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Abstract

Facility and covering location models are key elements in many decision aid tools in logistics, supply
chain design, telecommunications, public infrastructure planning, and many other industrial and public
sectors. In many applications, it is likely that customers are not dichotomously covered by facilities, but
gradually covered according to, e.g., the distance to the open facilities. Moreover, customers are not
served by a single facility, but by a collection of them, which jointly serve them. In this paper we study
the recently introduced multiple gradual cover location problem (MGCLP). The MGCLP addresses both
of the issues described above.

We provide four different mixed-integer programming formulations for the MGCLP, all of them ex-
ploiting the submodularity of the objective function and developed a branch-and-cut framework based
one these formulations. The framework is further enhanced by starting and primal heuristics and initial-
ization procedures.

The computational results show that our approach allows to effectively address different sets of
instances. We provide optimal solution values for 13 instances from literature, where the optimal solution
was not known, and additionally provide improved solution values for seven instances. Many of these
instances can be solved within a minute. We also analyze the dependence of the solution-structure on
instance-characteristics.

1. Introduction and motivation

Facility and covering location models are key elements in many decision aid tools in logistics, supply chain
design, telecommunications, public infrastructure planning, and many other industrial and public sectors.
Classical models typically aim at constructing location decisions that ensure that all (or as many as possible)
customers are covered by as few facilities as possible. The reader is referred to [Daskin, 2013, Laporte et al.,
2015] for two fundamental textbooks of location theory and science.

As explained in Berman et al. [2018], Drezner and Drezner [2014], the use of a dichotomic scheme for
for modeling coverage (i.e., a given facility either covers a given client or not), as well as the common
consideration that clients are served by a single facility, are two aspects that not necessarily respond well
to real-world needs. Instead, in practical contexts, a facility might cover only a portion of the demand of a
customer, and multiple facilities would jointly or cooperatively serve a customer simultaneously (for instance,
each of them would cover a portion of its demand).

The first issue, partial or gradual coverage, has been studied already since the 80’s (see, e.g., [Church and
Roberts, 1983]), and the most common way for modeling partial covering is by a distance-based approach.
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In these approaches, two critical distances, say r and R (r ≤ R), are defined. If the distance between a
facility and an allocated customer, say d, does not exceed r, then the customer is fully covered. On the
contrary, if such distance is greater than R, then the customer is not covered at all. For intermediate
distances (r < d < R), the coverage diminishes gradually according to some d-dependent function. For
example, [Thompson, 1982] proposes, for a super-drugstore chain, coverage functions depending on the
distance from the facility and city size. Likewise, in [Jones and Simmons, 1993] a list of rules for location
of a retail facility are provided, which is based on the use of r and R distances; the authors explain that
such rules appear to be very common in the industry (see [Berman and Krass, 2002], for further details).
In this retail industry examples, as well as in any other context, the coverage level is typically viewed as
a decreasing function of the distance to the facility. As a matter of fact, there are several alternatives for
this function; relevant examples, covering the efforts devoted to this topic over the last 25 years, can be
found, e.g., in [Berman and Krass, 1998, 2002, Berman et al., 2003, 2009b, Drezner et al., 2004, Drezner and
Drezner, 2014, Eiselt and Marianov, 2009, Ghosh et al., 1995] and [Karasakal and Karasakal, 2004].

The second issue, multiple (joint) coverage, has also been addressed before in the literature. One of
the first works consolidating the concepts on joint and partial coverage, and its implication in facilities
deployment is presented in [Berman et al., 2009a]. In that paper, the authors explain that multiple location
models have been proposed before in the literature, and give special emphasis on applications related to
the location of siren stations [Current and O’Kelly, 1992, Wei et al., 2006], and cell phone towers [Akella
et al., 2005]. It is shown that an adequate model of cooperation ensures that the coverage of a client is not
necessarily performed only by the closest facility, but rather by a mixed of them based on their proximity.
The authors study the connection between joint coverage and backup facilities (see, e.g., [Hogan and ReVelle,
1986], for an early reference on this issue). Based on this connection, one could also link joint coverage with
reliable covering models, which have been proposed when dealing with uncertainty in the set of available
facilities, the set of customers (or, eventually, their demand), or both. A relevant example can be found
in [Snyder and Daskin, 2005], where the authors proposed a model in which every customer is allocated to a
main facility and to a set of back-up facilities; these back-up facilities shall cover the demand of the customer
in case of failure of the main facility (which is likely to be the closest one). Extensions and variants, following
equivalent concepts, can be found in [Albareda-Sambola et al., 2011, Cui et al., 2010, Li et al., 2013, Shen
et al., 2011].

Although the concepts of gradual coverage and multiple (joint) facility location have been studied already
for decades, it was only recently that they were combined into a single modeling framework aiming at
maximizing the total joint cover of all customers; this corresponds to the multiple gradual cover location
problem (MGCLP), which has been proposed by [Berman et al., 2018]. The combination is achieved by the
optimization of the joint coverage function introduced in [Drezner and Drezner, 2014], whose details are
provided in the following section. In [Berman et al., 2018], the authors motivate the MGCLP and propose
different (heuristic) algorithmic strategies for solving it (see Section2.1 for further details).

Contribution and Outline In this paper, we present four exact mixed-integer programming (MIP) ap-
proaches for the MGCLP. These approaches are based on two key elements: (i) they exploit the submodularity
of the objective function, and (ii) the use of an exponential number of constraints, which can be separated ef-
ficiently and are used in a branch-and-cut framework. We also introduce preprocessing based on domination
between facilities and our solution framework also contains starting and primal heuristics. Our approaches
allow the optimal solution of 13 instances from literature, which have not been solved to optimality before.
Many of these instances can be solved within a few seconds.

The paper is organized as follows. In Section 2, we present the formal definition of the joint coverage func-
tion and the MGCLP, and present the four MIP formulations. In Section 3, we describe the implementation
details of the branch-and-cut algorithms used to solve the corresponding MIP instances; cut separation, start-
ing and primal heuristics, and preprocessing. Furthermore, we also present a series of structural properties
of optimal solutions, which enable an effective initialization. Computational results are given in Section 4.
Finally, concluding remarks are outlined in Section 5.
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2. Mixed-Integer Programming formulations for the MGCLP

2.1 The joint coverage function

The joint coverage function, presented in [Drezner and Drezner, 2014], and later used in [Berman et al.,
2018], is based on probabilistic arguments. Let I denote the set of potential facility location and J the set
of customers. Let 0 ≤ fij ≤ 1 be the coverage that customer j ∈ J receives from facility i ∈ I (with fij = 1
meaning that the customer gets completely covered, and fij = 0 meaning that the customer does not get
covered at all by the facility). Additionally, let 0 ≤ θ ≤ 1 be a given weighting parameter. The joint coverage
function (JCF) for a customer j ∈ J and a given set of facilities I ′ reads as

pj(θ, I
′) = θ

(
max
i∈I′

fij

)
+ (1− θ)

(
1−

∏
i∈I′

(1− fij)
)

(JCF)

In this function fij gets interpreted as the probability of full coverage. The function combines two extreme
cases, namely that coverage events are correlated with a correlation coefficient of one, and that coverage
events are independent; this combination is controlled by the parameter θ. Note that in contrast to many
other location problem, with this function, co-location (i.e., opening more than one facility at a potential
location) may be beneficial.

Let wj ≥ 0 be weights for each customer j ∈ J , and let K be a given (integer) number of facilities to be
opened. Since, theoretically, we could open the K facilities in a single location, we define IK as the set of
potential facility locations, having K copies of each facility in I (to account for potential co-location). The
multiple gradual cover location problem (MGCLP) is defined as follows [Berman et al., 2018].

W ∗(θ) = max
I′⊆IK ,|I′|≤K

W (θ, I ′) =
∑
j∈J

wjpj(θ, I
′), (MGCLP)

i.e., in the MGCLP we want to open K facilities (potentially more than one at a given location) as to
maximize the weighted sum of the JCF over all customer. As stated above, the MGCLP was introduced
in Berman et al. [2018], where a greedy algorithm, an ascent and tabu search heuristic and an approxi-
mative MIP-based approach were presented. Berman et al. [2018] show that the greedy algorithm has an
approximation guarantee of 1 − 1/e by proving that the objective function W (θ, I ′) is nondecreasing and
submodular and combining it with the result of Nemhauser et al. [1978] (see Section 3.2 for details). The
MIP-approach uses the tangent-line approximation (TLA) method for twice-differentiable concave objective
functions, introduced in Aboolian et al. [2007]. In this approach, the objective function gets approximated
by L line segments. In their computational study the authors choose three different L such that the TLA
objective is within one, five, and ten percent of optimality, respectively.

2.2 MIP models for the MGCLP

In this section, we present four different MIP formulations, (F1)-(F4), for the MGCLP, and exploit that the
objective function W (θ, I ′) with I ′ ∈ IK is a nondecreasing and submodular function. Let Φ(S) be a real
valued set-function over the subsets S of a ground-set N . Let ρn(S) = Φ(S ∪ {n}) − Φ(S) for all S ⊂ N
and n ∈ N , i.e., the marginal gain achieved by adding element n to the set S. Such a function Φ(S) is a
nondecreasing and submodular function, iff Φ(T ) ≤ Φ(S)+

∑
n∈T\S ρn(S),∀S, T ⊆ N (see, e.g., Nemhauser

et al. [1978], which also presents additional equivalent definitions)
The four formulations built-on each other and are based on Nemhauser and Wolsey [1981], where it is

shown that for any nondecreasing submodular function maximization problems can be formulated as MIPs
by introducing an additional (continuous) variable η. This variable is used to measure the value of the
objective function. The correctness of the objective value is ensured by an exponential family of cuts on
η, as encoded by expression (SCuts). Let z ∈ {0, 1}|N | denote the characteristic vector of the set N . The
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family of cuts is given by

η ≤ Φ(S) +
∑

i∈N\S

ρi(S)zi, ∀S ⊆ N (SCuts)

Note that while all of these cuts are valid, for correctness for problems with a cardinality constraint of
value K on the size of S (like the MGCLP), it is enough to add all cuts for |S| = K. As shown in [Berman
et al., 2018], the objective function W (θ, I ′) of the MGCLP is nondecreasing and submodular. In particular,
it is the (weighted) sum of the nondecreasing and submodular functions pj(θ, I

′), which in turn are a convex
combination of two nondecreasing and submodular functions, namely maxi∈I′ fij and 1−

∏
i∈I′(1− fij).

Let x ∈ {0, 1}|I|×K be a binary vector such that xki = 1, if the k-th facility (1 ≤ k ≤ K) at location i ∈ I
is opened (recall that co-location is possible); and xki = 0, otherwise. When needed, we write ik to refer
to the k-th facility at location i and identify an element of IK by (i, k). The following constraint (CARD)
ensures, that at most K facilities are opened. ∑

i∈I,1≤k≤K

xki ≤ K. (CARD)

Additionally, in order to exclude symmetric solutions with regard to co-location, the following constraints
can be used

xki ≤ xk+1
i , ∀i ∈ I, 1 ≤ k ≤ K − 1; (SYM)

these constraint ensure that the (k+ 1)-th facility in a location is only opened, if the k facilities with lower k
have been opened before. These constraints are not necessary for correctness of the formulations, but proved
very helpful in preliminary computations and thus are used in all formulations.

For a given set of facilities I ′ ⊂ IK and a given vector x, let φ(x, I ′) denote the right-hand-side of
cuts (SCuts) when applied to the objective function W (θ, I ′) of the MGCLP. Note that the coefficients ρi
for (i, k) ∈ IK \ I ′ of a cut can be easily calculated by calculating pj(θ, I

′ ∪{i})− pj(θ, I ′) for each customer
j ∈ J and summing up, i.e., we obtain

φ(x, I ′) = W (θ, I ′) +
∑

(i,k)∈IK\I

(∑
j∈J

(pj(θ, I
′ ∪ {i})− pj(θ, I ′))

)
xki . (1)

Using this notation, (F1.1)-(F1.3) gives a first formulation (F1);

(F1) W ∗(θ) = max η (F1.1)

η ≤ φ(x, I ′), ∀I ′ ∈ IK : |I ′| = K (F1.2)

(CARD), (SYM) and x ∈ {0, 1}|I|×K . (F1.3)

The objective function (F1.1) and constraints (F1.2) ensure that the objective is correct. As there is an
exponential number of constraints (F1.2), our strategy for tackling this formulation relies on adding them
on-the-fly when they are violated, within a branch-and-cut scheme (the separation of the constraints is
discussed in Section 3.1).

The second formulation, (F2), encoded by constraints (F2.1)-(F2.3), is given by

(F2) W ∗(θ) = max
∑
j∈J

ηj (F2.1)

ηj ≤ φj(x, I ′), ∀j ∈ J, ∀I ′ ∈ IK : |I ′| = K (F2.2)

(CARD), (SYM), and x ∈ {0, 1}|I|×K . (F2.3)

In this second formulation, we exploit the fact that the objective function of the MGCLP decomposes by
customer (as it it the sum of the functions pj(θ, I

′) for each customer). Thus, instead of a single-variable η to
measure the objective, we use continuous variables ηj for each j ∈ J , and have the sum of these variables in
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the objective function. Hence, each variable ηj now has an individual family of cuts φj(x, I
′) of type (SCuts),

which ensures that the part in the objective contributed by the coverage of customer j is correct.
In the third formulation (F3), we further exploit the decomposability of the objective function W (θ, I ′).

We model the maxi∈I′ fij component of each pj(θ, I
′) by using additional variables and only use cuts to deal

with the 1−
∏

i∈I′(1− fij) component. Note that in the MIP model of Berman et al. [2018], the max-part
was formulated in a similar way, while the second part was approximated using the TLA approach. Let
y ∈ {0, 1}|I|×|J| be a vector of binary variables such that yij = 1 if the maximum of fij for a j ∈ J is
obtained by opening facility i, and yij = 0, otherwise. Let φPj (x, I ′) denote the cuts of type (SCuts) for
j ∈ J associated with the 1−

∏
i∈I′(1−fij)-part of the objective. We obtain the following formulation (F3);

(F3) W ∗(θ) = max
∑
i∈I

∑
j∈J

θwjfijyij +
∑
j∈J

ηj (F3.1)

ηj ≤ φPj (x, I ′), ∀j ∈ J, ∀I ′ ∈ IK : |I ′| = K (F3.2)∑
i∈I

yij ≤ 1, ∀j ∈ J (F3.3)

yij ≤ x1i , ∀i ∈ I, ∀j ∈ J (F3.4)

(SYM), (CARD), x ∈ {0, 1}|N |×K and y ∈ {0, 1}|I|×|J| (F3.5)

In this MIP model, cuts (F3.2) ensure that the product-part of the objective function is correctly measured.
Constraints (F3.3) make sure that only one facility can contribute to the max-part of any customer. Moreover,
constraints (F3.4) model the fact that, if a facility at some location wants to contribute to the max-part, it
must be opened; in particular, the first facility (of the K copies) at this location must be opened. Hence,
these constraints complement the ordering imposed by the symmetry constraints (SYM).

Finally, in formulation (F4), we again exploit the decomposability of the objective function. Compared
to (F3), we also model the max-part of the objective by using cuts, i.e., both parts of the objective are
now modeled using cuts. To this end, for each customer j ∈ J , we introduce two continuous variables,
ηMj and ηPj , to measure the contribution of the max-part and product-part, respectively. The cuts for the
max-part actually have a nice form and are of polynomial size (see Nemhauser and Wolsey [1981] for further
details): Assume that for a given customer j, the fij values are ordered in a nondecreasing order, i.e.,
f|I|j ≥ f(|I|−1)j ≥ . . . ≥ f1j ≥ f0j , with f|I|−0j defined to be zero. Let (·)+ = max{0, ·}. Then these cuts are
of the form

ηMj ≤ θwj

(
frj +

∑
i∈I

(fij − frj)+x1i
)
, r = 0, . . . , |I| − 1.

Note that only the first facilities for each location are involved in the cuts. Although they are of polynomial
size, there can still be many of these cuts; hence, their separation is also embedded within a branch-and-cut
fashion. Let φMj (x, r) denote these cuts for r = 0, . . . , |I| − 1. Using these cuts, we obtain the formulation
(F4);

(F4) W ∗(θ) = max
∑
j∈J

(ηMj + ηPj ) (F4.1)

ηPj ≤ φPj (x, I ′), ∀j ∈ J, ∀I ′ ∈ IK : |I ′| = K (F4.2)

ηMj ≤ φMj (x, r), ∀j ∈ J, r = 0, . . . , |I| − 1 (F4.3)

(SYM), (CARD) and x ∈ {0, 1}|N |×K . (F4.4)

3. Implementation details of the branch-and-cut algorithms

All the four formulation have an exponential number of constraints ((F1.2), (F2.2), (F3.2) and (F4.2)), for
ensuring the correctness of the objective function. These cuts (and also the polynomial-sized family (F4.3))
are separated on-the-fly using branch-and-cut approaches. In this section, separation of the cuts is described,
as well as further ingredients of the branch-and-cut approaches.
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3.1 Separation of cuts

The separation of cuts (F1.2), is performed as follows. Let (x̃, η̃) be the values of the LP-relaxation at a
given branch-and-bound node. If x̃ is binary, then an exact separation of the cuts can be done by calculating
W (θ, Ī), where Ī = {ik : x̃ki = 1}, i.e., the open facilities induced by x̃. If W (θ, Ī) > η̃, the current
LP-solution violates (F1.2), and we add the cut induced by Ī.

Note that the exact separation of cuts for the case of binary x̃ is enough to ensure correctness of our
approach. Nonetheless, we also implemented a heuristic separation for the case of x̃ being fractional. In this
case, we sort the facilities ik non-increasingly according to the values of x̃ki and construct Ī by taking the K
first facilities of the sorting. This solution is then used to induce the corresponding cut (which is added, if
violated).

The separation of the other cuts, (F2.2), (F3.2), (F4.2) and (F4.3), is performed in an equivalent manner.

3.2 Starting heuristic and primal heuristic

To initialize the branch-and-cut framework, we add a feasible starting solution. This starting solution is
constructed using the greedy (1 − 1/e) approximation algorithm of [Nemhauser et al., 1978], which is also
used in [Berman et al., 2018] as one of the tested approaches. We also try to improve the solution constructed
by the greedy algorithm with a local search. In the local search phase, for each opened facility in the solution,
we try to replace it with another one, if it gives an improved solution value. We pass through all opened
facilities (starting with the one added last by the greedy algorithm) and repeat this procedure, until no
improvement is found in a round of iterations. The starting heuristic is outlined in Algorithm 1.

input : instance (I, J, f, θ,K) of the MGCLP
output: feasible solution S

1 S ← ∅
2 for k = 1 to K do
3 i∗ = arg maxi∈I W (θ, S ∪ {i})
4 S ← S ∪ {i∗}
5 improve ← true
6 while improve do
7 improve ← false
8 for k = K to 1 do
9 S′ ← S \ S[k]

10 for i ∈ I do
11 if W (θ, S′ ∪ {i}) > W (θ, S) then
12 S ← S′ ∪ {i}
13 improve ← true
14 break
Algorithm 1: Greedy Heuristic of [Nemhauser et al., 1978] applied to the MGCLP, complemented by a
local search phase.

To speed-up the evaluation of arg maxi∈I W (θ, S ∪ {i}) in line 3, we use lazy evaluation (see Leskovec
et al. [2007]), which exploits the submodularity of W , according to the following rule. In the first iteration,
we calculate W (θ, {i}) for each i ∈ I. We add i∗ to S (due to the arg max criterion), and also store all the
facilities in a priority queue, sorted by decreasing values of W (θ, {i}). In the remaining iterations, instead
of calculating W (θ, S ∪ {i}) for each i ∈ I, we start by calculating ρ′ = W (θ, S ∪ {i′}), for the top-element
i′ in the priority queue. We then compare the value ρ′ with the stored value ρ′′ (of the second element i′′

in the priority queue). If ρ′ ≥ ρ′′, we have that i′ gives the arg max, since due to submodularity, the values
of W (θ, S ∪ {i}) are non-increasing when the size of S increases. If ρ′ < ρ′′, we re-insert i′ in the priority
queue with value ρ′, and repeat the procedure for i′′.
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During the branch-and-cut, we use a modified version of Algorithm 1 as primal heuristic. In this modified
version, in line 3, we use arg maxi∈I x̃

k
iW (θ, S ∪{ik}), with x̃ being a (eventually integer) solution at a given

node of the branch-and-bound tree. In order to save computation time on unnecessary runs of the local
search, we store all solution values of (intermediate) solutions found during previous runs of the heuristic in
a hash-map, and stop the run of the local search, if the currently constructed solution has the same value as
a previously encountered solution.

3.3 Preprocessing and initialization

Due to co-location, the number of variables in the models can be very large, as there could be instances
where, e.g., the optimal solution only uses one location, and all K facilities are opened there. In this section,
we give results that allow removing of some of the potential co-locations by showing that they will never
be used in an optimal solution (in our framework, we set all variables associated which such co-locations to
zero).

For the results presented below, we assume that the ordering constraint (SYM) is part of the corresponding
MIP model; hence, given a location i and positions l, k with k < l a facility ik will always be opened before
a facility with higher superscript il. The first result is given by the following theorem.

Theorem 1. Let i ∈ I be a facility location with each fij = 1 or fij = 0, j ∈ J . Then in an optimal
solution, at most one facility will be opened at location i.

Proof. Opening another facility at this location will neither improve the max-part of the objective function,
nor the product-part.

Complementary, the next result exploits that the objective function W (θ, I ′) is a nondecreasing and
submodular function. For a facility i ∈ I an and integer k, let Ik = {ik′ : k′ ≤ k}, i.e., be the set of the first
k facilities at this location, with I0 = ∅.

Theorem 2. Let UBK−k denote an upper bound for the objective value for any solution with K − k open
facilities and z be the value of a feasible solution. If W (θ, Ik) +UBK−k < z, then no facilities will be opened
in positions k to K at location i in any optimal solution.

Proof. Since W (θ, ·) is a nondecreasing and submodular function we have that
∑

k′≤k

(∑
j∈J(pj(θ, I

k) −

pj(θ, I
k−1))

)
= W (θ, Ik) is an upper bound on the marginal gain, which can be achieved by opening the

first k facilities at location i. Thus, taking any solution where K − k facilities have been opened and then
opening the first k facilities at i, we can never get a solution with objective at least z, and hence, such a
solution cannot be optimal.

To use this results, an upper bound UBK−k on the objective value for any solution with k′ = K−k open
facilities is needed. We use two different ways to calculate such a bound, and then use the smaller value.
The first way is to use the greedy 1− (1/e) approximation algorithm (see Section 3.2). Let zk

′
be the value

of the solution constructed at step k′, as the algorithm has an 1− (1/e) approximation guarantee, we have

that UBk′ ≤ zk′

1−(1/e) . The second way consists of calculating the marginal gain
∑

j∈J(pj(θ, I
l)− pj(θ, Il−1))

for all i and l up to k′, sorting the resulting values in a nonincreasing way, and then summing up the first
k′ values.

In addition to above results, which allow the removing of co-locations, there is also the following domi-
nance result, which allows the removal of facility locations.

Theorem 3. Let i, i′ ∈ I be two facilities, with fij ≥ fi′j for each j ∈ J . Then, in an optimal solution, no
facility will be opened at location i′.

Proof. Suppose there is a solution S′ where a facility is opened at location i′. Construct another solution S,
where the open facility at i′ is replaced with an open facility at location i. Since fij ≥ fi′j for each j ∈ J ,
the objective value of S is at least as large as the one of S′.
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Moreover, we also add all cuts induced by I ′ = ∅ to initialize our framework. The efficacy of this
initialization is evaluated in the following section,

4. Computational results

The branch-and-cut framework was implemented in C++ using CPLEX 12.7, which was left at default
settings. The runs were carried out on an Intel Xeon E5 v4 CPU with 2.2 GHz and 6GB memory and using
a single thread. The timelimit for a run was set to 600 seconds.

4.1 Instance description

To evaluate the effectiveness of our approach, we used the same instances as in Berman et al. [2018]. They
are based on 40 p-median instances from the OR-library Beasly [1990]. Each node of the instances is a
customer and also a potential facility location, and the weights are uniform. The instances have up to 900
nodes and K is up to 200 (see Tables 1-6 for the values for each instance). To define the coverage rates fij ,
i ∈ I, j ∈ J a linear decline function is used to convert the distances dij of an instance to values fij . In
particular, given two threshold values r ≥ 0 and R > r, the values fij are defined as follows:

fij =


1 if dij ≤ r
1− dij−r

R−r if r < dij < R

0 if dij ≥ R
.

In Berman et al. [2018], the authors use r = 5 and R = 20, along with θ = 0.2. In addition to this, we
also tested on instances using r = 10 and R = 25 (thus, having a larger number of fij > 0) and also
θ ∈ {0.2, 0.5, 0.8}. In total, this gives 240 instances. We refer to the resulting instance set as pm-r-R-θ, e.g.,
pm-5-20-0.2 are the instances used in Berman et al. [2018].

4.2 Assessing the effectiveness of the proposed strategies

First, we give an overview on the performance of the different formulations and also of the different ingredients
of our framework (i.e., separation on fractional solutions, preprocessing, initialization, and heuristics). In
particular, for each of the formulation, we tested the following four configurations:

• b: In this basic setting, we only use the separation for integer solutions, and do not use the prepro-
cessing, initialization, nor the (starting and primal) heuristic.

• f: In this setting, we also do the separation for fractional solutions.

• fh: This is setting f together with the starting heuristic and the primal heuristic.

• fhp: This is setting fh together with the preprocessing and also the initialization, i.e., all ingredients
of our framework are turned on.

The computational study was carried out on all instances with up to 400 nodes (these are 120 instances).
In Figures 1a-1d we report the performance profile plots of the runtime to optimality, while in Figures 2a-2d
we report the performance profile plots of the attained optimality gap g[%] (calculated as 100·(UB−z∗)/(z∗),
where UB is the upper bound and z∗ is the value of the best solution found) for all formulations, instances
and settings.

From the results reported in the performance profiles two relevant conclusions can de drawn: First, in
terms of running times and attained gaps, the (F4) formulation seems to be the most effective one. With the
(F4) model runtimes below ten seconds can be achieved for more than 70% of the instances, while using (F1),
only around 10% of the instances can be solved to optimality within ten seconds. Furthermore, when looking
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Figure 1: Performance profiles of runtimes for (F1)-(F4) and different settings
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(a) Optimality gap performance of (F1)
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(b) Optimality gap performance of (F2)
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(c) Optimality gap performance of (F3)
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Figure 2: Performance profiles of the attained optimality gaps for (F1)-(F4) and different settings
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at the attained gaps, the situation is similar; while the branch-and-cut based on the (F4) model is capable
of attaining optimality gaps below 2.5% for all instances with the fhp configuration, the branch-and-cut
corresponding to (F1) computes such gaps only for about 25% of the instances with the fhp configuration.

Secondly, the different algorithmic enhancements do improve the overall performance of the corresponding
branch-and-cut algorithm. In other words, by going from b to fhp we get shorter runtimes and smaller
optimality gaps. Moreover, the impact of such enhancements, seems to be stronger for the (F3) and (F4)
formulations than for the (F1) and (F2)Ȧdditionally, when focusing on the plots corresponding to the (F3)
and (F4) models, it seems that incorporating the separation on fractional solutions brings the best marginal
improvement (i.e., b with respect to f), specially in terms of the attained gaps. However, in both cases,
the results show that the approach combining all features, fhp, presents the best performance (in terms of
runtimes and attained gaps). Due to the dominance of the (F4) formulation with the fhp configuration, the
results presented in remainder of this section correspond to this setting.

4.3 Further details on algorithmic performance and solutions nature

In Tables 1-6, we report detailed results for each instance set using formulation (F4) with configuration fhp;
each instance set is induced by a particular setting of r, R and θ (as explained in Section 4.1). In these
Tables, we report for each instance (identified by the number in column “id”) the number of nodes (column
“|V |”, recall that in these instances we have I = J = V ), the number of f·· = 1 (column “#C1”), the number
of fractional f·· > 0 (column “#CP”), the runtime in seconds (column “t[s]”, with TL indicating that the
timelimit of 600 seconds was reached), the upper bound (column “UB”), the value of the best solution found
(column “z∗”, in bold when it corresponds to the optimum value), the optimality gap (column “g[%]”), the
number of nodes in the branch-and-bound tree (column “#BBn”), the time spent at the root node (column
“tr[s]”), the upper bound at the root node (column “UBr”), the optimality gap at the root node (column
“gr[%]”, calculated as 100 ·(UBr−z∗)/(z∗)), the runtime of the starting heuristic (column “tH [s]”) the value
of the starting heuristic solution (column “zH”, in bold when it coincides to the optimum value), the primal
gap between this solution and the best solution found (column “gH [%]”, calculated as (zH − z∗)/(zH)), the
number of locations with more than one opened facility in the best found solution (column “#CL”), and
the maximum number of facilities opened at a single location in the best found solution (column “mCL”).

From the results reported in this table, we can observe that the computational difficulty is strongly
influenced by the value of |V | (i.e., size of the problem), instances with |V | ≥ 500 can rarely be solved
to optimality (as can be seen from column “t[s]” and “g[%]”). Moreover, for the case of the instance
set pm-5-20-0.2, one of the instances with |V | = 900 could not be solved due to memory limit issues.
Additionally, it is interesting to point out that, for a given value of |V |, increasing the value of K has a
clear effect on the effectiveness of the algorithm. On the one hand, for the smaller instances (|V | ≤ 400),
increasing K results in an increase of the runtimes (which is particularly clear for |V | = 400); on the other
hand, for larger instances (which typically reach the timelimit), increasing the value of K results in an
improvement of the attained optimality gaps (as can be seen from column “g[%]”). Along the same line,
the number of explored branch-and-bound nodes (shown in column “#BBn”), also presents an interesting
behavior. For small instances (|V | ≤ 200), very few nodes are explored, most likely because the initialization
and the separation allow to compute very tight dual bounds at a very early stage of the optimization process.
Likewise, for larger instances (|V | ≥ 700), also very few nodes are explored; however, in these cases, it is
due to the large size of the induced linear programming models which results in a more time consuming
separation process. Such behavior is verified by the by longer runtimes required to process the root node
(column “tr[s]”) and the poorer quality of the root-node solutions (which can be seen from columns “UBr”
and “gr[%]”). Therefore, it is only for intermediate size instances (300 ≤ |V | ≤ 600), that more branch-and-
bound nodes are explored; this is due to the moderate size of the resulting linear programming models and
a less (computationally) expensive cut separation.

From columns “tH [s]”, “zH” and “gH [%]”, we can clearly observe that the implemented starting heuristic
is capable of computing remarkably good solutions for the six groups of instances. Moreover, on the contrary
to the measures discussed in the previous paragraph, the performance of the starting heuristic, specially
the quality of the computed solutions (measured by the values reported in column “gH [%]”) seems to be
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insensitive to the values of |V | and K . Recall that the starting heuristic builds upon one of the approaches
outlined in Berman et al. [2018], which is based on the greedy approximation algorithm of [Nemhauser et al.,
1978] for submodular optimization problems.

In Berman et al. [2018], the authors test their approach only on instances from set pm-5-20-0.2. When
comparing their results with those attained by our approach, and reported in Table 1, we observe the
following facts: (i) while in Berman et al. [2018], optimality is proven for 5 instances, we manage to prove
it for 18 instances; (ii) we improve the solution value obtained by Berman et al. [2018] for 7 additional
instances; and, (iii) our primal-dual nature of our approach allows to always account with a certificate of
quality of the attained solution.

Analyzing the solution-characteristics We will now analyze and discuss key characteristics of the
computed solutions, and how they are influenced by the instances structure, which is given by r, R and θ,
and |V | and K.

Tables 1, 2 and 3 report the solutions of instance sets pm-5-20-0.2, pm-5-20-0.5 and pm-5-20-0.8,
respectively; hence, in thee instances we have that R = 20, r = 5, and their only difference is the value of θ
(0.2, 0.5 and 0.8 respectively). From columns z∗, we can clearly see that the computed solutions in these three
sets have very similar objective values. The deployment of the co-locations deploy on the attained solutions
is also very similar; the values reported in columns #CL and mCL, let us conclude that different values
of θ do not necessarily influence on the need of co-locating facilities at different number locations (columns
#CL), nor on the number of co-located facilities (columns mCL). In a sense, this result is counterintuitive;
due to the definition of JCF, one would expect that by increasing the value of θ, we would reduce the number
of location where more than one facility is opened (and, complementary, the number of opened facilities in
such locations).

On the contrary to the above described behavior, for the instance sets pm-10-25-0.2, pm-10-25-0.5 and
pm-10-25-0.8 (which are given by R = 25 and r = 10), it is possible observe a moderate influence of the
value of θ, as can be seen from Tables 4, 5 and 6, respectively. As expected, smaller values of θ (θ = 0.2)
lead to solutions with more locations hosting multiple facilities and more facilities located at those locations
(see columns #CL and mCL), when compared to having greater values of θ (θ = 0.8). Furthermore, the
influence of θ can be also observed when comparing the attained objective function values (columns “z∗”);
as expected, greater values of θ lead to less expensive solutions, as co-location and joint coverage are less
emphasized (as when having smaller values of θ).

The difference in the behavior of the solutions of instance sets pm-5-20-0.2, pm-5-20-0.5 and pm-5-20-0.8,
with respect to those of pm-10-25-0.2, pm-10-25-0.5 and pm-10-25-0.8, is likely to be explained by the
different values of r and R. While for the first group of instances R is four times larger than r, for the
second, R is only 2.5 times larger than r. Additionally, for the first group, the value of r is half the value of r
for second group. Thus, for the first group of instances, there is a smaller number of facility-customer-pairs
which would result in full coverage (see #C1). For example, in the instance number 40, there are 3552 such
candidates when r = 5, while there are 14636 for r = 10. Moreover, also the combinations providing partial
coverage are most of the time more numerous in the second group of instances. Thus, the first group of
instances gives less choices and the problem resembles a little more a classical maximum coverage problem,
while the second group with more available connections potentially allows more exploitation of the benefits
of partial coverage which are enhanced by the possibility of having more than one facility located at a given
location.
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Table 1: Detailed results for instance set pm-5-20-0.2.

id |V | K #C1 #CP t[s] UB z∗ g[%] #BBn tr[s] UBr gr[%] tH [s] zH gH [%] #CL mCL

1 100 5 114 64 0.01 14.60000 14.60000 0.000 0 0.01 14.60000 0.000 0.00 14.60000 0.000 0 1
2 100 10 124 76 0.02 26.79200 26.79200 0.000 0 0.02 26.79200 0.000 0.00 26.79200 0.000 0 1
3 100 10 116 100 0.07 25.65333 25.65333 0.000 0 0.07 25.65333 0.000 0.00 25.65333 0.000 0 1
4 100 20 106 56 0.05 35.43200 35.43200 0.000 0 0.05 35.43200 0.000 0.00 35.43200 0.000 0 1
5 100 33 130 114 0.14 62.21778 62.21778 0.000 1 0.14 62.21778 0.000 0.00 62.21778 0.000 0 1
6 200 5 296 430 0.02 30.13333 30.13333 0.000 0 0.02 30.13333 0.000 0.00 30.13333 0.000 0 1
7 200 10 292 592 0.26 50.48124 50.48124 0.000 4 0.25 50.56167 0.159 0.01 50.48124 0.000 0 1
8 200 20 278 418 0.13 69.79514 69.79514 0.000 0 0.13 69.79514 0.000 0.00 69.79514 0.000 0 1
9 200 40 302 502 1.37 118.10412 118.10412 0.000 36 1.00 118.35876 0.216 0.02 117.95745 0.124 3 2
10 200 67 328 900 58.07 158.93399 158.93399 0.000 1246 6.02 160.91652 1.247 0.09 158.93399 0.000 4 3
11 300 5 534 2358 0.61 62.52753 62.52753 0.000 10 0.44 63.20786 1.088 0.01 62.52753 0.000 0 1
12 300 10 474 1654 0.37 80.00622 80.00622 0.000 5 0.33 80.11857 0.140 0.00 80.00622 0.000 0 1
13 300 30 500 2004 29.07 154.42877 154.42877 0.000 475 4.08 157.06122 1.705 0.06 154.42506 0.002 0 1
14 300 60 502 1586 TL 207.97964 207.54577 0.209 4575 12.74 209.92442 1.146 0.15 206.64859 0.434 0 1
15 300 100 518 2000 TL 252.19124 250.45467 0.693 1327 28.12 253.87769 1.367 0.33 250.32876 0.050 2 2
16 400 5 874 6918 2.53 108.96806 108.96806 0.000 26 1.16 111.27877 2.121 0.01 108.03455 0.864 0 1
17 400 10 840 5902 4.37 147.92027 147.92027 0.000 55 1.89 150.69428 1.875 0.02 147.92027 0.000 0 1
18 400 40 738 4070 TL 243.01593 238.04555 2.088 1307 24.92 246.37574 3.499 0.10 237.38353 0.279 1 2
19 400 80 816 4932 TL 329.00121 323.15514 1.809 170 101.76 329.23856 1.883 0.94 323.07301 0.025 2 2
20 400 133 760 4170 TL 375.11226 367.57563 2.050 156 147.06 375.25593 2.089 1.50 366.89330 0.186 3 2
21 500 5 1186 12832 2.26 149.16160 149.16160 0.000 13 1.53 150.93946 1.192 0.01 149.16160 0.000 0 1
22 500 10 1090 9960 38.68 178.49851 178.49851 0.000 278 4.35 184.47554 3.349 0.03 176.32300 1.234 0 1
23 500 50 1196 11222 TL 377.38754 363.88111 3.712 157 83.84 377.80670 3.827 0.75 363.65744 0.062 3 2
24 500 100 1174 11328 TL 451.08139 439.76165 2.574 21 303.16 451.40047 2.647 1.79 439.13596 0.142 2 2
25 500 167 1258 13962 TL 489.27113 482.60720 1.381 8 469.44 489.36607 1.400 5.67 482.41662 0.040 4 2
26 600 5 1706 30160 76.97 221.74392 221.74392 0.000 167 6.78 234.29056 5.658 0.04 221.74392 0.000 0 1
27 600 10 1764 32768 TL 323.17551 305.54231 5.771 144 34.65 327.64050 7.232 0.09 305.49935 0.014 1 2
28 600 60 1716 33584 TL 519.85051 503.69890 3.207 3 499.19 520.03866 3.244 2.68 503.69889 0.000 1 2
29 600 120 1714 28968 TL 575.12023 560.94685 2.527 0 604.38 575.12023 2.527 4.96 560.88227 0.012 5 2
30 600 200 1570 21010 TL 593.24141 590.50481 0.463 0 604.15 593.24141 0.463 12.59 590.27327 0.039 6 2
31 700 5 2542 64420 TL 331.11567 314.32281 5.343 221 14.60 342.73355 9.039 0.04 314.32281 0.000 0 1
32 700 10 2218 50474 TL 397.36246 374.87069 6.000 76 32.41 398.47059 6.295 0.13 374.87069 0.000 0 1
33 700 70 2268 49250 TL 640.18003 621.39845 3.022 0 607.97 640.18003 3.022 3.40 620.85758 0.087 2 2
34 700 140 2450 58282 TL 686.32210 679.62662 0.985 0 627.53 686.32210 0.985 4.92 679.45459 0.025 1 2
35 800 5 3424 143422 TL 498.76943 460.69826 8.264 22 72.53 500.36055 8.609 0.05 460.69826 0.000 0 1
36 800 10 3052 91980 TL 517.48254 479.24997 7.978 25 68.11 517.94425 8.074 0.19 479.24997 0.000 0 1
37 800 80 2762 71842 TL 745.44345 727.12707 2.519 0 604.20 745.44345 2.519 4.68 726.84905 0.038 0 1
38 900 5 4520 224438 TL 619.22839 563.03405 9.981 9 108.97 620.35317 10.180 0.13 561.05866 0.352 0 1
39 900 10 4450 227826 TL 724.97571 682.84189 6.170 7 204.66 725.47869 6.244 0.20 682.84189 0.000 0 1
40 900 80 * * not solution available due to memory limit
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Table 2: Detailed results for instance set pm-5-20-0.5.

id |V | K #C1 #CP t[s] UB z∗ g[%] #BBn tr[s] UBr gr[%] tH [s] zH gH [%] #CL mCL

1 100 5 114 64 0.01 14.60000 14.60000 0.000 0 0.01 14.60000 0.000 0.00 14.60000 0.000 0 1
2 100 10 124 76 0.02 26.72000 26.72000 0.000 0 0.02 26.72000 0.000 0.00 26.72000 0.000 0 1
3 100 10 116 100 0.04 25.63333 25.63333 0.000 0 0.04 25.63333 0.000 0.00 25.63333 0.000 0 1
4 100 20 106 56 0.05 35.42000 35.42000 0.000 0 0.05 35.42000 0.000 0.00 35.42000 0.000 0 1
5 100 33 130 114 0.13 62.11111 62.11111 0.000 1 0.13 62.11111 0.000 0.00 62.11111 0.000 0 1
6 200 5 296 430 0.02 30.13333 30.13333 0.000 0 0.02 30.13333 0.000 0.00 30.13333 0.000 0 1
7 200 10 292 592 0.22 50.32578 50.32578 0.000 0 0.22 50.32578 0.000 0.00 50.32578 0.000 0 1
8 200 20 278 418 0.14 69.66030 69.66030 0.000 0 0.14 69.66030 0.000 0.01 69.66030 0.000 0 1
9 200 40 302 502 0.63 117.59007 117.59007 0.000 20 0.54 117.65543 0.056 0.04 117.59007 0.000 3 2
10 200 67 328 900 2.44 157.89400 157.89400 0.000 19 1.80 158.13614 0.153 0.07 157.77459 0.076 3 3
11 300 5 534 2358 0.35 62.07970 62.07970 0.000 1 0.35 62.07970 0.000 0.00 62.07970 0.000 0 1
12 300 10 474 1654 0.34 79.62889 79.62889 0.000 0 0.34 79.62889 0.000 0.00 79.62889 0.000 0 1
13 300 30 500 2004 3.57 152.75187 152.75187 0.000 45 2.15 153.45741 0.462 0.05 152.72967 0.015 1 2
14 300 60 502 1586 12.33 205.58821 205.58821 0.000 143 5.23 206.21113 0.303 0.13 204.76453 0.402 0 1
15 300 100 518 2000 99.1 247.41430 247.41430 0.000 1160 11.22 248.39762 0.397 0.19 246.78161 0.256 2 2
16 400 5 874 6918 1.24 107.40504 107.40504 0.000 8 0.98 108.24489 0.782 0.01 106.29763 1.042 0 1
17 400 10 840 5902 2.12 145.77517 145.77517 0.000 14 1.48 146.76176 0.677 0.01 145.77517 0.000 0 1
18 400 40 738 4070 TL 234.84788 233.81358 0.442 2675 14.13 237.47458 1.566 0.17 233.32576 0.209 0 1
19 400 80 816 4932 TL 318.65316 317.62369 0.324 848 49.02 319.45887 0.578 0.53 317.23561 0.122 6 2
20 400 133 760 4170 TL 364.64616 362.48410 0.596 250 61.27 365.12343 0.728 1.84 361.74052 0.206 4 2
21 500 5 1186 12832 1.17 146.17600 146.17600 0.000 0 1.17 146.17600 0.000 0.02 146.17600 0.000 0 1
22 500 10 1090 9960 14.48 174.86157 174.86157 0.000 92 3.64 177.70824 1.628 0.04 172.41694 1.418 0 1
23 500 50 1196 11222 TL 360.21888 354.87291 1.506 306 64.50 361.15181 1.769 0.45 354.03810 0.236 0 1
24 500 100 1174 11328 TL 434.69475 430.74256 0.918 142 100.63 435.07190 1.005 1.23 430.71258 0.007 3 2
25 500 167 1258 13962 TL 478.22622 476.03060 0.461 55 242.32 478.31624 0.480 5.67 476.03059 0.000 3 2
26 600 5 1706 30160 26.56 214.31495 214.31495 0.000 70 5.54 221.24374 3.233 0.06 214.31495 0.000 0 1
27 600 10 1764 32768 TL 299.53133 290.93944 2.953 181 20.42 304.76118 4.751 0.05 290.34134 0.206 0 1
28 600 60 1716 33584 TL 495.15376 487.18178 1.636 22 229.52 495.38495 1.684 1.70 486.87124 0.064 0 1
29 600 120 1714 28968 TL 553.70093 547.87855 1.063 19 297.53 553.83774 1.088 2.77 547.72427 0.028 3 3
30 600 200 1570 21010 TL 584.76703 583.39450 0.235 3 539.43 584.81751 0.244 8.68 583.26436 0.022 4 2
31 700 5 2542 64420 560.85 302.45176 302.45176 0.000 434 16.12 319.85636 5.755 0.06 302.45176 0.000 0 1
32 700 10 2218 50474 TL 367.70970 357.83233 2.760 202 27.44 371.81872 3.909 0.09 357.83233 0.000 1 2
33 700 70 2268 49250 TL 609.70806 600.68651 1.502 6 421.93 609.81106 1.519 1.75 600.51548 0.028 1 2
34 700 140 2450 58282 TL 668.80616 665.46411 0.502 0 612.04 668.80616 0.502 10.67 665.35981 0.016 6 2
35 800 5 3424 143422 TL 457.12331 432.06141 5.801 32 35.08 457.97255 5.997 0.05 431.86545 0.045 0 1
36 800 10 3052 91980 TL 478.35183 453.18283 5.554 48 43.35 478.79706 5.652 0.22 453.18283 0.000 0 1
37 800 80 2762 71842 TL 712.12631 704.15161 1.133 1 583.37 712.12631 1.133 6.85 704.08931 0.009 1 2
38 900 5 4520 224438 TL 562.74327 526.27128 6.930 18 136.65 563.82824 7.136 0.13 526.27128 0.000 0 1
39 900 10 4450 227826 TL 663.37077 637.70118 4.025 8 185.74 664.02808 4.128 0.19 637.70118 0.000 0 1
40 900 90 3552 140956 TL 833.23948 825.40900 0.949 0 605.08 833.23948 0.949 4.00 824.80465 0.073 2 2
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Table 3: Detailed results for instance set pm-5-20-0.8.

id |V | K #C1 #CP t[s] UB z∗ g[%] #BBn tr[s] UBr gr[%] tH [s] zH gH [%] #CL mCL

1 100 5 114 64 0 14.60000 14.60000 0.000 0 0.00 14.60000 0.000 0.00 14.60000 0.000 0 1
2 100 10 124 76 0.02 26.64800 26.64800 0.000 0 0.02 26.64800 0.000 0.00 26.64800 0.000 0 1
3 100 10 116 100 0.04 25.61333 25.61333 0.000 0 0.04 25.61333 0.000 0.00 25.61333 0.000 0 1
4 100 20 106 56 0.04 35.40800 35.40800 0.000 0 0.04 35.40800 0.000 0.00 35.40800 0.000 0 1
5 100 33 130 114 0.11 62.00444 62.00444 0.000 1 0.11 62.00444 0.000 0.00 62.00444 0.000 0 1
6 200 5 296 430 0.03 30.13333 30.13333 0.000 0 0.03 30.13333 0.000 0.01 30.13333 0.000 0 1
7 200 10 292 592 0.12 50.20587 50.20587 0.000 0 0.12 50.20587 0.000 0.00 50.20587 0.000 0 1
8 200 20 278 418 0.14 69.54412 69.54412 0.000 0 0.14 69.54412 0.000 0.01 69.54412 0.000 0 1
9 200 40 302 502 0.65 117.07603 117.07603 0.000 10 0.47 117.08809 0.010 0.03 117.07603 0.000 3 2
10 200 67 328 900 1.18 157.13121 157.13121 0.000 1 1.18 157.13121 0.000 0.07 157.11760 0.009 4 2
11 300 5 534 2358 0.15 61.63188 61.63188 0.000 0 0.15 61.63188 0.000 0.01 61.63188 0.000 0 1
12 300 10 474 1654 0.23 79.25156 79.25156 0.000 0 0.23 79.25156 0.000 0.01 79.25156 0.000 0 1
13 300 30 500 2004 1.56 151.10075 151.10075 0.000 5 1.49 151.16044 0.040 0.06 151.08654 0.009 1 2
14 300 60 502 1586 3.59 203.81306 203.81306 0.000 20 2.95 203.87750 0.032 0.21 203.15461 0.324 1 2
15 300 100 518 2000 13.02 244.77680 244.77680 0.000 97 6.01 244.96591 0.077 0.18 244.12746 0.266 3 3
16 400 5 874 6918 0.55 105.84202 105.84202 0.000 0 0.55 105.84202 0.000 0.02 105.84202 0.000 0 1
17 400 10 840 5902 0.9 143.63007 143.63007 0.000 0 0.90 143.63007 0.000 0.02 143.63007 0.000 0 1
18 400 40 738 4070 20.18 230.27463 230.27463 0.000 114 10.18 230.82854 0.241 0.26 229.51506 0.331 1 2
19 400 80 816 4932 42.98 312.67871 312.67871 0.000 107 24.40 312.92945 0.080 1.17 312.42754 0.080 2 2
20 400 133 760 4170 98.38 357.99786 357.99786 0.000 252 38.16 358.28921 0.081 2.15 357.35165 0.181 1 2
21 500 5 1186 12832 0.79 143.19040 143.19040 0.000 0 0.79 143.19040 0.000 0.03 143.19040 0.000 0 1
22 500 10 1090 9960 5.15 171.22463 171.22463 0.000 18 3.78 171.74588 0.304 0.06 168.88678 1.384 0 1
23 500 50 1196 11222 119.93 346.94339 346.94339 0.000 186 36.89 347.94152 0.288 0.65 346.04908 0.258 0 1
24 500 100 1174 11328 TL 422.49787 422.36762 0.031 648 60.20 423.10762 0.175 1.66 421.74503 0.148 2 3
25 500 167 1258 13962 TL 470.51314 470.46275 0.011 400 166.26 470.69439 0.049 8.47 470.14281 0.068 2 2
26 600 5 1706 30160 8.35 206.88598 206.88598 0.000 15 4.69 209.12648 1.083 0.05 206.88598 0.000 0 1
27 600 10 1764 32768 195.75 278.78555 278.78555 0.000 305 15.16 284.42413 2.023 0.10 278.73863 0.017 0 1
28 600 60 1716 33584 TL 474.72976 472.49510 0.473 157 134.12 475.10421 0.552 1.56 472.25887 0.050 1 2
29 600 120 1714 28968 TL 538.06209 536.95262 0.207 83 231.42 538.29481 0.250 3.30 536.77142 0.034 1 2
30 600 200 1570 21010 TL 577.59212 577.39683 0.034 76 303.27 577.68397 0.050 7.36 576.88482 0.089 1 2
31 700 5 2542 64420 69.28 290.58070 290.58070 0.000 76 10.41 298.01495 2.558 0.04 290.58070 0.000 0 1
32 700 10 2218 50474 215.16 340.81293 340.81293 0.000 249 18.60 346.15909 1.569 0.09 340.81293 0.000 1 2
33 700 70 2268 49250 TL 584.36914 581.92421 0.420 60 208.39 584.68282 0.474 2.18 581.26311 0.114 3 2
34 700 140 2450 58282 TL 653.81786 653.34890 0.072 14 457.78 653.91650 0.087 8.14 652.87986 0.072 2 2
35 800 5 3424 143422 467.3 403.50618 403.50618 0.000 113 32.17 416.18687 3.143 0.06 403.50618 0.000 0 1
36 800 10 3052 91980 TL 437.67703 427.42371 2.399 101 34.33 440.39391 3.035 0.16 425.81790 0.377 0 1
37 800 80 2762 71842 TL 685.88115 683.34521 0.371 8 421.27 685.97471 0.385 3.00 683.24213 0.015 2 2
38 900 5 4520 224438 TL 508.25104 490.73630 3.569 25 62.31 509.28211 3.779 0.25 490.73630 0.000 0 1
39 900 10 4450 227826 TL 604.44502 592.56047 2.006 25 98.40 605.03571 2.105 0.21 592.56047 0.000 0 1
40 900 90 3552 140956 TL 802.88504 800.98919 0.237 1 608.49 802.88504 0.237 4.90 800.76111 0.028 1 2
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Table 4: Detailed results for instance set pm-10-25-0.2.

id |V | K #C1 #CP t[s] UB z∗ g[%] #BBn tr[s] UBr gr[%] tH [s] zH gH [%] #CL mCL

1 100 5 138 60 0.01 17.53333 17.53333 0.000 0 0.01 17.53333 0.000 0.00 17.53333 0.000 0 1
2 100 10 152 78 0.04 31.79597 31.79597 0.000 0 0.04 31.79597 0.000 0.00 31.63828 0.498 1 2
3 100 10 136 110 0.04 32.00000 32.00000 0.000 0 0.04 32.00000 0.000 0.00 32.00000 0.000 0 1
4 100 20 126 66 0.04 43.55556 43.55556 0.000 0 0.04 43.55556 0.000 0.00 43.55556 0.000 0 1
5 100 33 174 116 0.18 70.43111 70.43111 0.000 0 0.18 70.43111 0.000 0.01 70.43111 0.000 1 2
6 200 5 408 628 0.1 41.22133 41.22133 0.000 0 0.10 41.22133 0.000 0.00 41.22133 0.000 0 1
7 200 10 414 906 0.35 67.98513 67.98513 0.000 2 0.33 68.01286 0.041 0.00 67.98513 0.000 0 1
8 200 20 360 658 0.26 93.38347 93.38347 0.000 0 0.26 93.38347 0.000 0.01 93.38347 0.000 0 1
9 200 40 418 686 4.27 140.75464 140.75464 0.000 118 1.89 141.30842 0.393 0.06 140.73299 0.015 1 2
10 200 67 526 1372 98.39 184.06172 184.06172 0.000 1378 8.88 185.75057 0.918 0.08 183.91174 0.082 3 2
11 300 5 1004 3968 0.62 96.19941 96.19941 0.000 5 0.59 96.47004 0.281 0.01 96.19941 0.000 0 1
12 300 10 814 2756 1.03 121.76729 121.76729 0.000 15 0.82 122.23208 0.382 0.01 121.76729 0.000 0 1
13 300 30 902 3342 48.08 200.24834 200.24834 0.000 474 9.66 202.68305 1.216 0.07 200.24169 0.003 0 1
14 300 60 804 2722 TL 247.77258 247.41956 0.143 2809 27.04 249.51119 0.845 0.27 247.19514 0.091 0 1
15 300 100 910 3470 TL 289.10723 285.98499 1.092 573 46.68 289.89205 1.366 0.45 285.62724 0.125 4 2
16 400 5 1974 13784 6.31 181.42063 181.42063 0.000 32 2.03 186.76530 2.946 0.02 181.42063 0.000 0 1
17 400 10 1738 11266 197.47 220.59393 220.59393 0.000 1298 6.95 227.75208 3.245 0.06 219.60947 0.448 0 1
18 400 40 1430 7758 TL 314.32964 308.97821 1.732 564 47.49 316.39468 2.400 0.24 308.83571 0.046 2 2
19 400 80 1644 9618 TL 379.62734 375.64126 1.061 182 106.09 380.00260 1.161 0.72 375.55034 0.024 3 2
20 400 133 1462 8014 TL 397.89812 397.15671 0.187 150 147.13 398.04788 0.224 2.69 397.08061 0.019 5 2
21 500 5 2918 27626 13.56 252.42390 252.42390 0.000 38 4.25 258.07630 2.239 0.03 252.42390 0.000 0 1
22 500 10 2496 21494 TL 289.36879 284.23641 1.806 606 10.15 296.97951 4.483 0.13 284.23641 0.000 0 1
23 500 50 2772 24348 TL 453.67706 443.81430 2.222 53 154.77 453.92340 2.278 0.54 443.60046 0.048 1 2
24 500 100 2810 23810 TL 494.49860 490.89659 0.734 33 208.13 494.53532 0.741 1.65 490.86898 0.006 3 3
25 500 167 3078 29866 TL 499.72439 499.69513 0.006 100 327.18 499.73327 0.008 7.88 499.64449 0.010 4 3
26 600 5 5086 70238 TL 389.77965 370.60402 5.174 108 22.70 393.75697 6.247 0.03 370.60402 0.000 0 1
27 600 10 5420 75078 TL 466.45326 446.98031 4.357 42 70.18 467.18071 4.519 0.10 445.93657 0.234 0 1
28 600 60 5338 78458 TL 583.44767 574.68799 1.524 3 459.65 583.61116 1.553 1.67 574.18047 0.088 3 2
29 600 120 4982 67654 TL 597.90520 597.17802 0.122 8 416.18 597.92809 0.126 4.69 596.95331 0.038 2 2
30 600 200 4284 48514 28.02 600.00000 600.00000 0.000 0 28.02 600.00000 0.000 3.74 600.00000 0.000 7 7
31 700 5 8624 152102 TL 543.71703 510.57203 6.492 37 68.55 545.00485 6.744 0.06 508.89662 0.329 0 1
32 700 10 7294 123992 TL 577.08107 553.66841 4.229 24 107.81 577.50451 4.305 0.24 552.92943 0.134 1 2
33 700 70 7110 121930 TL 692.47546 687.95411 0.657 2 541.67 692.55299 0.668 3.29 687.75055 0.030 1 2
34 700 140 8044 141988 TL 700.00000 699.79615 0.029 0 603.37 700.00000 0.029 10.28 699.77804 0.003 2 2
35 800 5 14838 312066 TL 697.75670 668.81970 4.327 7 133.40 698.54679 4.445 0.08 668.81970 0.000 0 1
36 800 10 10904 224412 TL 703.35094 677.49941 3.816 11 204.02 704.00226 3.912 0.20 677.25554 0.036 0 1
37 800 80 9072 186296 TL 794.07320 790.62270 0.436 0 606.86 794.07320 0.436 8.17 790.62265 0.000 0 1
38 900 5 21526 466312 TL 820.78375 788.21215 4.132 4 223.07 821.39778 4.210 0.20 788.21215 0.000 0 1
39 900 10 21248 471774 TL 856.26718 841.15019 1.797 3 283.25 856.53510 1.829 0.39 841.15012 0.000 0 1
40 900 90 14636 345298 TL 898.40506 897.00137 0.156 0 610.10 898.40506 0.156 5.69 896.88462 0.013 2 2
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Table 5: Detailed results for instance set pm-10-25-0.5.

id |V | K #C1 #CP t[s] UB z∗ g[%] #BBn tr[s] UBr gr[%] tH [s] zH gH [%] #CL mCL

1 100 5 138 60 0.01 17.53333 17.53333 0.000 0 0.01 17.53333 0.000 0.00 17.53333 0.000 0 1
2 100 10 152 78 0.03 31.69748 31.69748 0.000 0 0.03 31.69748 0.000 0.00 31.57393 0.391 1 2
3 100 10 136 110 0.03 32.00000 32.00000 0.000 0 0.03 32.00000 0.000 0.00 32.00000 0.000 0 1
4 100 20 126 66 0.04 43.52222 43.52222 0.000 0 0.04 43.52222 0.000 0.00 43.52222 0.000 0 1
5 100 33 174 116 0.11 70.34444 70.34444 0.000 0 0.11 70.34444 0.000 0.01 70.34444 0.000 1 2
6 200 5 408 628 0.1 41.11333 41.11333 0.000 0 0.10 41.11333 0.000 0.00 41.11333 0.000 0 1
7 200 10 414 906 0.26 67.61570 67.61570 0.000 0 0.26 67.61570 0.000 0.01 67.44711 0.250 0 1
8 200 20 360 658 0.2 93.11467 93.11467 0.000 0 0.20 93.11467 0.000 0.01 93.11467 0.000 0 1
9 200 40 418 686 1.1 140.16165 140.16165 0.000 18 0.82 140.30235 0.100 0.03 139.76427 0.284 1 2
10 200 67 526 1372 7.34 182.75316 182.75316 0.000 110 3.40 183.20081 0.245 0.07 182.57485 0.098 5 2
11 300 5 1004 3968 0.36 95.44963 95.44963 0.000 3 0.35 95.53896 0.094 0.01 95.44963 0.000 0 1
12 300 10 814 2756 0.84 120.57956 120.57956 0.000 6 0.78 120.60948 0.025 0.02 120.45310 0.105 0 1
13 300 30 902 3342 6.45 198.40521 198.40521 0.000 32 4.41 199.15613 0.378 0.05 198.08131 0.164 0 1
14 300 60 804 2722 20.1 245.20222 245.20222 0.000 168 9.37 245.90362 0.286 0.26 244.24898 0.390 0 1
15 300 100 910 3470 TL 283.28413 283.16395 0.042 2353 17.30 284.29512 0.399 0.34 282.57714 0.208 4 2
16 400 5 1974 13784 4 177.56289 177.56289 0.000 19 2.09 180.59247 1.706 0.02 177.56289 0.000 0 1
17 400 10 1738 11266 26.74 216.97120 216.97120 0.000 192 6.02 220.71472 1.725 0.04 216.97120 0.000 0 1
18 400 40 1430 7758 TL 304.79825 304.49173 0.101 1755 32.50 307.60140 1.021 0.25 303.77542 0.236 3 2
19 400 80 1644 9618 TL 372.06546 371.85967 0.055 1366 45.23 372.97701 0.300 1.09 371.23688 0.168 3 2
20 400 133 1462 8014 246.9 395.68115 395.68115 0.000 341 91.60 395.88009 0.050 2.56 395.52344 0.040 4 2
21 500 5 2918 27626 5.4 246.63994 246.63994 0.000 14 3.17 248.88136 0.909 0.02 246.63994 0.000 0 1
22 500 10 2496 21494 186.94 277.37275 277.37275 0.000 500 9.22 285.04695 2.767 0.18 277.37275 0.000 0 1
23 500 50 2772 24348 TL 441.46235 436.65058 1.102 189 81.81 441.95910 1.216 0.60 436.48554 0.038 1 2
24 500 100 2810 23810 TL 488.30956 486.76514 0.317 114 127.53 488.41310 0.339 1.74 486.27600 0.101 4 2
25 500 167 3078 29866 TL 499.37030 499.36950 0.000 369 334.94 499.37952 0.002 4.58 499.24489 0.025 2 2
26 600 5 5086 70238 TL 361.65548 356.70251 1.389 181 23.46 371.64846 4.190 0.03 356.70251 0.000 0 1
27 600 10 5420 75078 TL 443.23151 431.38015 2.747 90 43.41 444.48826 3.039 0.10 431.38015 0.000 0 1
28 600 60 5338 78458 TL 569.99048 565.97899 0.709 27 281.00 570.11752 0.731 2.08 565.86250 0.021 1 2
29 600 120 4982 67654 TL 595.09777 594.54609 0.093 26 343.76 595.15516 0.102 3.74 594.08655 0.077 0 1
30 600 200 4284 48514 24.62 600.00000 600.00000 0.000 0 24.62 600.00000 0.000 1.96 600.00000 0.000 3 3
31 700 5 8624 152102 TL 512.46549 490.90752 4.391 60 34.01 513.49092 4.600 0.04 489.27721 0.333 0 1
32 700 10 7294 123992 TL 547.60250 533.11776 2.717 46 61.53 547.86623 2.766 0.27 533.11776 0.000 1 2
33 700 70 7110 121930 TL 682.62810 679.97642 0.390 9 417.71 682.75339 0.408 3.44 679.74519 0.034 1 2
34 700 140 8044 141988 TL 699.59917 699.59490 0.001 0 624.71 699.59917 0.001 7.37 699.45761 0.020 1 2
35 800 5 14838 312066 TL 660.25472 640.36231 3.106 11 85.58 660.87949 3.204 0.08 640.36231 0.000 0 1
36 800 10 10904 224412 TL 668.68489 649.23970 2.995 20 139.68 669.17449 3.070 0.25 649.22013 0.003 0 1
37 800 80 9072 186296 TL 785.75330 783.32037 0.311 0 614.14 785.75330 0.311 4.85 783.10236 0.028 3 2
38 900 5 21526 466312 TL 778.29020 755.52010 3.014 7 178.76 779.30087 3.148 0.10 755.52010 0.000 0 1
39 900 10 21248 471774 TL 825.87441 813.77446 1.487 5 277.99 826.24229 1.532 0.42 813.77440 0.000 0 1
40 900 90 14636 345298 TL 894.19899 893.13174 0.119 0 609.33 894.19899 0.119 5.87 892.75694 0.042 0 1
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Table 6: Detailed results for instance set pm-10-25-0.8.

id |V | K #C1 #CP t[s] UB z∗ g[%] #BBn tr[s] UBr gr[%] tH [s] zH gH [%] #CL mCL

1 100 5 138 60 0.01 17.53333 17.53333 0.000 0 0.01 17.53333 0.000 0.00 17.53333 0.000 0 1
2 100 10 152 78 0.02 31.59899 31.59899 0.000 0 0.02 31.59899 0.000 0.00 31.50957 0.284 1 2
3 100 10 136 110 0.03 32.00000 32.00000 0.000 0 0.03 32.00000 0.000 0.00 32.00000 0.000 0 1
4 100 20 126 66 0.04 43.48889 43.48889 0.000 0 0.04 43.48889 0.000 0.00 43.48889 0.000 0 1
5 100 33 174 116 0.1 70.25778 70.25778 0.000 0 0.10 70.25778 0.000 0.00 70.25778 0.000 1 2
6 200 5 408 628 0.08 41.00533 41.00533 0.000 0 0.08 41.00533 0.000 0.00 41.00533 0.000 0 1
7 200 10 414 906 0.25 67.24628 67.24628 0.000 0 0.25 67.24628 0.000 0.01 67.13884 0.160 0 1
8 200 20 360 658 0.14 92.84587 92.84587 0.000 0 0.14 92.84587 0.000 0.00 92.84587 0.000 0 1
9 200 40 418 686 0.7 139.58466 139.58466 0.000 0 0.70 139.58466 0.000 0.04 139.26263 0.231 1 2
10 200 67 526 1372 1.77 182.01744 182.01744 0.000 1 1.77 182.01744 0.000 0.05 181.66281 0.195 3 2
11 300 5 1004 3968 0.26 94.69985 94.69985 0.000 0 0.26 94.69985 0.000 0.01 94.69985 0.000 0 1
12 300 10 814 2756 0.55 119.39182 119.39182 0.000 0 0.55 119.39182 0.000 0.02 119.39182 0.000 0 1
13 300 30 902 3342 3.01 196.56208 196.56208 0.000 3 2.99 196.56635 0.002 0.08 196.46042 0.052 0 1
14 300 60 804 2722 5.18 243.46959 243.46959 0.000 19 4.47 243.58466 0.047 0.20 242.57910 0.367 1 2
15 300 100 910 3470 9.65 281.15156 281.15156 0.000 6 9.10 281.16753 0.006 0.22 280.41637 0.262 4 2
16 400 5 1974 13784 1.88 173.70516 173.70516 0.000 5 1.79 173.93763 0.134 0.02 173.70516 0.000 0 1
17 400 10 1738 11266 5.93 213.34848 213.34848 0.000 21 4.02 214.36070 0.474 0.05 213.34848 0.000 0 1
18 400 40 1430 7758 18.48 300.60222 300.60222 0.000 25 15.00 300.85103 0.083 0.21 299.69177 0.304 1 2
19 400 80 1644 9618 32.75 368.98454 368.98454 0.000 40 26.47 369.05720 0.020 1.05 368.73928 0.067 3 2
20 400 133 1462 8014 54.25 394.49127 394.49127 0.000 25 48.42 394.51863 0.007 2.39 394.18127 0.079 3 2
21 500 5 2918 27626 2.14 240.85597 240.85597 0.000 1 2.14 240.85597 0.000 0.01 240.85597 0.000 0 1
22 500 10 2496 21494 23.61 270.50910 270.50910 0.000 52 8.54 273.78255 1.210 0.23 269.90640 0.223 0 1
23 500 50 2772 24348 TL 431.11067 430.59969 0.119 680 55.02 432.50301 0.442 0.86 429.34958 0.291 2 2
24 500 100 2810 23810 102.06 483.42587 483.42587 0.000 94 62.16 483.60746 0.038 1.20 483.31644 0.023 2 2
25 500 167 3078 29866 TL 499.06847 499.06780 0.000 480 293.78 499.07072 0.001 3.96 498.64504 0.085 5 2
26 600 5 5086 70238 111.75 343.15861 343.15861 0.000 94 12.16 350.42676 2.118 0.04 342.80100 0.104 0 1
27 600 10 5420 75078 TL 418.49400 417.26694 0.294 296 30.06 422.97740 1.369 0.09 416.29616 0.233 0 1
28 600 60 5338 78458 TL 560.06552 558.94592 0.200 139 161.65 560.47718 0.274 1.42 558.38867 0.100 3 2
29 600 120 4982 67654 TL 592.56902 592.41242 0.026 91 273.00 592.71083 0.050 3.75 591.87448 0.091 2 2
30 600 200 4284 48514 21.5 600.00000 600.00000 0.000 0 21.50 600.00000 0.000 2.53 600.00000 0.000 3 2
31 700 5 8624 152102 TL 475.09728 471.24301 0.818 111 33.75 482.82600 2.458 0.04 470.24484 0.212 0 1
32 700 10 7294 123992 TL 516.14680 512.62608 0.687 135 42.78 519.29985 1.302 0.32 512.62607 0.000 1 2
33 700 70 7110 121930 TL 674.32202 673.19323 0.168 20 372.46 674.42293 0.183 2.23 672.06564 0.168 3 2
34 700 140 8044 141988 TL 699.35981 699.35796 0.000 0 616.80 699.35981 0.000 6.50 699.19755 0.023 3 2
35 800 5 14838 312066 TL 623.45089 611.90493 1.887 30 69.20 624.34885 2.034 0.07 611.72016 0.030 0 1
36 800 10 10904 224412 TL 635.07708 621.43791 2.195 32 80.34 635.54000 2.269 0.19 620.29056 0.185 0 1
37 800 80 9072 186296 TL 778.47803 777.14445 0.172 0 609.69 778.47803 0.172 5.96 776.88145 0.034 2 2
38 900 5 21526 466312 TL 736.92875 723.50305 1.856 13 111.86 737.79255 1.975 0.13 723.50304 0.000 0 1
39 900 10 21248 471774 TL 796.72085 787.65539 1.151 12 159.43 797.01301 1.188 0.20 787.65527 0.000 0 1
40 900 90 14636 345298 TL 890.67134 889.55816 0.125 0 606.54 890.67134 0.125 6.92 889.11200 0.050 2 2
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5. Conclusions and future work

In this paper we studied the recently introduced multiple gradual cover location problem (MGCLP, see [Berman
et al., 2018]). The MGCLP addresses, simultaneously, two issues that have been identified as relevant in
practical facility location applications: gradual coverage and potential co-location of facilities. We presented
four different mixed integer programming formulations for the MGCLP, all of them exploiting the submod-
ularity of the objective function. Furthermore, we designed and implemented a branch-and-cut framework
based one these formulations. Our framework is further enhanced by additional cut separation strategies,
starting and primal heuristics and initialization procedures.

From an algorithmic perspective, the computational results show that our approach allows to effectively
address different sets of instances. We provide optimal solution values for 13 instances from literature, where
the optimal solution was not known, and additionally provide improved solution values for seven instances.
We also analyzed the dependence of the solution-structure on instance-characteristics. The reported results
show that the MGCLP possesses a great capability for allowing decision makers to design their facility
deployment strategies according to different coverage capacities or customer preferences. Interestingly, the
results show that although multiple location of facilities indeed occurs (there are even cases where seven
facilities are located at the same location), the magnitude of the co-location is rather small.

A wide class of strategical and tactical decisions in many operations research settings correspond to
facility location deployment. Incorporating modeling features such as partial and joint coverage along with
co-location of facilities, establishes a new path for closing the gap between academic optimization tools and
real-world location problems. For future work, it would be interesting to study how different partial coverage
functions can be included into the proposed models, or how the different degrees of uncertainty (e.g., location
of customers) can be incorporated within the proposed modeling and algorithmic frameworks.
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