the view
of solution quality and runtime, a computational study on a large set of benchmark instances from the
literature is reported. Moreover, additional large-scale instances, which have been constructed to resemble
interactomes, are tested as well. The implemented program provided for download at Sinnl and Álvarez-
Miranda.

Paper Outline In Section 2 the ILP formulation used in the R&C algorithm is presented; likewise,
the cardinality- and budget-constrained versions are discussed in more detail. A generic scheme of R&C is
outlined in Section 3. In Section 4 the designed algorithmic framework is described. Computational results
are reported in Section 5. Finally, concluding remarks are drawn in Section 6.
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2 An ILP Formulation for (Variants of) the MWCS

In its simplest form, the MWCS can be defined as follows.

Definition 1. (The MWCS) Given an undirected graph G = (V,E), with weight function w : V → R, the
MWCS is the problem of finding a subgraph T = (VT , ET ) that maximizes the total weight

∑
v∈VT

wv, and
every pair {i, j} ∈ VT can be connected by a path composed exclusively by edges contained in ET .

As mentioned before, this definition can be complemented by so-called side constraints depending on the
particular application. For instance, in some contexts, besides the weight function one has to additionally
consider a cost or penalty function c : V → N and a budget boundB ∈ N. Hence, the sought maximum weight
connected subgraph must also respect a budget constraint

∑
v∈VT

cv ≤ B. Such constraint may appear,
for instance, in Bioinformatic settings where compact, i.e., cardinality constrained, functional modules are
preferred over large ones [see, e.g. Yamamoto et al., 2009, Yosef et al., 2011]; in this case c = 1. Likewise,
in a wildlife corridor design setting although the aim is to find a connected reserve that maximizes the
ecological suitability, it must respect an economical bound [see, e.g. Dilkina and Gomes, 2010]. Similarly,
in the design of wireless networks, although the objective is to construct a mesh that maximizes the service
coverage, there are construction budgets that must be satisfied [see, e.g. Kuo et al., 2015]. Although the
cardinality-constrained version is a special case of the budget-constrained version, here it is regarded as
its own problem variant, as it allows to use a more efficient solution approach. In the budget-constrained
version, one assumes that ci ≤ B, ∀i ∈ V , as nodes not fulfilling this can easily be removed at the beginning.

Let y ∈ {0, 1}|V | be a binary variable such that yi = 1 if node i ∈ V is part of the connected subgraph,
and yi = 0 otherwise. Let Φ denote the set of all {0, 1}|V | vectors associated with connected components of
G. With this notation, a general version of the MWCS can be modeled as

max
{

wTy | Λy ≤ β , y ∈ Φ and y ∈ {0, 1}|V |
}
, (1)

where Λy ≤ β represents a (possibly empty) set of side constraints.
There are several alternatives to model the constraint y ∈ Φ; in this paper a node-based model, as

proposed in [Álvarez-Miranda et al., 2013a, El-Kebir and Klau, 2014, Fischetti et al., 2014], is considered.
For formulating such model, the following definition is needed.

Definition 2. (Node-separator) For two distinct nodes k and ` from V , a subset of nodes N ⊆ V \ {k, `}
is called (k, `)-node separator if and only if after eliminating N from V there is no (k, `) path in G. A
separator N is minimal if N \ {i} is not a (k, `) separator, for any i ∈ N . Let N (k, `) denote the family of
all minimal (k, `) separators.

Obviously, if ∃{k, `} ∈ E or if ` is not reachable from k, it holds that N (k, `) = ∅. Using Definition 2 and
the previous notation, the connectivity requirement represented by y ∈ Φ can be encoded by the following
set of constraints ∑

j∈N
yj ≥ yk + y` − 1, ∀N ∈ N (k, `), ∀k, ` ∈ V (CONN.1)

y ∈ {0, 1}|V |. (CONN.2)

Constraints (CONN.1) account for the connectivity of the subgraph induced by those variables verifying
y` = 1 and yk = 1: if t and ` are part of the solution, then at least one of the nodes from N has to
be taken. The nature of the variables is imposed by (CONN.2). Note that constraints (CONN.1) are
exponential in number. Hence, in the proposed algorithm, only few constraints (CONN.1) are added at
the beginning; the remaining constraints are separated and dualized on-the-fly. This approach is known as
Relax-and-Cut [Lucena, 2005], which is outlined in the next section.

Compared to the formulation proposed by [Álvarez-Miranda et al., 2013a] for the MWCS, the model
based on (CONN.1) does not make use of an artificial root node for modelling connectivity.

Finally, this section is complemented with the following helpful observation [Fischetti et al., 2014].
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Observation 1. Let P := {i ∈ V | wi > 0} be the nodes with positive weights. There is always an optimal
solution to the MWCS and its cardinality- or budget-constrained version, where only nodes in P have degree
one.

Proof. Suppose a subgraph T ′, which contains a node i ∈ V \ P with degree one, is the optimal solution.
Since i has degree one (and ci ≥ 0), it can be removed, and the solution stays feasible. Since wi < 0, the
objective of the solution with i removed is better than the objective of T ′, which is a contradiction to the
optimality of T ′.

Based on this observation, the constraints∑
(i,k)∈E

yi ≥ 2yk, ∀k ∈ V \ P, (NON-LEAF)

are valid inequalities for the problem.

3 Relax-and-Cut Optimization Scheme

Let

CO : z∗ = max
{
cTy | Ay ≤ b, Dy ≤ e and y ∈ {0, 1}n

}
, (CO)

be a generic combinatorial optimization problem of n binary variables. Assume that Ay ≤ b defines a system
of so-called complicating constraints, i.e., the problem without these constraints is easy to solve. In such
case, a classical approach in optimization is to relax Ay ≤ b in a Lagrangian way. Let λ ∈ Rm≥0 be a vector
of multipliers associated with the m constraints encoded by Ay ≤ b. For a given vector λ, the Lagrangian
relaxation of (CO) is given by

zR(λ) = max
{(

cT + λTA
)

y − λTb | Dy ≤ e and y ∈ {0, 1}n
}
, (RL)

and it verifies zR(λ) ≥ z∗, i.e., it gives a dual bound. In order to find the best dual bound, one then solves
the Lagrangian dual problem

z∗L = min {zR(λ) | λ ≥ 0} (LD)

using, e.g., a subgradient algorithm [see, e.g., Anstreicher and Wolsey, 2007, Kiwiel et al., 2007, Nesterov,
2007, Sherali and Choi, 1996, for discussions regarding subgradient algorithms]. Using such approach, (LD)
gets iteratively solved for different λ; let yt be the optimal solution of the t-th iteration.

For some problems, including the one considered in this work, the set (A,b) ≡ Ay ≤ b is of exponential
size, i.e., it is not practical to specify and relax Ay ≤ b all at once. This led to the development of Relax-and-
Cut (R&C) algorithms [see, e.g., Engevall et al., 1998, Escudero et al., 1994, Klose, 2000]. A comprehensive
presentation of the R&C approach can be found in the seminal works [Aboudi and Jörnsten, 1991, Lucena,
2005, 2006] and [M., 1998].

In R&C, one starts with a (RL) model with a (possibly empty) subset (Ã, b̃) of (A,b), and associated
multipliers λ̃. During the course of optimizing (LD), a set of constraints, say (A′,b′), violated by the current
yt, i.e., verifying A′yt > b′, is identified by solving a separation problem. Such constraints are then added to
(Ã, b̃). Note that contrary to an ILP-based branch-and-cut approach, a constraint can be violated in more
than one iteration when using a R&C algorithm. In order to add (and dualize) every constraint only once,
a hashset is used to store all added constraint in order to check if the candidate constraint has been added
before.

Let (At,bt) be the set of separated constraints up to iteration t, and λt the associated multipliers. Let

wt = c + λt
T
At, and observe that the objective of the relaxed problem at iterations t can be written as

wtT y− const(t), where const(t) = λt
T

bt. An outline of a R&C algorithm based on the subgradient method
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Algorithm 1 Basic Relax-and-Cut Algorithm

Input: Problem (CO); initial relaxed constraints (A−1,b−1); maximum number of iterations tmax; tolerance
ε; step-length factor α; step-length update-parameter p.

1: Set t := 0, λ0 := 0, α0 := α, PB:= −∞, DB:=∞ and STOP:=FALSE;

2: w0 = c + λ0TA−1

3: repeat
4: (Relaxed problem) Solve the relaxed problem:

zt = max
{

wtT y − const(t) | Dy ≤ e and y ∈ {0, 1}n
}
. (RLt)

Let yt be the optimal solution of (RLt); set DB:= zt if zt <DB;
5: (Separation problem) Find one (or more) constraints

Ayt ≤ b

violated by yt, let (A′,b′) be these constraints. Initialize the corresponding multipliers λti for i ∈
Rows((A′,b′) \ (At−1,bt−1)). Set (At,bt) = (At−1,bt−1) ∪ (A′,b′);

6: (Update PB) Use yt within a Primal Heuristic for finding a primal bound PB′; set PB:=PB′ if
PB′ >PB;

7: (Update DB) If DB did not change for p iterations; then reset yt to the dual incumbent, set zt := DB
and update α;

8: (Update subgradient) Calculate the subgradient gt associated with (At,bt), i.e., entries of gt are
given by

gti = bti −Atiyt, i ∈ Rows(At,bt);

9: (Update multipliers) Calculate the new Lagrangian multipliers associated with (At,bt), i.e., λt+1
i =

max {0, λti − θtgti} , i ∈ Rows(At,bt); where θt = α z
t−PB
‖gt‖ .

10: if ‖gt‖ ≤ ε, or (DB− PB) ≤ ε, or t = tmax then
11: set STOP:=TRUE;
12: else
13: wt+1 = c + λt+1TAt, set t := t+ 1;
14: until STOP = TRUE

is given in Algorithm 1. In Algorithm 1, the best primal bound is saved in variable PB and the best dual
bound in DB.

A subgradient gt of the current iteration t is given by

gti = bti −Atiyt, i ∈ Rows(At,bt).

In the simplest variant of the subgradient method [see, e.g., Wolsey, 1998], this subgradient is used together
with a step-length factor α ∈ (0, 2] to generate the step-length

θt = α
zR
(
λt
)
− PB

‖gt‖
,

and the Lagrangian multipliers are updated by the following rule

λt+1
i = max

{
0, λti − θtgti

}
.

When a constraint (Ai, bi) gets added to (At,bt), λti is initialized equal to 0. Following [Haouari et al., 2008],
if there is no improvement of DB for the last p > 0 iterations, α gets halved and the current solution yt is
reset to the dual incumbent solution and zR

(
λt
)

to DB, before the calculation of the subgradient.
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An alternative method for calculating the multipliers is also considered; the average direction strategy
(ADS), which is proposed in [Sherali and Ulular, 1990]. This strategy turned out to be the most efficient
one in the computational study of different subgradient strategies carried out in [Haouari et al., 2008]. In
ADS, a direction dt is defined as

dt = gt +
‖gt‖
‖dt−1‖

dt−1,

and the multipliers are be updated as

λt+1
i = max

{
0, λti − θtdti

}
.

In this case, the directions dt−1
i are initialized to gt−1

i when a constraint (Ai, bi) gets added.

4 A Relax-and-Cut Framework for (Variants of) the MWCS

In order, to successfully apply the R&C approach to the MWCS (and its variants), the following steps of
Algorithm 1 need to be discussed: (i) solving the relaxed problem (line 4); (ii) finding inequalities violated
by the solution of the relaxed problem (line 5); and (iii) trying to obtain a better primal solution (line 6).
Procedure (ii) is first described since it is the same for all three variants of the MWCS considered in this
paper; afterwards, and for each problem variant, (i) and (iii) are presented. Finally, additional enhancements
of the framework are discussed.

4.1 Solving the Separation Problem

Let Gt be the subgraph induced by V t = {i ∈ V | yti = 1}, and let Ht
1, H

t
2, . . . ,H

t
l be the l connected

components contained in Gt (if there is only one component, then no inequality (CONN.1) is violated by
the current solution). For a given component Ht

i , let H̄t
i be the set of neighboring nodes of Ht

i in G, i.e.,
H̄t
i = {i′ ∈ V \Ht

i | ∃{i′, j} ∈ E, j ∈ Ht
i }. A minimal separator between a node k ∈ Ht

k and a node ` ∈ Ht
`

can be found as follows: (i) delete from G all arcs induced by Ht
k∪ H̄t

k and Ht
` ∪ H̄t

` ; (ii) apply a breadth-first
search from k, and let R(k) be the set of all the reached nodes; finally, (iii) the set Nk,` = R(k)∩ H̄t

` defines
a minimal (k, `)-node separator.

In the case of large-scale instances, searching minimal separators can be computationally costly. As an
alternative, one can simple use the neighboring node sets H̄k

u as node separators. Although not minimal,
these separators can be computed very fast. Moreover, the following lifted version of (CONN.1) can be used:

Theorem 1. Let zI be the value of a feasible solution, zH =
∑
i∈H max(0, wi) for H ⊂ V and H̄ = {i′ ∈

V \H|∃{i′, j} ∈ E, j ∈ H}. If zH < zI , the following inequalities do not exclude the optimal solution of the
MWCS (nor of its cardinality- and budget-constrained variants)∑

j∈H̄

yj ≥ yk, ∀k ∈ H. (L-CONN)

Proof. It holds that zH < z∗, which means that there is not enough weight associated with nodes in H so
that the optimal solution can be contained in H alone. This means that at least one node ` outside of H
must be in the solution. If a node k ∈ H is in the solution, it must be connected to `, and the connection
to any node outside of H must use a node in H̄.

4.2 Solving the Relaxed Problems and Primal Heuristics

MWCS In the case of the simple MWCS, the relaxed problem in the t-th iteration is given by

zt = max
{

wtT y + const(t) | y ∈ {0, 1}|V |
}
,
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therefore, its resolution is trivial. Simply pick all nodes such that the corresponding values in wt are positive.
Note that picking a node i ∈ V means setting yi = 1.

To construct primal solutions based on wt, a variant of the PrimI-heuristic [de Aragão and Werneck,
2002], originally proposed for the Steiner tree problem, is developed. Recall that in the Steiner tree problem,
one is given a graph with positive edge costs and terminal nodes T ⊂ V . The goal is to find a minimum
cost subtree containing all nodes in T and potentially some other nodes V \ T . The heuristic PrimI is a
combination of Prim’s algorithm for the spanning tree problem and Dijkstra’s algorithm for the shortest
path problem: a partial solution (i.e., a subtree) GH is kept throughout the algorithm. In the beginning GH
is initialized with a node k ∈ T ; then, shortest paths from GH to all terminals k′ ∈ T, k′ 6= k are computed.
Let k∗ be the terminal node with cheapest connection cost to GH . The node k∗ and all nodes on the shortest
path to it are added to GH . This procedure is repeated until all nodes in T are connected. Note that the
algorithm also works in the directed case.

The heuristic was adapted as follows: the set T is defined as all nodes i with yti = 1. The cost of an
edge e : {i, j} ∈ E is defined as 0 if ytj = 1 and min{0,−wtj}, otherwise. PrimI is ran on this graph to find a
Steiner tree; the nodes in the tree are the heuristic solution for the MWCS. As root node to initialize GH , a
node i with maximal wti amongst all nodes in P within the component of Gt, which contains the maximum
weight, is chosen. A post-processing procedure was also implemented: note that whenever a node k ∈ T is
added to the partial solution GH , the solution value zH may increase or decrease, depending on the weight
wi of the nodes i on the path to k, i.e., it could be better to not connect some nodes k ∈ T . Thus, one must
keep track of the value zH throughout the run of the heuristic, and the partial solution with the highest
zH is taken. Finally, and as an additional post-processing, one can check if there is some node i ∈ P |wt

i<0

adjacent to the obtained solution (recall that such a node is not taken in T ); if yes, one can add such node,
and repeat the process recursively.

Cardinality-constrained MWCS In the case of the side constraints defining a cardinality requirement
1Ty ≤ β, the relaxed problem

zt = max
{

wtT y + const(t) | 1Ty ≤ β and y ∈ {0, 1}|V |
}
,

can be solved straightforwardly: sort nodes decreasingly by wti and pick nodes until either wti ≤ 0 or β nodes
have been picked.

The primal heuristic is similar to the one for the simple MWCS. The cardinality requirement is taken
into account when a node in T is candidate to be added to GH ; if adding it would exceed the cardinality
bound, it does not get added.

Budget-constrained MWCS If the side constraints correspond to a single budget constraint cTy ≤ B,
the relaxed problem corresponds the following knapsack problem

zt = max
{

wtT y + const(t) | cTy ≤ B and y ∈ {0, 1}|V |
}

;

this problem is solved by the well-known dynamic programming algorithm [see, e.g., Kellerer et al., 2004,
Martello et al., 1999] (after removing nodes i with wti < 0).

The primal heuristic is again similar to the one for the simple MWCS. The cost of an edge e : {i, j} ∈ E
is set to 0 for all nodes with ytj = 1, and to cj for all nodes with ytj = 0. If adding a node in T to GH would
exceed the budget B, it does not get added.

4.3 Algorithmic Enhancements

In order to improve the performance of the described R&C algorithm, the following enhancements are
incorporated.

Variable Fixing A variable fixing procedure based on Lagrangian multipliers [see, e.g. Wolsey, 1998] is
used to reduce the size of the instance throughout the course of the algorithm. Let PB be the best primal
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bound, yt be the current dual solution, let wt be the current vector of reduced costs, and let zt be the
optimal solution value obtained with wt. For every node i with yti = 1, one can set yi = 0 and resolve the
problem using wt, if the value of the solution does not exceed PB, yi needs to be 1 in every optimal solution
and one can fix yi = 1. The same arguments also hold for yti = 0, setting it to yi = 1 and resolving.

Resolving the MWCS and its cardinality-constrained variant can be done very efficiently, as it does not
need to be done from scratch for each node. However, for the budget-constrained MWCS, the Dantzig-bound
is calculated instead of resolving the problem exactly. The bound is obtained by ordering the elements by
wi/ci in descending order and picking items until the budget B is exhausted (note that the last item may
be picked only fractionally) [see Martello and Toth, 1990, for further details]. As this gives an upper bound,
the arguments for variable fixing are still valid. The resolving procedures are as follows.

• MWCS: as there are no side constraints, setting yi = 0 for a node with yti = 1 leads to yt with yti = 0
as optimal solution of the resolved problem. The objective of this solution is zt − wti (which verifies
zt − wti < zt, since wti > 0 due to yti = 1). Setting yi = 1 for a node with yti = 0 follows similar
arguments.

• Cardinality-constrained MWCS: the optimal solution needs to respect the cardinality constraint. Thus,
when yi = 0 is set for a node with yti = 1, an additional node can be added to the solution. Let j′

be the node with largest wtj amongst all nodes j ∈ V with ytj = 0. Clearly, the optimal solution is
obtained by adding j′ to yt with yti = 0, if wtj′ > 0 and doing nothing otherwise. The objective of

this solution is zt − wti + max{0, wtj′}. When a node with yti = 0 is set to yi = 1, a node with yti = 1
needs to be zero due to the cardinality requirement (if the corresponding constraint is tight). Clearly,
to obtain the optimal solution, the node j′ with minimal wtj′ amongst all nodes with yti = 1 needs to

be set to zero. This leads to the objective value of zt +wti −wtj′ . Note that wti ≤ wtj′ ,thus the value is

≤ zt. If the constraint that defines the cardinality is not tight (this implies wti < 0), one would obtain
zt + wti .

• Budget-constrained MWCS: the optimal solution needs to respect the budget requirement. Setting
yi = 0 for a node with yti = 1 can be incorporated in the calculation of the Dantzig-bound by skipping
the node. Setting yi = 1 for a node with yti = 0 can be dealt with by reducing the budget B by ci and
adding wi to the obtained Dantzig-bound.

Cut Management For a set of nodes V t, not all the constraints (CONN.1) between each pair of compo-
nents Ht

i , H
t
j , are added to the model. This is done since preliminary experiments showed bad performance

when adding too many cuts; a similar behavior has been observed in [da Cunha et al., 2009], where subtour-
elimination constraints are used in a R&C framework. Instead, the components are sorted in decreasing way
according to the sum of positive weights of the nodes comprising them, and a constraint (CONN.1) is added
only between two consecutive components, say Ht

k and Ht
` , in this sorted list. A node k (`) with maximal

wtk (wt`) amongst all nodes in Ht
k ∩P (Ht

` ∩P ) is taken as argument for the right-hand-side of an added cut
in case of the classic MWCS and the cardinality-constrained MWCS. For the budget-constrained MWCS,
the ratio wtk/ck (wt`/c`) is taken as criterion.

The aging procedure suggested by [da Cunha et al., 2009] is also incorporated into the proposed algorithmic
scheme. The procedure is based on the observation that good practical convergence of a subgradient approach
(in a classical, i.e., not R&C setting) can be achieved by setting gti = 0, when λti = 0 [see Beasley, 1993]. The
idea is that a constraint i with gti > 0 and λti = 0 only influences the step-size αt, but not the Lagrangian
cost wt, which can lead to a bad performance. Following the suggested aging procedure, gti is set to 0 if
in the previous τ iterations, the associated Lagrange multiplier has been zero, i.e, λt−τi = . . . = λti = 0.
Additionally, dt−1 is also set to 0, since the step-size is also influenced by this value in the considered ADS.

Finally, the inequalities (NON-LEAF) and (L-CONN), for H = i ∈ P , are dualized at the start of the
algorithm. The latter constraints exclude single-node solutions being feasible; however, the best single-node
solution can be easily found at the start of the algorithm, and PB is initially set to its weight.

Preprocessing The following simple preprocessing procedures have been implemented;
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• Removal of all zero-degree nodes.

• Removal of all connected components H, where
∑
i∈H max{0, wi} ≤ w∗ and w∗ = maxi∈V wi.

• Recursive removal of all nodes in V \ P with degree one (following Observation 1).

5 Computational Results

The R&C framework was implemented in C++. The program is available online at [Sinnl and Álvarez-
Miranda]. Runs were carried out on an Intel Xeon CPU with 2.5 GHz and 12GB memory. The step-length
factor α is initially set to 2, and halve it after p = 20 iterations without improvement. As parameter τ in
the aging procedure, the value three is used. The heuristics are called at every iteration and the variable
fixing routines are called whenever the primal or dual bound improves.

5.1 Benchmark Instances

MWCS For the MWCS, the following three recently published datasets, which can be downloaded
from [11th DIMACS Implementation Challenge, 2014], are used:

• ACTMOD This is a group of 8 instances from integrative biological network analysis, in which the goal
is to find active modules. They were originally proposed by [El-Kebir, 2015, El-Kebir and Klau, 2014].
The size of the instances ranges from 2034 nodes and 7756 edges, to 5226 nodes and 93394 edges.

• Hand This is a group of 48 instances created from images of hand-written text and motivated by an
application of the PCSTP problem in signal processing. These instances were introduced in [Hegde
et al.]. The size of the instances ranges from 39600 nodes and 78704 edges, to 169800 nodes and 338551
edges. Note that these instances are originally for the PCSTP; however, since they have uniform edge
weights, they can be easily transformed into MWCS-instances.

• JMPALMK This is a group of 72 random Euclidean instances with a topology similar to street networks
and they were first presented in [Álvarez-Miranda et al., 2013a]. They are generated as proposed
in [Johnson et al., 2000]. First, n nodes are randomly located in a unit Euclidean square. A link
between two nodes i and j is established if the Euclidean distance dij between them is no more
than ρ/

√
n, for a fixed ρ > 0. For a given n and a given ρ, node weights are generated according

to the following procedure: δ% of the nodes are randomly selected to be associated with non-zero
weights; out of them, an ε% of nodes is associated with a weight taken uniformly randomly from
[−10, 0], and the remaining nodes are associated with a weight taken uniformly randomly from [0, 10]
(δ, ε ∈ {0.25, 0.50, 0.75}) The size of the instances ranges from 500 nodes and 2597 edges, to 1500 nodes
and 20527 edges.

Besides the above described instance datasets, an additional set of synthetic large-scale instances was
also used in the computations. These instances have been created to resemble gene interaction networks (i.e.,
interactomes). It is well-known that interactomes verify specially structured topologies such as scale-free,
geometric and Erdös-Rénvi random graphs [see, e.g. Albert, 2005, Friedel and Zimmer, 2006, Janjić et al.,
2008, Przulj et al., 2004, Rajagopalan and Agarwal, 2005]. The graphs have been created with functions
available in the R package igraph [Csardi and Nepusz, 2006]. For each type of graph, instances are generated
setting |V | equal to 10000 and 20000, and using three values of edge density. This leads to instances with
10000 nodes and 5246096 edges, up to 20000 nodes and 20951806 edges.

For each of the resulting networks, node scores are generated following the ideas presented in [Dittrich
et al., 2008, Rajagopalan and Agarwal, 2005]; namely,

1. An artificial subnetwork is identified by performing a random walk of a length chosen uniformly random
in (100, 200).
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2. Nodes in the encountered subnetwork receive a p-value1 chosen uniformly random in (0, 10−3), all other
nodes get a p-value chosen uniformly random in (0, 1).

3. The scoring function proposed by [Dittrich et al., 2008], and available in BioNet [see Beisser et al.,
2010], is used to generate scores using the assigned p-values and a specified desired false-discovery-rate
of 0.2.

These instances are made available online at [Sinnl and Álvarez-Miranda] and will be denoted as
synthetic-interactomes.

Cardinality-constrained MWCS The instances from the sets ACTMOD and synthetic-interactomes

are used to test the algorithm for the cardinality-constrained MWCS. For each instance, the cardinality bound
is set to 10%, 25%, 50% of the number of nodes with positive weight, i.e., β = {0.1|P |, 0.25|P |, 0.5|P |}.

Budget-constrained MWCS For the budget-constrained MWCS, the set Wildlife, originally proposed
in [Dilkina and Gomes, 2010], is considered. This is a group of random grid graph-based instances, which aim
at resembling wildlife habitat zones where maximum suitability corridors must be designed. Each instance is
given by an L×L grid, and weights and costs are randomly taken from {0, . . . , 10}. Depending on the relation
between weight and cost, instances are classified as weak (weakly correlated) and uncor (uncorrelated). The
largest instances from this set have been taken as part of the computations; L is set to 20, which leads to
networks comprised by 400 nodes and 760 edges. These instances originally have terminals that must be
in any feasible solutions. This has been ignored in order to transform the instances to be suitable for the
budget-constrained MWCS considered in this paper.

Complementary, a set of large-scale instances, denoted as synthetic-budget, has been also generated.
Similar to the set synthetic-interactome, networks corresponding to scale-free, geometric and Erdös-Rénvi
random graphs were created using the R package igraph. For each type of graph, instances were generated
setting |V | equal to 1000, 5000 and 10000, and using three values of edge density. Weights are randomly
taken from {−10, . . . , 10} and costs from {0, . . . , 10}. For each instance, computations were carried out
considering B = {0.05Ctotal, 0.10Ctotal, 0.20Ctotal}, where Ctotal =

∑
i∈V ci.

5.2 Results for MWCS

The effect of different ingredients of the proposed R&C approach are first compared; the result of such
comparison is reported in Figure 1, which gives plots of the optimality gap for six different settings obtained
by combining these ingredients when solving the instances from sets ACTMOD, JMPALMK, synthetic-instances
and hand. A given setting is labeled as XYZ: X corresponds to F if the fast separation (together with
Theorem 1 ) is used, or to N if the normal separation of connectivity cuts (CONN.1) is used; Y corresponds
to A if the aging procedure for cuts is used, or “−” if it is not used; and Z indicates whether the classic
subgradient (denoted by C) or the average direction strategy ADS (denoted by A) is used. In this plot, the
optimality gap is calculated as 100 · (UB − z∗)/z∗, where UB is the obtained upper bound and z∗ is the
value of the best solution found by the setting. As the instance set hand is originally of a minimization form
(since it is a uniform PCSTP), the gap for these instances is calculated as 100 · (z∗ − LB)/z∗, where LB is
the obtained lower bound.

The results reported in Figure 1 show that using the aging procedure seems to have a positive influence
on the gaps. Aside from this, the performance is very similar among the different settings, i.e., the use of
fast separation instead of normal separation, or the use of classic subgradient instead of ADS, does not have
strong impact (note that the scale in Figure 1 has been transformed by using the square-root for allowing
a better readability). Settings FAC and FAA allow to obtain a gap of at most 1% for nearly 80% of the
MWCS instances. Based on the figure, the setting FAC is used for all further experiment.

Next, the performance of the proposed R&C algorithm is compared against a state-of-the-art ILP-based
framework of [Fischetti et al., 2014] The framework proposed by [Fischetti et al., 2014] was winner in many
categories of the recent 11th DIMACS Implementation Challenge on Steiner trees, including the MWCS

1a smaller p-value indicates a higher confidence that the gene is part of the searched subnetwork
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Figure 1: Optimality gaps obtained by different settings of the R&C approach.
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category [11th DIMACS Implementation Challenge, 2014]. Note that the runs in [Fischetti et al., 2014]
were carried out on the same machine as the runs in this work, with a timelimit of 3600 seconds and multi-
threading using four threads. Since the framework is available, results on the synthetic-interactomes are
also reported in this paper.

In the following Tables, results for the MWCS are shown. In particular, the upper bound UB (resp.
lower bound LB for hand), the value of the best found solution z∗, the optimality gap g[%], the runtime
in seconds t[s] and the primal gap pg[%] of the best solution found by the proposed R&C against the best
solution reported in [Fischetti et al., 2014], are reported when solving the MWCS on the different datasets.
The primal gap is calculated as

100 · (zFischetti et al. [2014] − z∗)/zFischetti et al. [2014],

for ACTMOD, JMPALMK, and synthetic-instances, and as

100 · (z∗ − zFischetti et al. [2014])/zFischetti et al. [2014],

for hand; zFischetti et al. [2014] corresponds to the value of the best solution found by the approach proposed
in [Fischetti et al., 2014]. Note that a negative value for pg[%] means the primal solution obtained by the
R&C scheme improves the solution found by [Fischetti et al., 2014]. This happens for instances of the set
hand, for which the approach proposed in [Fischetti et al., 2014] was not able to solve these instances to
optimality. Additionally, observe that the approach designed in [Fischetti et al., 2014] crashes for some
instances of the set synthetic-interactomes due to memory problems.

Table 1 shows the results for instance set ACTMOD. For one instance, lymphoma, the proposed R&C
approach proves optimality, and for three additional instances it finds the optimal solution (HCMV,
metabol expr mice 2, and metabol expr mice 3 ). For three additional instances, the primal gap is under
2% (drosophila005, drosophila0075, and metabol expr mice 1 ). Instance drosophila001 causes the most trou-
ble with a primal gap of 8.76% and an optimality gap of 30.40%. In all cases, the runtime is at most
3 seconds, while the longest runtime reported by [Fischetti et al., 2014] is eleven seconds (this occurs for
drosophila005 ).

The results obtained when solving the MWCS on the instance set Hand are provided in Table 2. The
largest optimality gap is 8.05% and it is attained for instance handsd02 ; however, the optimality gap is under
1% for most instances. Optimality is certified by the R&C for four instances (handsd10, handbd14, handbi12
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Table 1: Results for instance set ACTMOD. z∗ gives the value of the best solution found, UB the obtained
upper bound, t[s] the runtime (in seconds), and g[%] the optimality gap; zFischetti et al. [2014] is the value of
the best solution reported in [Fischetti et al., 2014], tFischetti et al. [2014][s] the runtime (in seconds) reported
in [Fischetti et al., 2014] (TL indicates that the timelimit of 3600 seconds had been reached), and pg[%] is
the primal gap between the best solution value found by the proposed R&C and the one in [Fischetti et al.,
2014].

instance |V | |E| z∗ UB t[s] g[%] zFischetti et al. [2014] tFischetti et al. [2014][s] pg[%]

drosophila001 5226 93394 22.422342 29.258480 2 30.49 24.385518 10 8.76
drosophila005 5226 93394 177.705532 182.791076 3 2.86 178.664008 11 0.54
drosophila0075 5226 93394 256.401506 264.277715 2 3.07 260.523591 8 1.61
HCMV 3863 29293 7.554315 8.687654 1 15.00 7.554315 1 0.00
lymphoma 2034 7756 70.166309 70.166309 0 0.00 70.166309 0 0.00
metabol expr mice 1 3523 4345 540.093679 613.606515 1 13.61 544.948342 2 0.90
metabol expr mice 2 3514 4332 241.077524 269.814979 0 11.92 241.077525 1 0.00
metabol expr mice 3 2853 3335 508.260877 550.629656 0 8.34 508.260879 1 0.00

and handbi14 ); additionally, the optimal solution is found for 21 out the 44 instances. Moreover, for 12
instances, where the algorithm of [Fischetti et al., 2014] does not find the optimal solution, the proposed
R&C allows to compute an improved solution. The longest runtime of the R&C approach is 50 seconds
and occurs for handbd13. Moreover, for the instances in which the R&C is able to prove optimality, it does
it usually much faster than the approach devised by [Fischetti et al., 2014]; the most extreme case being
handbi12 with 6 seconds against 3379 seconds.

Tables ?? and ?? (in the Appendix ??) show the results for the JMPALMK instances. As these instances
turned out to be rather easy for the proposed approach (it is possible prove optimality for nearly all of them
in less than a second), the results obtained by Fischetti et al. [2014] (which has also been able to prove
optimality for all of these instances in a few seconds) are not reported. Therefore, these instances seem to
be easy for both approaches.

Finally, results for set synthetic-instances are given in Table 3. The designed R&C is capable of
providing guarantee of optimality for 15 out of 18 instances, and for the remaining three, optimal solution
is found. The runtime for 11 instances is at most one second, and only for two instances, the R&C needs
more than 20 seconds. In contrast to this, the approach given in Fischetti et al. [2014] crashed for seven of
the instances due to memory problems caused by the large size of the instances. Moreover, runtimes are up
to 107 seconds. These results, along with those for Hand instances, show that the R&C algorithm is capable
of tackling massive instances, providing nearly optimal solutions within very short running times for cases
where the state-of-the-art exact ILP approach fails in doing so.
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Table 2: Results for instance set Hand. z∗ gives the value of the best solution found, LB the obtained lower
bound, t[s] the runtime, g[%] the optimality gap; zFischetti et al. [2014] is the value of the best solution reported
in [Fischetti et al., 2014], tFischetti et al. [2014][s] the runtime reported in [Fischetti et al., 2014] (TL indicates
that the timelimit of 3600 seconds had been reached), and pg[%] the primal gap between the best solution
value found by the proposed R&C and the one in [Fischetti et al., 2014].

instance |V | |E| z∗ LB t[s] g[%] zFischetti et al. [2014] tFischetti et al. [2014][s] pg[%]

handsd01 42500 84475 171.636766 169.855952 8 1.04 171.636766 77 0.00
handsd02 42500 84475 160.200588 147.306408 9 8.05 160.345804 TL -0.09
handsd03 42500 84475 31.306275 31.208919 6 0.31 31.306275 47 0.00
handsd04 42500 84475 495.373251 463.364025 8 6.46 494.554042 TL 0.17
handsd05 42500 84475 21.937611 21.858403 7 0.36 21.937611 62 0.00
handsd06 42500 84475 280.623129 275.265819 9 1.91 279.903130 949 0.26
handsd07 42500 84475 11.804120 11.733511 10 0.60 11.804120 68 0.00
handsd08 42500 84475 143.237729 142.956110 9 0.20 143.237729 610 0.00
handsd09 42500 84475 3.818683 3.701843 12 3.06 3.822404 TL -0.10
handsd10 42500 84475 1034.767360 1034.767360 1 0.00 1034.767359 24 0.00
handsi01 39600 78704 295.453616 293.481793 6 0.67 295.453616 49 0.00
handsi02 39600 78704 125.526771 120.934488 10 3.66 125.429411 2240 0.08
handsi03 39600 78704 56.149422 55.874183 6 0.49 56.149422 57 0.00
handsi04 39600 78704 724.603412 687.440055 9 5.13 722.508202 2863 0.29
handsi05 39600 78704 35.043506 34.912097 6 0.37 35.043506 42 0.00
handsi06 39600 78704 453.072412 448.690460 7 0.97 452.953621 775 0.03
handsi07 39600 78704 18.410135 18.278262 7 0.72 18.410135 56 0.00
handsi08 39600 78704 229.529930 229.354770 8 0.08 229.529930 532 0.00
handsi09 39600 78704 5.962166 5.763122 10 3.34 5.977964 TL -0.26
handsi10 39600 78704 1803.900570 1800.745620 8 0.17 1803.697508 483 0.01
handbd01 169800 338551 729.024875 716.772497 32 1.68 730.238277 TL -0.17
handbd02 169800 338551 296.901444 286.243886 38 3.59 297.039586 TL -0.05
handbd03 169800 338551 135.070605 134.521405 25 0.41 135.070605 555 0.00
handbd04 169800 338551 1839.140710 1742.913550 37 5.23 1820.072929 TL 1.05
handbd05 169800 338551 105.474688 104.819500 28 0.62 105.474688 705 0.00
handbd06 169800 338551 1535.652210 1487.355110 39 3.15 1533.589874 TL 0.13
handbd07 169800 338551 77.861959 76.988786 37 1.12 77.861959 2942 0.00
handbd08 169800 338551 1369.222120 1348.375540 39 1.52 1371.952680 TL -0.20
handbd09 169800 338551 62.717160 62.111930 30 0.97 62.717160 1004 0.00
handbd10 169800 338551 1137.573620 1131.719420 28 0.51 1139.724449 TL -0.19
handbd11 169800 338551 46.772533 46.382794 29 0.83 46.772533 720 0.00
handbd12 169800 338551 321.212210 320.664521 36 0.17 321.207482 TL 0.00
handbd13 169800 338551 13.201574 12.695963 50 3.83 13.224294 TL -0.17
handbd14 169800 338551 4379.104240 4379.104240 1 0.00 4379.104236 45 0.00
handbi01 158400 315808 1358.757560 1335.060210 28 1.74 1360.201440 TL -0.11
handbi02 158400 315808 532.242362 513.503810 33 3.52 532.616534 TL -0.07
handbi03 158400 315808 243.134201 242.023536 21 0.46 243.134201 1246 0.00
handbi04 158400 315808 3264.617150 3070.132200 34 5.96 3226.919270 TL 1.17
handbi05 158400 315808 184.467331 183.029955 25 0.78 184.467331 916 0.00
handbi06 158400 315808 2940.136180 2851.396880 28 3.02 2930.642408 TL 0.32
handbi07 158400 315808 150.974258 149.577220 25 0.93 150.974258 1266 0.00
handbi08 158400 315808 2273.079530 2241.922500 26 1.37 2271.575687 TL 0.07
handbi09 158400 315808 107.768806 106.795496 28 0.90 107.768806 986 0.00
handbi10 158400 315808 1874.499740 1870.156450 31 0.23 1874.645163 TL -0.01
handbi11 158400 315808 68.944709 67.882253 31 1.54 68.953380 TL -0.01
handbi12 158400 315808 138.257023 138.257023 6 0.00 138.257023 3379 0.00
handbi13 158400 315808 4.357762 4.124417 36 5.35 4.268246 TL 2.10
handbi14 158400 315808 7881.768740 7881.768740 0 0.00 7881.768740 48 0.00

13



Table 3: Results for instance set synthetic-instances, z∗ gives the value of the best solution found, UB the
obtained upper bound, t[s] the runtime, and g[%] the optimality gap; zFischetti et al. [2014] is the value of the
best solution obtained using the framework of Fischetti et al. [2014], tFischetti et al. [2014][s] the runtime, and
pg[%] the primal gap between the best solution value found by the proposed R&C and the one in Fischetti
et al. [2014]. For runs, where the framework of [Fischetti et al., 2014] crashed due to needing to much
memory, the entries are ”-”.

instance |V | |E| z∗ UB t[s] g[%] zFischetti et al. [2014] tFischetti et al. [2014][s] pg[%]

ER-10000-1-0-1-0.01-0.2 10000 498886 357.552413 357.552413 0 0.00 357.552413 22 0.00
ER-10000-1-0-1-0.05-0.2 10000 2498648 99.318590 99.318590 1 0.00 - - -
ER-10000-1-0-1-0.1-0.2 10000 4998384 105.502362 105.502362 3 0.00 - - -
ER-20000-1-0-1-0.01-0.2 20000 1998637 71.001080 71.039088 1 0.05 71.001080 107 0.00
ER-20000-1-0-1-0.05-0.2 20000 9998526 138.724081 138.724081 7 0.00 - - -
ER-20000-1-0-1-0.1-0.2 20000 20002644 47.260212 47.260212 24 0.00 - - -
GR-10000-1-0-0-0.05-0.2 10000 376587 154.493407 154.493407 0 0.00 154.493407 20 0.00
GR-10000-1-0-0-0.1-0.2 10000 1438063 203.415185 204.011024 2 0.29 203.415185 98 0.00
GR-10000-1-0-0-0.2-0.2 10000 5246096 242.524905 242.524905 3 0.00 - - -
GR-20000-1-0-0-0.05-0.2 20000 1503825 57.145074 57.145074 1 0.00 57.145074 75 0.00
GR-20000-1-0-0-0.1-0.2 20000 5749047 74.014732 74.014732 4 0.00 - - -
GR-20000-1-0-0-0.2-0.2 20000 20951806 82.180357 82.180357 25 0.00 - - -
SF-10000-1-0-2-15-0.2 10000 149880 344.951567 344.957215 0 0.00 344.951567 7 0.00
SF-10000-1-0-2-20-0.2 10000 199790 212.509892 212.509892 0 0.00 212.509892 10 0.00
SF-10000-1-0-2-25-0.2 10000 249675 269.707319 269.707319 0 0.00 269.707319 12 0.00
SF-20000-1-0-2-15-0.2 20000 299880 147.581101 147.581101 0 0.00 147.581101 15 0.00
SF-20000-1-0-2-20-0.2 20000 399790 19.379227 19.669870 1 1.50 19.379227 21 0.00
SF-20000-1-0-2-25-0.2 20000 499675 90.885148 90.885148 0 0.00 90.885148 25 0.00
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Table 4: Results for cardinality-constrained MWCS on instance set ACTMOD. z∗ gives the value of the best
solution found, UB the obtained upper bound, t[s] the runtime, and g[%] the optimality gap.

β = 0.1|P | β = 0.25|P | β = 0.5|P |
instance z∗ UB t[s] g[%] z∗ UB t[s] g[%] z∗ UB t[s] g[%]

drosophila001 11.93586 13.96143 0 16.97 17.41989 24.10594 2 38.38 21.09180 30.95160 1 46.75

drosophila005 47.68835 55.52146 2 16.43 94.95791 106.93578 2 12.61 148.55221 158.68120 2 6.82

drosophila0075 68.86193 77.83925 1 13.04 138.94376 149.68238 2 7.73 216.80481 225.04755 3 3.80

HCMV 5.70381 5.70381 0 0.00 7.25127 8.15419 0 12.45 7.55431 8.67551 0 14.84

lymphoma 19.59748 20.78783 0 6.07 40.80643 43.13054 0 5.70 65.51444 65.89767 0 0.58

metabol expr mice 1 297.99577 301.01036 0 1.01 407.13140 466.28499 1 14.53 526.51545 590.45370 0 12.14

metabol expr mice 2 156.33362 182.30996 0 16.62 233.63344 258.16655 0 10.50 241.07752 289.86890 0 20.24

metabol expr mice 3 230.47309 245.12441 0 6.36 376.93230 414.39087 0 9.94 478.78322 521.99491 0 9.03

5.3 Results for Cardinality-constrained MWCS

In Table 4, results obtained when solving the cardinality-constrained MWCS on instances adapted from the
ACTMOD set are adapted. The first interesting observation is that for a fixed value of β, the gaps attained for
the different instances notoriously differ among each other. For instance, when β = 0.5|P |, the algorithm is
able to find bounds yielding a 0.58% gap for lymphoma, while for instance drosophila001 the attained gap
is 46.75%. This uneven behavior of the algorithm can be explained by the different nature of the biological
processes embodied by the different instances. Complementary, when comparing the performance of the
algorithm for different cardinality bounds β, one can see that there is a clear worsening of the results as β
takes larger values. This second characteristic of the results can be explained by how weights are distributed
among the nodes of the corresponding network. It seems that nodes with positive weight are rather far
from each other since forcing the network to be larger (by increasing β) translates into a more difficult
computational task (due to the need of finding the maximum possible sum of node weights).

In Table 5 the results obtained when solving the cardinality-constrained MWCS on the
synthetic-interactomes instances are reported. As for the ACTMOD instances, the performance of the
algorithm differs among different instances for a fixed cardinality bound β; moreover, in the case of the
synthetic-interactomes instances also the runtimes present considerable differences (see columns t[s]).
One can observe that the value of β also influences the performance of the algorithm; nonetheless, although
the average attained gaps worsen when increasing β from 0.1|P | to 0.25|P |, setting β to 0.5|P | seems to
reduce the difficulty of the problem. This might be explained by the way that the random walk on the
underlying networks is used to assign node weights; it could be the case that symmetries drop when larger
cardinalities are sought. On a more global perspective, it is possible to conclude that beyond the differences
among instances and among results for different values of β, the R&C approach is able to provide good
primal and dual bounds (frequently yielding gaps below 5%) for most of the tested problems.
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Table 5: Results for cardinality-constrained MWCS on instance set synthetic-interactomes. z∗ gives the
value of the best solution found, UB the obtained upper bound, t[s] the runtime, and g[%] the optimality
gap.

β = 0.1|P | β = 0.25|P | β = 0.5|P |
instance z∗ UB t[s] g[%] z∗ UB t[s] g[%] z∗ UB t[s] g[%]

ER-10000-1-0-1-0.01-0.2 64.35716 67.18597 1 4.40 135.62564 143.58949 7 5.87 229.33300 242.89582 5 5.91

ER-10000-1-0-1-0.05-0.2 24.76129 25.25805 1 2.01 47.39819 49.35931 2 4.14 72.49274 75.30466 1 3.88

ER-10000-1-0-1-0.1-0.2 26.67163 29.97935 3 12.40 44.48521 54.62011 1 22.78 79.25772 80.39240 4 1.43

ER-20000-1-0-1-0.01-0.2 15.25576 15.25576 1 0.00 33.25369 33.54380 2 0.87 53.06555 54.68026 2 3.04

ER-20000-1-0-1-0.05-0.2 36.02202 40.73715 24 13.09 67.09434 76.98654 16 14.74 94.87515 111.72053 2 17.76

ER-20000-1-0-1-0.1-0.2 15.51015 15.93467 37 2.74 28.63019 30.39145 53 6.15 35.04539 42.60335 7 21.57

GR-10000-1-0-0-0.05-0.2 34.13088 35.78458 0 4.85 68.55768 70.58212 1 2.95 111.49279 114.21246 0 2.44

GR-10000-1-0-0-0.1-0.2 38.85969 43.30315 3 11.43 85.18690 91.78166 1 7.74 142.71912 144.15512 1 1.01

GR-10000-1-0-0-0.2-0.2 47.76557 50.67346 6 6.09 99.59475 106.23343 11 6.67 162.46019 168.83027 1 3.92

GR-20000-1-0-0-0.05-0.2 16.46276 16.55535 1 0.56 33.11465 35.12204 2 6.06 49.81879 51.46512 1 3.30

GR-20000-1-0-0-0.1-0.2 16.49213 19.21597 7 16.52 36.80858 40.69116 30 10.55 59.75756 61.96024 6 3.69

GR-20000-1-0-0-0.2-0.2 19.39676 21.70977 41 11.92 43.23484 45.56720 40 5.39 66.72102 69.12152 27 3.60

SF-10000-1-0-2-15-0.2 72.17727 75.96669 0 5.25 145.94168 149.86156 1 2.69 235.26933 240.11133 1 2.06

SF-10000-1-0-2-20-0.2 43.11756 44.82079 1 3.95 89.78902 96.11791 4 7.05 150.24015 153.92213 2 2.45

SF-10000-1-0-2-25-0.2 49.42539 50.98842 1 3.16 105.04286 108.68488 2 3.47 179.78835 184.13517 4 2.42

SF-20000-1-0-2-15-0.2 34.30778 34.90345 1 1.74 70.01014 72.63181 1 3.74 108.37597 115.43001 8 6.51

SF-20000-1-0-2-20-0.2 4.10735 4.14278 1 0.86 9.16694 9.16694 1 0.00 13.59771 14.56806 1 7.14

SF-20000-1-0-2-25-0.2 24.22558 24.40853 0 0.76 47.84713 50.59606 1 5.75 72.74342 77.91325 4 7.11
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Table 6: Results for budget-constrained MWCS on instance set synthetic-budget. z∗ gives the value of
the best solution found, UB the obtained upper bound, t[s] the runtime, and g[%] the optimality gap.

B = 0.05C B = 0.10C B = 0.20C
instance z∗ UB t[s] g[%] z∗ UB t[s] g[%] z∗ UB t[s] g[%]

budgetER-10000-1-0.01 9105 9105 0 0.00 13274 13274 1 0.00 19166 19166 1 0.00
budgetER-10000-1-0.05 8740 8740 1 0.00 12922 12922 1 0.00 18813 18813 1 0.00
budgetER-10000-1-0.1 9008 9008 1 0.00 13110 13110 1 0.00 18998 18998 2 0.00
budgetER-1000-1-0.01 834 857 1 2.76 1285 1285 2 0.00 1876 1877 3 0.05
budgetER-1000-1-0.05 925 926 1 0.11 1374 1374 0 0.00 1975 1975 0 0.00
budgetER-1000-1-0.1 889 889 0 0.00 1301 1301 0 0.00 1899 1899 0 0.00
budgetER-5000-1-0.01 4574 4575 26 0.02 6750 6750 0 0.00 9766 9766 0 0.00
budgetER-5000-1-0.05 4286 4286 0 0.00 6299 6299 0 0.00 9141 9141 1 0.00
budgetER-5000-1-0.1 4369 4369 0 0.00 6406 6406 0 0.00 9336 9336 0 0.00
budgetGR-10000-0-0.05 8817 8817 1 0.00 12947 12947 1 0.00 18769 18769 1 0.00
budgetGR-10000-0-0.1 8817 8817 1 0.00 12947 12947 1 0.00 18769 18769 1 0.00
budgetGR-10000-0-0.2 8817 8817 1 0.00 12947 12947 1 0.00 18769 18769 2 0.00
budgetGR-1000-0-0.05 361 645 2 78.67 720 1084 3 50.56 1354 1713 6 26.51
budgetGR-1000-0-0.1 862 886 1 2.78 1316 1316 2 0.00 1914 1920 3 0.31
budgetGR-1000-0-0.2 904 904 0 0.00 1320 1320 0 0.00 1922 1922 0 0.00
budgetGR-5000-0-0.05 4284 4321 26 0.86 6432 6432 87 0.00 9388 9388 1 0.00
budgetGR-5000-0-0.1 4352 4352 0 0.00 6436 6436 0 0.00 9388 9388 0 0.00
budgetGR-5000-0-0.2 4352 4352 1 0.00 6436 6436 0 0.00 9388 9388 0 0.00
budgetSF-10000-2-15 8593 8599 99 0.07 12750 12751 223 0.01 18639 18639 572 0.00
budgetSF-10000-2-20 8696 8696 45 0.00 12903 12907 186 0.03 18828 18828 424 0.00
budgetSF-10000-2-25 8856 8856 120 0.00 13040 13040 0 0.00 18890 18890 1 0.00
budgetSF-1000-2-15 910 910 0 0.00 1351 1351 0 0.00 1964 1964 0 0.00
budgetSF-1000-2-20 861 861 0 0.00 1268 1268 0 0.00 1822 1822 0 0.00
budgetSF-1000-2-25 864 864 0 0.00 1266 1266 0 0.00 1846 1846 0 0.00
budgetSF-5000-2-15 4385 4386 28 0.02 6493 6493 24 0.00 9424 9424 176 0.00
budgetSF-5000-2-20 4448 4453 25 0.11 6599 6599 53 0.00 9535 9535 0 0.00
budgetSF-5000-2-25 4267 4267 27 0.00 6256 6256 49 0.00 9114 9114 0 0.00

5.4 Results for Budget-constrained MWCS

As previously described, the datasets synthetic-budget (similar to synthetic-interactome) and
Wildlife are used to investigate the performance of the R&C to tackle the budget-constrained MWCS.

Table 6 summarizes the results obtained when solving this variant of the MWCS for different budgets
B . It is possible to see that, regardless of the value of B, the adaptation of the R&C is capable of
computing almost optimal solutions for all instances except of instance budgetGR-1000-0-0.05, which seems
to be surprisingly difficult. By looking at the attained primal and dual bounds of all instances, one can infer
that large gap observed for budgetGR-1000-0-0.05 is caused by a bad dual bound, which shows that the
proposed R&C approach is effective in providing good feasible solutions within very short computing times.

The results obtained when solving the budget-constrained MWCS on the Wildlife instances are reported
in Tables 7 and 8. It is possible to observe that for both, weakly correlated and uncorrelated instances (Table 7
and 8, respectively), the performance of the algorithm seems to improve as the budget increases. This can
be explained by the fact that a larger budget allows to explore an area of the feasible space associated with
solutions comprised by more nodes and, therefore, more likely to yield better primal bounds. Additionally,
one can conclude that, for these two group of instances (weakly correlated and uncorrelated), the designed
algorithm works in an equivalent manner since the attained gaps are similar for a fixed B; moreover, the
runtimes are also similar.

In general, the grid topology of the Wildlife instances is a key element to explain why these instances
are so difficult. Despite the fact that the budget bound B seems to have some influence on how symmetric
the solutions in the search space are, the nature itself of the underlying networks seems to be burdensome
for the proposed R&C scheme.
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Table 7: Results for budget-constrained MWCS on instance set Wildlife (Table 1 of 2). z∗ gives the value
of the best solution found, UB the obtained upper bound, t[s] the runtime, and g[%] the optimality gap.

B = 0.05C B = 0.10C B = 0.20C
instance z∗ UB t[s] g[%] z∗ UB t[s] g[%] z∗ UB t[s] g[%]

r-uncor-lat-2f+R-u-20-10-10-3-11 283 351 0 24.03 536 578 0 7.84 889 946 2 6.41
r-uncor-lat-2f+R-u-20-10-10-3-15 278 338 0 21.58 509 587 0 15.32 925 994 1 7.46
r-uncor-lat-2f+R-u-20-10-10-3-16 280 308 0 10.00 501 561 0 11.98 915 968 1 5.79
r-uncor-lat-2f+R-u-20-10-10-3-18 258 297 0 15.12 475 538 0 13.26 868 935 1 7.72
r-uncor-lat-2f+R-u-20-10-10-3-20 290 329 0 13.45 535 575 1 7.48 936 984 1 5.13
r-uncor-lat-2f+R-u-20-10-10-3-21 304 343 1 12.83 549 615 0 12.02 975 1025 1 5.13
r-uncor-lat-2f+R-u-20-10-10-3-27 284 345 0 21.48 534 590 1 10.49 949 979 1 3.16
r-uncor-lat-2f+R-u-20-10-10-3-29 278 322 0 15.83 519 577 0 11.18 884 970 1 9.73
r-uncor-lat-2f+R-u-20-10-10-3-40 289 327 1 13.15 505 561 0 11.09 880 944 1 7.27
r-uncor-lat-2f+R-u-20-10-10-3-43 241 306 1 26.97 463 552 0 19.22 864 946 1 9.49
r-uncor-lat-2f+R-u-20-10-10-3-4 265 310 0 16.98 510 567 0 11.18 920 971 1 5.54
r-uncor-lat-2f+R-u-20-10-10-3-52 281 323 0 14.95 501 582 0 16.17 940 988 1 5.11
r-uncor-lat-2f+R-u-20-10-10-3-53 306 341 1 11.44 520 585 1 12.50 921 985 1 6.95
r-uncor-lat-2f+R-u-20-10-10-3-54 252 311 0 23.41 463 539 1 16.41 847 913 1 7.79
r-uncor-lat-2f+R-u-20-10-10-3-56 297 329 0 10.77 538 595 0 10.59 967 996 0 3.00
r-uncor-lat-2f+R-u-20-10-10-3-67 330 363 0 10.00 565 607 0 7.43 941 1001 1 6.38
r-uncor-lat-2f+R-u-20-10-10-3-69 287 329 0 14.63 510 582 0 14.12 931 993 0 6.66
r-uncor-lat-2f+R-u-20-10-10-3-72 281 317 1 12.81 507 564 0 11.24 907 957 2 5.51
r-uncor-lat-2f+R-u-20-10-10-3-74 285 334 0 17.19 519 576 0 10.98 922 952 2 3.25
r-uncor-lat-2f+R-u-20-10-10-3-76 248 292 0 17.74 456 518 0 13.60 844 915 1 8.41
r-uncor-lat-R-u-20-10-10-3-11 343 377 0 9.91 599 625 0 4.34 963 1003 1 4.15
r-uncor-lat-R-u-20-10-10-3-13 256 302 0 17.97 482 558 0 15.77 898 968 1 7.80
r-uncor-lat-R-u-20-10-10-3-14 254 323 0 27.17 489 575 0 17.59 896 977 2 9.04
r-uncor-lat-R-u-20-10-10-3-19 240 293 0 22.08 457 522 0 14.22 845 913 1 8.05
r-uncor-lat-R-u-20-10-10-3-21 261 320 0 22.61 479 549 0 14.61 888 938 1 5.63
r-uncor-lat-R-u-20-10-10-3-22 315 353 0 12.06 554 594 1 7.22 947 989 1 4.44
r-uncor-lat-R-u-20-10-10-3-27 297 339 0 14.14 567 605 0 6.70 966 1042 1 7.87
r-uncor-lat-R-u-20-10-10-3-3 268 312 1 16.42 487 557 0 14.37 911 957 1 5.05
r-uncor-lat-R-u-20-10-10-3-42 292 371 0 27.05 520 640 1 23.08 961 1054 2 9.68
r-uncor-lat-R-u-20-10-10-3-43 309 337 0 9.06 533 592 1 11.07 940 992 1 5.53
r-uncor-lat-R-u-20-10-10-3-46 274 355 0 29.56 523 619 0 18.36 957 1036 1 8.25
r-uncor-lat-R-u-20-10-10-3-53 278 327 0 17.63 507 580 1 14.40 927 992 2 7.01
r-uncor-lat-R-u-20-10-10-3-56 277 321 0 15.88 510 571 0 11.96 891 946 1 6.17
r-uncor-lat-R-u-20-10-10-3-59 290 338 0 16.55 523 591 0 13.00 946 988 1 4.44
r-uncor-lat-R-u-20-10-10-3-61 330 381 0 15.45 589 639 0 8.49 1009 1046 1 3.67
r-uncor-lat-R-u-20-10-10-3-63 339 357 0 5.31 573 607 0 5.93 989 1001 1 1.21
r-uncor-lat-R-u-20-10-10-3-70 268 322 1 20.15 498 564 0 13.25 890 965 1 8.43
r-uncor-lat-R-u-20-10-10-3-72 289 339 0 17.30 522 592 0 13.41 944 1013 2 7.31
r-uncor-lat-R-u-20-10-10-3-78 259 313 0 20.85 492 555 1 12.80 890 964 1 8.31
r-uncor-lat-R-u-20-10-10-3-7 287 335 0 16.72 506 586 1 15.81 924 1002 1 8.44
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Table 8: Results for budget-constrained MWCS on instance set Wildlife (Table 2 of 2). z∗ gives the value
of the best solution found, UB the obtained upper bound,t[s] the runtime and g[%] the optimality gap

B = 0.05C B = 0.10C B = 0.20C
instance z∗ UB t[s] g[%] z∗ UB t[s] g[%] z∗ UB t[s] g[%]

r-weak-lat-2f+R-u-20-10-10-3-104 292 324 1 10.96 549 586 1 6.74 992 1043 1 5.14
r-weak-lat-2f+R-u-20-10-10-3-10 286 317 0 10.84 533 583 0 9.38 985 1051 1 6.70
r-weak-lat-2f+R-u-20-10-10-3-18 238 304 1 27.73 454 554 0 22.03 901 997 1 10.65
r-weak-lat-2f+R-u-20-10-10-3-19 243 293 0 20.58 441 525 0 19.05 829 943 0 13.75
r-weak-lat-2f+R-u-20-10-10-3-23 256 318 0 24.22 494 583 0 18.02 951 1047 1 10.09
r-weak-lat-2f+R-u-20-10-10-3-26 285 326 0 14.39 516 594 0 15.12 939 1074 1 14.38
r-weak-lat-2f+R-u-20-10-10-3-30 287 310 0 8.01 522 556 0 6.51 891 977 0 9.65
r-weak-lat-2f+R-u-20-10-10-3-31 253 313 0 23.72 476 570 0 19.75 900 1019 1 13.22
r-weak-lat-2f+R-u-20-10-10-3-33 290 341 0 17.59 542 625 1 15.31 1055 1123 1 6.45
r-weak-lat-2f+R-u-20-10-10-3-34 264 297 0 12.50 472 549 0 16.31 897 974 0 8.58
r-weak-lat-2f+R-u-20-10-10-3-36 259 322 0 24.32 489 585 0 19.63 913 1052 0 15.22
r-weak-lat-2f+R-u-20-10-10-3-38 278 319 0 14.75 524 584 0 11.45 955 1043 1 9.21
r-weak-lat-2f+R-u-20-10-10-3-41 278 330 0 18.71 533 602 0 12.95 995 1071 0 7.64
r-weak-lat-2f+R-u-20-10-10-3-51 275 324 0 17.82 511 585 0 14.48 955 1056 1 10.58
r-weak-lat-2f+R-u-20-10-10-3-55 264 292 0 10.61 480 550 0 14.58 908 1005 1 10.68
r-weak-lat-2f+R-u-20-10-10-3-57 265 299 0 12.83 497 559 1 12.47 970 1030 0 6.19
r-weak-lat-2f+R-u-20-10-10-3-70 270 315 0 16.67 511 573 0 12.13 952 1023 1 7.46
r-weak-lat-2f+R-u-20-10-10-3-73 241 282 0 17.01 458 531 1 15.94 839 961 0 14.54
r-weak-lat-2f+R-u-20-10-10-3-7 293 315 0 7.51 520 574 0 10.38 944 1039 1 10.06
r-weak-lat-2f+R-u-20-10-10-3-81 290 327 0 12.76 519 589 0 13.49 963 1044 0 8.41
r-weak-lat-R-u-20-10-10-3-10 290 339 0 16.90 539 604 0 12.06 1008 1087 1 7.84
r-weak-lat-R-u-20-10-10-3-12 284 315 0 10.92 529 576 0 8.88 957 1022 0 6.79
r-weak-lat-R-u-20-10-10-3-14 258 309 0 19.77 459 553 0 20.48 871 975 1 11.94
r-weak-lat-R-u-20-10-10-3-16 309 343 0 11.00 544 612 0 12.50 1014 1089 1 7.40
r-weak-lat-R-u-20-10-10-3-20 268 316 0 17.91 491 554 1 12.83 893 976 1 9.29
r-weak-lat-R-u-20-10-10-3-23 333 357 0 7.21 580 633 0 9.14 1013 1114 0 9.97
r-weak-lat-R-u-20-10-10-3-24 277 323 0 16.61 526 600 0 14.07 993 1099 0 10.67
r-weak-lat-R-u-20-10-10-3-25 280 299 0 6.79 490 544 0 11.02 921 985 1 6.95
r-weak-lat-R-u-20-10-10-3-26 287 336 0 17.07 555 608 0 9.55 987 1084 1 9.83
r-weak-lat-R-u-20-10-10-3-29 266 305 0 14.66 508 572 0 12.60 966 1064 0 10.14
r-weak-lat-R-u-20-10-10-3-32 291 315 0 8.25 508 571 0 12.40 967 1014 0 4.86
r-weak-lat-R-u-20-10-10-3-36 287 339 0 18.12 509 599 1 17.68 969 1057 0 9.08
r-weak-lat-R-u-20-10-10-3-39 252 312 1 23.81 494 565 0 14.37 925 1018 1 10.05
r-weak-lat-R-u-20-10-10-3-40 257 306 0 19.07 516 563 0 9.11 936 1012 0 8.12
r-weak-lat-R-u-20-10-10-3-45 260 296 0 13.85 469 545 1 16.20 854 961 0 12.53
r-weak-lat-R-u-20-10-10-3-4 264 297 0 12.50 489 542 0 10.84 907 985 1 8.60
r-weak-lat-R-u-20-10-10-3-51 246 303 1 23.17 494 554 0 12.15 915 1009 0 10.27
r-weak-lat-R-u-20-10-10-3-52 260 290 0 11.54 495 556 0 12.32 947 1024 1 8.13
r-weak-lat-R-u-20-10-10-3-57 281 339 0 20.64 533 590 0 10.69 947 1034 1 9.19
r-weak-lat-R-u-20-10-10-3-5 272 325 1 19.49 519 582 1 12.14 949 1038 1 9.38
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6 Conclusions and Future Work

In this paper, a unified modeling and algorithmic framework is proposed to solve the maximum weight
connected subgraph problem (MWCS) and its cardinality- and budget-constrained variant. The proposed
scheme relies on a node-based integer linear programming (ILP) formulation which is tackled by an ad-
hoc Lagrangian relaxation combined with constraint generation; a so-called Relax & Cut (R&C) algorithm.
The approach is enhanced by additional valid inequalities, lifted valid inequalities using optimality-based
arguments, primal heuristics and variable fixing procedures.

Computational results on datasets obtained from the literature and newly generated synthetic large-scale
instances show that the designed scheme is able to provide, for the MWCS and the two considered variants,
reasonable bounds in short computing times; moreover, the results are quite competitive when compared to
those obtained by a state-of-the-art ILP-based approach by [Fischetti et al., 2014]. In particular, it is able to
improve the best-known solution value for twelve instances from literature. The considered instances have
up to 20000 nodes and up to 20951806 edges.

The proposed framework has the advantage of not requiring the use of any ILP-solver. On the one hand,
this feature enables it to quickly calculate bounds for instances whose sizes are burdensome for a state-of-
the-art ILP-based approaches. On the other hand, this allows practitioners (for example, those working on
network optimization applied in Systems Biology, where large-scale instances are usually common) without
access to an ILP-solver, to have at hand an approach which delivers good quality primal solutions (along
with accurate dual bounds). Note that the designed R&C framework is provided for download at [Sinnl and
Álvarez-Miranda].

An important feature of the devised scheme is its flexibility to easily adapt to different variants of the
MWCS; namely, different structures of the side constraints embodied by Λy ≤ β, e.g., degree constraints,
diameter constraints, quota constraints, etc. Furthermore, the designed R&C algorithm can be generalized
to other related problems such as uniform-weight Steiner tree problems or the node-weighted connected
dominating set [see, e.g. Bley et al.]. This is certainly an interesting path for future work.
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