
Solving Minimum-Cost Shared Arborescence Problems

Eduardo Álvarez-Mirandaa, Ivana Ljubićb, Martin Luipersbeckc, Markus Sinnlc

aDepartment of Industrial Engineering, University of Talca, Curicó, Chile
bESSEC Business School of Paris, Cergy-Pontoise, France

cDepartment of Statistics and Operations Research, Faculty of Business, Economics and Statistics,
University of Vienna, Austria

Abstract

In this work the minimum-cost shared network problem (MCSN) is introduced, where the
objective is to find a minimum-cost subgraph, which is shared among multiple entities such
that each entity is able to fulfil its own set of topological constraints. The topological con-
straints may induce structures like Steiner trees, minimum spanning trees, shortest paths,
etc. The cost function to be minimized is a combination of the costs for the shared net-
work and the costs incurred by each entity. The minimum cost shared Steiner arborescence
problem (SStA) is a special case of the MCSN, in which the underlying structures take
the form of Steiner trees. The SStA has been used in the literature to establish shared
functional modules in protein interaction networks. A cut formulation for the SStA and
Benders decomposition thereof are proposed in this article and computationally evaluated
and compared with a previously proposed flow-based formulation. The effectiveness of the
algorithms is illustrated on two types of instances derived from protein-interaction networks
(available from the previous literature) and from telecommunication access networks.

Keywords: Combinatorial Optimization, Benders Decomposition, Integer programming,
Telecommunications, Bioinformatics

1. Introduction and Motivation

In a typical Network Design (ND), or Network Optimization, setting, the decision
maker’s goal is to define, under one or more criteria of optimality, a network infrastruc-
ture and a corresponding operating regime that meets a certain set of topological and/or
operative requirements.

Such a setting appears in different application such as supply chain management,
telecommunications or bioinformatics, among many others [see 28, for a recent reference

Email addresses: ealvarez@utalca.cl (Eduardo Álvarez-Miranda), ivana.ljubic@essec.edu (Ivana
Ljubić), martin.luipersbeck@univie.ac.at (Martin Luipersbeck), markus.sinnl@univie.ac.at
(Markus Sinnl)

Preprint submitted to Elsevier February 14, 2016

on ND]. Prominent examples of ND problems are optimal path problems, optimal tree
problems, routing problems, or fixed-charge multi-commodity flow problems, to mention
only a few.

In most of the decision making contexts of ND, it is assumed that a single entity (a
city council, a company, a biological process, etc.) “operates” on the designed network.
Although this assumption is reasonable in most of the cases, there are some more complex
situations in which there is a managing operator that designs a network that is afterwards
shared by different entities. Intuitively, the network to be designed in such case should
allow a feasible operation for each of the entities, while ensuring cost efficiency individually
but also globally. Take for instance the competitive environment in the telecommunication
industry, where municipalities build and operate the shared network infrastructure, which is
then used by various retailer companies for providing their local services (such as telephone,
digital TV or high-speed internet). In a more general context, an open-access network is
a business model in which the physical network is owned and managed by a single entity
(e.g., a municipality) which creates an open access to internet service providers (ISPs) for
delivering their services through the network [4]. The network owner creates a long-term
revenue, whereas local service providers are given the opportunity for short-term gains.
Such a business model has been shown to be useful in rural areas, where for any single
ISP, building the network infrastructure is infeasible from the investment perspective [18].
In Australia, for example, a government owned corporation, NBN Co. Limited is creating
the so-called National Broadband Network for providing the high-speed internet for more
than 90% of the population. In this article, we approach the open-access network design
problem from the perspective of the network operator, and search for the optimal shared
infrastructure that minimizes the network installation cost plus the sum of operation costs
incurred by the retailers.

In another context, suppose that a particular biological process, say a type of can-
cer, wants to be understood from a gene interaction perspective. Nowadays, different
experimental procedures and conditions might help in establishing correlations between
a type of cancer and different sets of genes (typically know as hits, i.e., genes that are
statistically meaningful for explaining this particular biological process). Common bioin-
formatic approaches either aim at analyzing signaling pathways of each set of hits indi-
vidually [see, e.g., 12, 31, 3], or merging these hits into a larger set and then analyzing
the resulting data [see, e.g., 32]. Nonetheless, and as already motivated by [26], a more
accurate analysis should be focused on answering the following question: is there any com-
pact (in terms of size) shared functional module on which each of these hit sets establishes
signaling-pathways simultaneously? The functional module that answers this question can
help in understanding much better the underlying biological process, since it allows to
capture its dynamics.

Contribution and Paper Outline The contribution of this paper is twofold. First,
a general framework for min-cost shared network optimization is proposed; as it is shown,

2

such framework allows to model problems stemming from different application contexts.
Second, for the Steiner arborescence variant of the proposed framework, which suits in
both Telecommunication and Bioinformatics settings, two exact algorithmic strategies are
designed, implemented and computationally compared using real and synthetic datasets
coming from these two application contexts. The designed algorithms correspond to (i) a
branch-and-cut based on the separation of so-called connectivity inequalities, and (ii) an
enhanced Benders decomposition based on a specially tailored decomposable formulation.
Extensive computational experiments on real instances show that the proposed Benders
decomposition is, overall, more effective than the other branch-and-cut approach; moreover,
the proposed enhancements for the decomposition (cut pool management, stabilization,
parallelization, etc.) prove to be effective in improving its performance. The proposed
models and algorithms are of interest for researchers and practitioners in both of the
aforementioned areas, since instances of realistic size can be tackled efficiently.

The paper is organized as follows. A formal definition of the minimum cost shared
network problem (MCSN) along with a literature review on related problems is presented
in Section 2. In Section 3 a directed-cut based formulation is presented, and the details
of the Benders decomposition are provided. The two types of separated cuts (Benders
optimality cuts and integer L-shaped cuts) are described and the corresponding separation
procedures are outlined. Complementary, the stabilization techniques are presented as well
in the same section. More details regarding the implementation of the proposed algorithms
and specially tailored enhancements are given in Section 4. In Section 5 the description of
the test instances is given. An extensive characterization and analysis of the computational
experiments is presented in Section 6. Finally, concluding remarks and paths for future
work are given in Section 7.

2. Problem Definition and Previous Work

2.1 The Minimum-Cost Shared Network Problem

Let G = (V,A) be a network where V is the set of nodes and A is the set of arcs.
On this network a set L of entities or users require to function according to different and
independent topological and/or operative requirements, say Yl(G) for each l ∈ L. Moreover,
such operation shall be carried out on a shared network which should also meet particular
requirements embodied by X(G).

Consider that c : A → R≥0 is the sharing cost function, such that cij is the cost of
taking (i, j) ∈ A as part of the shared network (e.g., the installation cost). Likewise, let
wl : A → R≥0 be the cost function for user l ∈ L, such that wlij is the cost of taking
(i, j) ∈ A as part of network that will used by l (e.g., the operating cost for providing the
local service).

Assume that X is a subset of G that represents the shared network. Likewise, con-
sider that for each l ∈ L a subset of G, say Yl, is chosen for the operation of l (Y =

3

{
Y1, . . . ,Y|L|

}
). A pair (X,Y) will be considered as feasible if the following conditions

are verified

X ∈ X(G), (1)

Yl ∈ Yl(G), ∀l ∈ L (2)

Yl ⊆ X. ∀l ∈ L. (3)

Expression (1) imposes that the shared network X must fulfill the requirements embod-
ied by X(G); for example it could be empty or impose X to be a connected subgraph.
Expression (2) forces that, for every l in L, the corresponding network Yl must meet
the topological requirements expressed by Yl(G); finally, (3) points out that the (local)
networks of each retailer must be contained in the shared network.

The cost of constructing the shared network is given by c(X) =
∑

(i,j)∈X cij , while the

cost for operating the individual subnetworks on X is given by w(Y) =
∑

l∈L
∑

(i,j)∈Yl wlij .
Therefore, the goal is the find a feasible pair (X,Y) such that, according to some criterion,
the overall cost of the selected networks is minimized.

Considering all this elements, one can define the minimum-cost shared network problem
(MCSN) as

(MCSN) OPT = min {f (c(X), w(Y)) | (X,Y) satisfies (1)-(3)} . (4)

In this model f (c(X), w(Y)) is a positive function that depends on the particular applica-
tion.

Note that this definition of the MCSN is quite generic. The conditions imposed by
X(G) and Yl(G) for the shared and the user networks, respectively, might constrain them
to be spanning trees, Steiner trees or arborescences, Hamiltonian tours or similar (in their
directed or undirected counterparts). Furthermore, function f (c(X), w(Y)) might define
different types of balances between the cost of implementing the shared infrastructure and
the cost of operating it.

The problem addressed in this paper is a special case of the MCSN and can be defined
as follows. For each l ∈ L there is a set Tl ⊂ V of terminal nodes for l, so that a feasible
network Yl should be a Steiner arborescence spanning Tl and rooted at a dedicated root
node r ∈ V (common for all l ∈ L). The union of all these Steiner arborescences, i.e., Y,
must be embedded into the shared network X, whose only requirement is to be connected.
The cost for (X,Y) is calculated by the following function

f(X,Y) = (1− α)
∑

(i,j)∈X

cij + α
∑
l∈L

∑
(i,j)∈Yl

wlij ,

where α ∈ [0, 1] is a parameter (defined by the decision maker) that enables to establish
the relative importance of one type of cost with respect to the other. So, if α = 0, then the

4

r

2 3 4

6 7 8

(1,1,1) (1,1,1)(5,1,1)

(1,1,5)(1,5,1)

(1,5,1)

(5,1,1)

(1,1,1)

(1,1,1)

(1,1,1)

(a) Example #1 (T1={7, 8}, T2={7})

r

2 3

(1,5,1) (1,1,5)

(1,5,1)

(1,1,5)

(b) Example #2: (T1={2}, T2={3})

Figure 1: Examples for |L|= 2. Terminal nodes are drawn filled and such that their shapes mark their
label-membership: diamond for T1, square for T2, hexagon for T1 ∩T2. For the given optimal solution, arcs
and non-terminals are drawn based on the subnetwork they are part of: dotted for Y1, dashed for Y2,
and continous for Y1 ∩Y2. Remaining arcs and nodes are drawn grayed out. For each arc (i, j) the triple
(cij , w

1
ij , w

2
ij) denotes its costs.

cost of implementing the shared network is the only cost that must be considered; while if
α = 1, this means that the infrastructure is already available, and only the operating cost
of individual users need to be considered. In this paper, this problem will be referred to as
minimum cost shared Steiner arborescence problem (SStA).

Figure 1 shows two examples where |L|= 2. In Example #1, node 3 has two ingoing
arcs but only one outgoing arc in X for the given optimal solution. In Example #2,
the optimal shared network contains a 2-cycle. These examples illustrate that X is not
necessarily an arborescence, and may even contain cycles. Hence, typical arborescence
properties, namely, (i) in-degree of every node is at most one, and (ii) in-degree is less or
equal than out-degree for every non-terminal node, do not hold. On the other hand, for a
fixed label l the associated subgraph is an arborescence rooted at r with the corresponding
terminals being the leaf nodes, and the properties (i) and (ii) being satisfied.

2.2 Previous Work and Related Problems

Results by Mazza et al. [26]. The SStA was proposed in [26], as a modelling tool
for functional module reconstruction when different gene sets are available for a partic-
ular biological process. For this application, the elements in L was referred to as labels,
cij = wlij = 1 for all (i, j) ∈ A, l ∈ L, and α = 0.5. Hence, the goal was to minimize,
simultaneously, the cardinality of the shared network and the sum of the cardinalities of
the networks associated to each label l ∈ L. The authors named the problem the Minimum
|L|-labeling Problem. An Mixed Integer Programming (MIP) formulation was proposed,

5

and a heuristic preprocessing procedure was designed. Experiments were carried out on two
datasets, one related to the response to influenza infection and the other to endoplasmic
reticulum export regulation in humans. After heuristic preprocessing (which might have
discarded the optimal solution), these datasets led to instances of 1598 proteins (nodes)
and 8708 interactions (arcs), and 2 to 4 labels (|L|). Computational results using CPLEX
showed that within two hours of computing time the proposed flow-based formulation (see
below) was able to reach gaps no greater than 5%.

The following MIP formulation was used in [26] to solve the problem instances to
optimality. We will refer to this formulation as a single-commodity flow formulation (SCF).
For a given arbitrary subset of nodes S ⊆ V , let δ−(S) = {(i, j) ∈ A | i ∈ V \ S, j ∈ S}
and δ+(S) = {(i, j) ∈ A | i ∈ S, j ∈ V \ S}. Let x ∈ {0, 1}|A| be a set of binary variables
such that xij = 1 iff (i, j) ∈ A is selected as part of the shared network. Likewise, let
y ∈ {0, 1}|A|×|L| be a set of binary variables such that ylij = 1 iff (i, j) ∈ A is selected as

part of the network associated with l ∈ L. Complementary, let f ∈ Z|A|×|L|≥0 be a set of flow

variables such that f lij corresponds to the flow, from r, that passes through (i, j) ∈ A and

is associated with l ∈ L. Additionally, let b ∈ {0, 1}|V |×|L| be an auxiliary coefficient such
that bli = 1 if i ∈ Tl for l ∈ L, and bli = 0 otherwise.

Using these elements, the following MIP formulation is valid for the SStA:

(SCF) min (1− α)
∑

(i,j)∈A

cijxij + α
∑
l∈L

∑
(i,j)∈A

wlijy
l
ij (5)

s.t. ylij ≤ f lij ≤ |Tl| ylij ∀(i, j) ∈ A, l ∈ L (6)∑
(j,i)∈δ−(i)

ylji ≤ 1 ∀i ∈ V, l ∈ L (7)

∑
(r,i)∈δ+(r)

f lri = |Tl| ∀l ∈ L (8)

∑
(j,i)∈δ−(i)

f lji =
∑

(i,j)∈δ+(i)

f lij + bli ∀i ∈ V \ {r}, l ∈ L (9)

ylij ≤ xij ∀(i, j) ∈ A, l ∈ L (10)

x ∈ {0, 1}|A| , y ∈ {0, 1}|A|×|L| , f ∈ Z|A|×|L|≥0 (11)

The objective function (5) accounts for both the shared network cost and the total cost
incurred by the labels; the relative importance of each of these costs is measured by α
(which has been defined before). Constraints (6)-(9) ensure that, for every l ∈ L, any
feasible vector yl is associated with a Steiner arborescence connecting terminals Tl. Finally,
constraints (10) link the shared network, embodied by x, with each of networks induced by
yl, for all l ∈ L. Clearly, due to the common root node, connectivity of the shared network
is ensured by these constraints. Finally, the nature of the variables is given by (11).

Formulation (SCF) allows to compute solutions for the SStA without the need of any

6

sophisticated implementation. However, this is possible only for instances of a limited size.
The weak bounds provided by the Linear Programming (LP) relaxation of (6)-(9) render
this formulation impractical already for medium size instances.

Connection to the Fixed Charge Network Design problem (FCND) The MCSN
shares some similarities with the uncapacitated FCND [see, e.g., 25]. In the latter problem
we are given an undirected graph and a set of node pairs, called commodities. The objective
is to find an minimum-cost subgraph X that contains a path for each given commodity. The
cost function is given as the sum of the cost for the shared network plus the costs of each
path. The SStA becomes the FCND, if the set Tl is singleton for every l ∈ L. For the FCND,
Benders decomposition has been suggested as a possible solution approach [see 9, 25]. In
contrast to the FCND, the SStA (and the MCSN, in general) requires the subnetworks
supported by X to be of a more complicated nature, which makes the application of
Benders decomposition more involved, due to the non-convexity of the underlying Benders
subproblems.

Finally, note that, due to the given applications, we focus on the case where both X
and Yl are directed, but the proposed methodology can easily be adapted to deal with
undirected networks.

3. Benders Decomposition

In this section, a MIP formulation based on connectivity inequalities is first presented.
Afterwards, a scheme for projecting out a large amount of decision variables in a Benders
decomposition fashion is outlined. We start by presenting a standard way of imposing
connectivity for each l using connectivity cuts. We then discuss how to project out variables
representing arborescences associated to each l, and propose some stabilization techniques
for the separation of the underlying Benders cuts.

Recall that G = (V,A) is a graph, with a dedicated root node r. Associated with each
element l ∈ L (referred to as label as said before), there is a set Tl ⊂ V .

Directed-cut Formulation As mentioned above, formulation (SCF) becomes imprac-
tical when large instances need to be solved. A standard alternative way to deal with
connectivity is to use the so-called connectivity cuts that, although exponential in number,
enable an effective implementation within a branch-and-cut procedure.

Let x and y be defined as before. Let Wl be the set of all subsets of V inducing
connectivity cuts on G with respect to Tl, i.e., Wl = {W ⊆ V |W ∩ Tl 6= ∅, r ∈W \ V }.

7

The following formulation models the SStA in terms of connectivity cuts:

(CUT) min (1− α)
∑

(i,j)∈A

cijxij + α
∑
l∈L

∑
(i,j)∈A

wlijy
l
ij (CUT.1)

∑
(i,j)∈δ−(W)

ylij ≥ 1 ∀W ∈Wl, l ∈ L (CUT.2)

ylij ≤ xij ∀(i, j) ∈ A, l ∈ L (CUT.3)

x ∈ {0, 1}|A| , y ∈ {0, 1}|A|×|L| (CUT.4)

The connectivity cuts are given by constraints (CUT.2); intuitively speaking, they ensure
that, for each l ∈ L, variables yl induce a directed path from r to every element in Tl. The
shared network is obtained by the coupling constraints (CUT.3).

3.1 Benders Reformulation

Although the cut-based formulation (CUT) presented above allows to devise more ef-
fective algorithmic strategies (c.f. §6), it might still fail to tackle instances that are either
too large or whose characteristics, e.g., cardinality of L, might be burdensome. As an
alternative, and due to the structure of the problem, a Benders-like decomposition seems a
natural algorithmic alternative for the problem; variables x will belong to the (outer level)
master problem, while the underlying variables yl, for all l ∈ L will be projected out. For
each fixed value of the master problem, a (possibly empty) set of violated inequalities is
derived by finding the optimal solutions of the corresponding (inner level) subproblems.

Before presenting the Benders reformulation (B), based on the previously outlined

idea, the following notation is needed. Let W =
⋃
l∈LWl and let θ ∈ R|L|≥0 be a vector of

continuous variables such that θl models the operating cost associated to label l, l ∈ L.
We reformulate the original problem as follows:

(B) min (1− α)
∑

(i,j)∈A

cijxij + α ·
∑
l∈L

θl (B.1)

s.t.
∑

(i,j)∈δ−(W)

xij ≥ 1 ∀W ∈W (B.2)

θl ≥ Φl(x) ∀l ∈ L (B.3)

x ∈ {0, 1}|A| , θ ∈ R|L|≥0, (B.4)

where constraints (B.2) ensure the existence of a directed path between the root and any
possible terminal t ∈

⋃
l∈L Tl – thus the shared network is feasible, and we refer to (B.2)

as Benders feasibility cuts. For each l ∈ L, the function Φl(x) is a real-valued function in

8

x, given as

(S) Φl(x
∗) = min

∑
(i,j)∈A

wlijy
l
ij (S.1)

s.t. ylij ≤ x∗ij , ∀(i, j) ∈ A (S.2)∑
(i,j)∈δ−(W)

ylij ≥ 1, ∀W ∈Wl (S.3)

yl ∈ {0, 1}n . (S.4)

Given the minimization nature of the problem, constraints (B.3) in fact guarantee θl =
Φl(x

∗) for the optimal value of x∗, for each l ∈ L. For a given x (representing a feasi-
ble shared network due to (B.2)), function Φl(x) provides the optimal solution value for
building subnetwork required by each label l ∈ L. Constraints (S.3) guarantee that each
terminal t ∈ Tl is connected to the root using the arcs from yl, whereas the coupling
constraints (S.2) guarantee that arcs can be shared among the users, only when they are
installed. Finally, since the shared network x does not necessarily represent a tree, we have
to explicitly impose integrality of y variables to ensure that each subgraph for the given
label l ∈ L is a tree.

The main difficulty in solving the Benders-like reformulation (B) lies in the description
of the functions Φl(x) which are neither convex, nor continuous. As this is usually done in
two-stage stochastic/robust programming with binary recourse variables [see, e.g., 2, 6, 24],
constraints (B.3) will be linearized as follows. We will slighly abuse the notation, and refer
to (B) as a Benders reformulation in which inequalities (B.3) are replaced by the following
two types of linear inequalities:

1. Benders optimality cuts, which are underestimators of Φl(x), l ∈ L, obtained using
subgradients of the convex functions

Φl(x) = min{
∑

(i,j)∈A

wlijy
l
ij | yl satisfies (S.2), (S.3),yl ∈ [0, 1]|A|}. (S)

2. Integer L-shaped cuts [see 21], that will make sure that this underestimation is tight
whenever we encounter a feasible solution (x∗,θ∗) of (B) with binary vector x∗.

As both families of cuts may be exponential in size, they are typically embedded within a
branch-and-cut framework. In the following, we provide further details on how to derive
these two types of inequalities and how to exploit the solution properties specific to the
shared subtrees.

Benders Optimality Cuts Each Φl(x
∗) can be obtained from the dual subproblem

(notice that the dual subproblem is well defined since we assume that the problem is

9

bounded, and since each vector x∗ is assumed to satisfy all Benders feasibility cuts (B.2)).
So we have

(D l) Φl(x
∗) = max

∑
W∈W

βW −
∑

(i,j)∈A

x∗ijαij (D.1)

s.t.
∑
W :

(i,j)∈δ−(W)

βW − αij ≤ wlij ∀(i, j) ∈ A (D.2)

α ≥ 0 , β ≥ 0, (D.3)

where (α∗,β∗), so-called dual multipliers, are the vectors associated to constraints (S.2)
and (S.3), respectively (superscript l is dropped, for the ease of notation). By convexity of
Φl(x), the following underestimation is valid:

θl ≥ Φl(x) ≥ Φl(x) ≥ Φl(x
∗) + σ∗(x− x∗), (12)

where σ∗ ∈ ∂Φl(x
∗) is a subgradient of Φl at x∗. An optimal solution (α∗,β∗) to (D l),

corresponds to a subgradient of the function Φl(x) at point x∗ (more precisely, Φl(x
∗) =∑

W∈Wl
β∗W−

∑
(i,j)∈A x

∗
ijα
∗
ij and −α∗ ∈ ∂Φl(x

∗)), so that the following Benders optimality
cut is obtained:

θl ≥
∑
W∈Wl

β∗W −
∑

(i,j)∈A

xijα
∗
ij . (BC)

Notice that any dual multiplier (α,β) being a feasible solution to (D l) defines a valid
Benders cut (BC), and hence a valid lower bound on θl. Consequently, (D l) does not
necessarily have to be solved to optimality, as long as a violated inequality can be found
(cf. §4).

Integer L-shaped Cuts In the case of x∗ being integral, one first separates Benders
optimality cuts (BC) as long as they are violated. When none of these cuts is violated,
one requires additional cuts to close the duality gap between the LP-relaxation of the dual
subproblem Φl(x

∗) and its MIP optimal solution Φl(x
∗). Let GS = (VS , AS) be the support

graph induced by x∗, let φ∗l := Φl(x
∗) be the optimal cost for connecting r to terminals Tl

on GS , and let θl be a globally valid lower bound on the cost for connecting r to terminals
Tl on G. For each label l ∈ L the integer L-shaped cut is given by

θl ≥ φ∗l · (1− IND) + θl · IND (iLS)

where IND is an integer indicator variable such that when it is equal to zero, this constraint
is activated (i.e., we request θl ≥ φ∗l) and when it is ≥ 1, the constraint is not binding.
Cut (iLS) corresponds to an integer L-shaped cut [see 21, for further details], in which one

10

chooses the Hamming distance to x∗ to define the indicator variable, so we have:

IND =
∑

(i,j)/∈AS

xij +
∑

(i,j)∈AS

(1− xij).

The global lower bound θl for SStA is obtained by computing Φl(1) (i.e., by solving the
Steiner arborescence problem with terminals Tl, assuming that all arcs from G are avail-
able) for each label. Alternatively, slightly weaker bounds θl can be obtained by solving
the Linear Programming (LP)-relaxation of the Steiner tree problem using a dual ascent
procedure [11]. The latter variant is chosen in the proposed implementation, since solving
the dual ascent is much faster than computing the optimal Steiner tree on G (which is in
general much larger than GS), and the provided bounds are typically close to the optimum.

For the SStA, one can strenghten the cuts (iLS) by redefining the indicator variable,
using problem specific knowledge. Observe that no subgraph of GS may contain a Steiner
tree of cost that is < φ∗l . Thus, (iLS) is strengthened by setting IND =

∑
(i,j)/∈AS

xij .

Following a similar argument, consider the augmented graph G′S constructed from GS by
adding to AS an arbitrary set of arcs A′. G′S may only contain a Steiner tree of lower
cost than φ∗l if at least one arc of A′ is incident to some node in VS . Otherwise, A′ would
induce one or more components disconnected from all terminal nodes, and would thus be
redundant. A consequence is that (iLS) may be further strengthened by setting

IND =
∑

(i,j)∈δ(VS)

xij .

Note also that the following type of “no-good” cut

IND ≥ 1 (NG)

is sufficient to cut off sub-optimal solutions. Constraints (NG) are more numerically stable
than (iLS), but unfortunately do not affect the value of θl. Preliminary experiments have
been performed in which both families of inequalities are added whenever x∗ is integral.
However, no significant speedup could be achieved by adding (NG), and thus only (iLS)
are separated during the final experiments.

3.2 Separation Procedure

Solving the Benders reformulation (B) requires the separation of three types of inequal-
ities: Benders feasibility cuts (B.2), Benders optimality cuts (BC) and integer L-shaped
cuts (iLS). The separation of (B.2) is handled by employing the maximum-flow compu-
tations, in a similar manner as it is done for the (CUT) formulation (see § 4.1 for further
details). The general separation procedure is outlined in Algorithm 1.

11

Data: Solution (x∗,θ∗) of (B)
Result: Set of violated cuts C to (B)

1 Let T =
⋃
l∈L Tl

2 C ← separateFeasibilityCuts(x∗, T)
3 if C = ∅ then
4 OptCut= 0
5 for l ∈ L do

6 Solve (Dl) and let Φl(x
∗) be the corresponding objective function value and

(α∗,β∗) the dual multipliers.
7 if θ∗l < Φl(x

∗) then
8 Add the optimality Benders cut (BC) to C and OptCut++

9 if OptCut= 0 and x∗ is integer then
10 for l ∈ L do
11 Solve (S.1)-(S.4) and let Φl(x

∗) be the corresponding objective function
value.

12 if θ∗l < Φl(x
∗) then

13 Add the integer L-shaped cut (iLS) to C

14 return C

Algorithm 1: Separation procedure for Benders reformulation (B)

In Step 2 the separation of connectivity cuts is performed over set T , which contains
terminals of all labels (see Step 1). If none of such cuts is violated by the current x∗ solution,
Benders optimality cuts are then separated. For each label l ∈ L the LP-relaxation of
the Benders subproblem is solved in Step 6; if the obtained solution induces a violated
optimality cut (i.e., θ∗l < Φl(x

∗)), then the corresponding cut of type (BC) is added in
Step 8. If no optimality cut is violated (i.e., OptCut= 0) and the current master solution
x∗ is integer, then integer L-shaped cuts are separated. For each label l ∈ L the Benders
subproblem (S.1)-(S.4) is solved to optimality and the corresponding integer L-shaped
cuts (iLS) are added in Step 13 if violated.

To solve the Benders subproblem (S.1)-(S.4) (or its LP-relaxation), which is the Steiner
arborescence problem on the support graph GS , another branch-and-cut algorithm based
on the separation of connectivity cuts (S.3) is employed. Thus, the proposed algorithm
resembles the so-called two-stage branch-and-cut approach from [6] in which the Benders
reformulation is implemented as a branch-and-cut algorithm, where in each node of the
branch-and-bound tree, a cutting plane procedure is invoked for solving the LP-relaxation
of the Benders subproblem Φl(x

∗). In some cases, when x∗ is integer and no further
violated cuts associated with Φl(x

∗) can be found, this cutting plane procedure turns into
a branch-and-cut (i.e., the problem Φl(x

∗) is solved and possible violated integer L-shaped
cuts are separated). This justifies the name of the approach.

It should be noted that, due to the strength of the LP-relaxation of the MIP model
(S.1)-(S.4) and sparsity of the support graph GS , in most of the cases, Benders subproblems
Φl(x

∗) are solved without branching (i.e., we have Φl(x
∗) = Φl(x

∗)). Furthermore, when x∗

12

induces a support graph which is a tree, the optimal value of Φl(x
∗) is found by performing

a simple breath-first-search procedure. Further implementation details are given in the next
section.

3.3 Stabilization Techniques

Another important performance factor for branch-and-cut implementations of Benders
reformulations is the number of cutting plane iterations performed at the master level [17].
Since cutting plane procedures based on Benders decomposition are known to exhibit a
strong tailing-off effect, solving the problem at hand to optimality may prove to be difficult.
Techniques to reduce this tailing-off effect are known as stabilization methods. In the
proposed framework, a variant of the in-out separation studied in [5, 15, 17] has been used.
Intuitively, the idea is to choose a separation point xsep intelligently such that the separated
Benders inequalities cut off larger parts of the infeasible region with respect to (B). In the
in-out method, the separation point is chosen as a convex combination between an interior
(i.e., feasible) point xin and an outer (i.e., infeasible) point xout. In the framework, xout

corresponds to the current solution x∗ of (B), and xin := (1, . . . , 1)|A|. Clearly, this point
is a feasible solution to (B). A point to be separated is computed based on the parameter
Λ ∈ (0, 1]:

xsep := (1− Λ) xin + Λ xout

Choosing xsep close to xin when x∗ is infeasible is likely to generate a feasible point.
Thus optimality cuts can be computed earlier on, avoiding the generation of unnecessary
Benders feasibility cuts. In the scheme presented in [5], in each cutting plane iteration
separation is performed for multiple points, until a violated inequality is found. In the
proposed framework, a more conservative variant has been implemented, since the separa-
tion of optimality cuts is very time-consuming. For this, a set of parameters {Λ0, . . . ,Λk}
is used. Given Λ0 := 0.1 each other Λi is computed as recursive bisection of the interval
[0.1, 1], for k = 5. A priority is assigned to each parameter, which is defined as the average
increase in the lower bound when this parameter is used. In each cutting plane iteration,
the parameter with the highest priority is chosen.

Algorithm 2 presents the stabilized separation procedure for formulation (B). If the
in-out separation point xsep fails to produce any cutting plane, the separation is repeated
using x∗. This guarantees that the cutting plane procedure does not terminate prematurely.
Procedures separateOptimalityCuts and separateLshapedCuts refer to the separation
shown in Algorithm 1 (cf. lines 5-8 and lines 10-13). Separation of optimality cuts is
continued within the branch-and-bound tree, but the number of cutting plane iterations is
limited to five per node. Branching is performed on node variables x.

13

Data: Solution (x∗,θ∗) of (B), in-out parameter Λ ∈ (0, 1]
Result: Set of violated cuts C to (B)

1 xsep ← Λ x∗ + (1− Λ)xin

2 C ← separateFeasibilityCuts(xsep, T)
3 if C = ∅ then
4 C ← C ∪ separateOptimalityCuts(xsep,θ

∗)
5 if C = ∅ then
6 C ← C ∪ separateOptimalityCuts(x∗,θ∗)
7 if C = ∅ and x∗ is integer then
8 C ← C ∪ separateLshapedCuts(x∗,θ∗)

Algorithm 2: Stabilized separation procedure for Benders reformulation (B)

4. Implementation Details

In this section, the main components of the algorithmic scheme designed to tackle the
SStA are presented. First, the cutting plane generation strategies for both the (CUT)
formulation and the Benders reformulation (B) are outlined. Afterwards, a primal pro-
cedure for providing feasible solutions along the optimization task is presented. Finally,
preprocessing techniques aiming at reducing the size of the input instances are described.

4.1 Formulation (CUT): separation details

The MIP model induced by the cut-based model (CUT.1)-(CUT.4) is algorithmically
approached by an on-the-fly separation of connectivity cuts (CUT.2).

Formulation (CUT) is enhanced by initializing it with additional constraints that help
improving the corresponding LP bounds or speed up the cutting plane procedure. In par-
ticular, the following flow-balance inequalities (CUT.5) and in-degree inequalities (CUT.6)
are considered, see also [13, 20, 23]:∑

(j,i)∈δ−(i)

ylji ≤
∑

(i,j)∈δ+(i)

ylij ∀i ∈ V \ (Tl ∪ {r}), l ∈ L (CUT.5)

∑
(k,i)∈δ−(i)

k 6=j

ylki ≥ ylij ∀i ∈ V \ (Tl ∪ {r}), (i, j) ∈ δ+(i), l ∈ L (CUT.6)

Recall that flow-balance constraints might be infeasible for the shared network x, since an
optimal solution does not necessarily correspond to a tree (it may have nodes with multiple
ingoing arcs).

Due to the formulation’s potentially large number of variables and constraints, careful
separation of violated inequalities becomes a crucial factor. Preliminary experiments have
shown that the most robust strategy is to add (CUT.2), (CUT.5) and (CUT.6) dynamically.
Although initializing the model with a subset of inequalities may help to speed up the

14

solution of smaller instances, for larger instances the performance is affected negatively,
due to the larger LPs.

Data: LP solution x∗ of (CUT)
Result: Set C of inequalities violated by x∗

1 for l ∈ L do
2 Add (CUT.5) and (CUT.6) to C violated by x∗

3 Add (CUT.2) to C violated by x∗ from cut pool (computed by dual ascent)
4 Add (CUT.2) to C violated by x∗ (separated by maximum-flow/BFS)

Algorithm 3: Separation procedure for formulation (CUT)

Algorithm 3 shows the separation procedure. For each label, the steps of the algorithm
are equivalent to the separation procedure applied to solve the directed-cut formulation of
the Steiner tree problem [16]. Thus, improvements proposed in literature also apply to the
SStA with some minor adaptations [see, e.g., 16].

Cut Separation using a Dual Ascent Procedure A common technique for Steiner
arborescence [see, e.g., 11, 27] for decreasing the number of cutting plane iterations is to
initialize the model with a subset of (CUT.2) computed by a dual ascent algorithm [30].
For the SStA, the (CUT) model may be initialized by running dual ascent once for each
label, using both, the arc weights and the terminals associated to the label. Depending
on instance size and the number of labels, the amount of generated cuts may be too large
to solve the initial LP-model within a reasonable time limit. Therefore, in the proposed
framework, cuts are stored within a cut pool and only added to the LP model when violated
(cf. line 3 of Algorithm 3).

Exact Separation of Cuts using Maximum Flows Exact separation of (CUT.2)
is performed using the preflow-push maximum flow algorithm [7]. Instead of separating
using the original LP solution values x∗ to define the so-called support graph GS , a small
ε is added to them. This allows to separate arc minimal cuts, which are known to be
much stronger than the regular cuts [see 20, 23, for further details]. To generate more cuts
during one iteration, a limited nested cut separation is applied, i.e., the maximum flow is
computed at most Nmax times for each terminal (in the computations, Nmax is set to 10).

Let GS be the support graph induced by x∗. To further speed up separation, the
maximum flow computation is skipped for each terminal that is already reachable from
the root on GS . Reachability can be checked efficiently by executing a breadth-first-search
(BFS) on GS . Each time a cut is separated, its arcs are added to GS and reachability is
updated. Furthermore, if x∗ is integral, separation by maximum flow is skipped completely
and it is instead performed by BFS.

Note that the separation is independent for each label, and may be run in parallel.
However, since separation only takes a negligible amount of time at least on the tested
instances, this improvement has not been implemented.

15

4.2 Benders Reformulation (B): Separation Details

Following the general separation framework outlined in Algorithm 1, this section pro-
vides further details regarding the stabilization and handling of cutting planes, both at the
master level, and for the subproblems.

As for (CUT), when solving Φl(x
∗) for a given x∗, these Benders subproblems can be

initialized with inequalities (CUT.5) and (CUT.6). However, the addition of flow-balance
inequalities (CUT.5) could result into an infeasible LP associated to Φl(x

∗). That would
require additional Benders feasibility cuts (different than (B.2)) to be added to the master
problem. The strategy was evaluated in preliminary experiments, but was discarded for
simplicity because it did not result in an additional speedup. On the other hand, in-degree
inequalities (CUT.6) are valid for any LP-optimal solution x∗ satisfying (B.2), and are
thus separated.

Cut Pools for Benders Subproblems When solving Φl(x
∗), some of the cuts of type

(S.3) may remain violated, even when the values of x∗ change. Thus, it pays off to store
the already separated inequalities and use them to initialize the branch-and-cut pool for
solving Φl(x

∗) in all subsequent iterations. To prevent the underlying MIP model (S.1)-
(S.4) from becoming too large, cuts with positive slack in the current LP solution are
removed at regular intervals. This cleanup step is performed every twenty iterations. As
in the separation of connectivity cuts, adding a small ε to x∗ appears to also improve the
strength of separated Benders optimality cuts.

Parallelization Solving the Benders subproblem Φl(x
∗), l ∈ L, is clearly a bottleneck

for an efficient implementation. One can observe that for each l ∈ L, the Benders subprob-
lem Φl(x

∗) (or its LP-relaxation) can be solved independently, and thus, the separation
procedure may be parallelized. In contrast to formulation (CUT), this option has been
implemented into the framework, since it has a measurable impact on performance.

Underestimating the Value of Φl(x
∗) Given an optimal solution (x∗,θ∗) of the Ben-

ders master problem, recall that a violated Benders optimality cut (BC) is found whenever
θ∗l < Φl(x

∗) for some l ∈ L. However, finding the optimal solution of Φl(x
∗) may not

be necessary, and even a valid underestimation of this value, say LBl < Φl(x
∗), is often

sufficient to cut off a solution (x∗,θ∗) of the master problem. In that case, the condition
θ∗l < Φl(x

∗) (see line 7 of Algorithm 1) is replaced by a valid condition θ∗l < LBl. Especially
during the first few cutting plane iterations, when (B) does not contain much information
in the form of inequalities, solving Φl(x

∗) to optimality usually does not pay off.
Two possible ways to calculate LBl are considered.

1. Solving Φl(x
∗) only for a limited number of cutting plane iterations, provides a valid

lower bound LBl. In the proposed framework, the number of cutting plane iterations
for solving Φl(x

∗) is by default limited to one. If such obtained LBl yields no violated
inequality (i.e., θ∗l ≥ LBl), Φl(x

∗) is solved again with the iteration limit removed.

16

2. Alternatively, every feasible solution (α,β) to the dual of the Benders subproblem
yields a valid lower bound LBl. Consequently, if α is fixed, (Dl) corresponds to the
dual of the directed cut formulation for the Steiner arborescence problem, and the
remaining variables β can be calculated heuristically by applying the dual ascent
algorithm on G [see, e.g. 11], given terminals T l and modified weights c′ij = wlij +
αij ,∀(i, j) ∈ A. Various heuristic schemes have been devised for choosing α based
on x∗, e.g., αij = (1 − x∗ij)cij ,∀(i, j) ∈ A. The intuition behind this approach is to
penalize the use of arcs not part of the shared network induced by x∗. Note that if
x∗ covers the whole graph G, for each (i, j) ∈ A, αij = 0, and the computed lower
bound is a global lower bound.

The second approach seems promising since computing lower bounds only involves the
execution of a fast heuristic instead of solving a potentially time-consuming LP. Unfortu-
nately, preliminary experiments showed that none of the considered schemes for choosing
α managed to produce lower bounds competitive with the ones computed by the first
approach. Thus in all final experiments, only the first approach is applied.

4.3 Primal and Initialization Heuristic

Algorithm 4 describes a heuristic procedure that works for both (CUT) and (B). It
computes a feasible solution from an LP solution (x∗,y1∗, . . . ,y|L|∗). For the Benders
reformulation, variables y are projected out, but they are easily retrieved from the LP-
solutions of Benders subproblems, Φl(x

∗), for the given x∗, l ∈ L. Adapted costs w̄l are
then computed based on (x∗,y∗) and the original arc costs for each l ∈ L. Given Tl and
w̄l, a heuristic Steiner tree Sl is constructed for each l ∈ L. To encourage arc sharing, for
each new Steiner tree Sl, the shared costs are temporarily set to zero for all (i, j) ∈ Sl.
Finally, a feasible solution S to the SStA is computed as the union of all Sl. The heuristic
Steiner tree construction is performed using a shortest path heuristic [see, e.g., 10, 29]. A
heuristic starting solution is constructed by executing the algorithm with all LP values set
to zero. For each formulation, the primal heuristic is called once after each cutting plane
iteration and in each tenth branch-and-bound node.

Data: LP values (x∗,y1∗, . . . ,y|L|∗)
Result: feasible solution S

1 c̄ij ← cij ∀(i, j) ∈ A
2 for l ∈ L do
3 w̄lij ← (1− α)(1− x∗ij)c̄ij + α(1− yl∗ij)wlij , ∀(i, j) ∈ A
4 Sl ← constructHeuristicST(Tl, w̄

l)
5 c̄ij ← 0, ∀(i, j) ∈ Sl
6 S ←

⋃
l∈L Sl

Algorithm 4: Primal heuristic

17

4.4 Preprocessing

The following preprocessing tests have been derived from tests originally proposed
for the Steiner tree problem on undirected graphs (see, e.g., [14]). For this purpose let
V \ (T ∪ {r}) denote the set of non-terminal nodes, where T was previously defined as
T :=

⋃
l∈L Tl.

Test 1. Non-Terminal of Degree 1 (NTD1): A non-terminal node with exactly one
adjacent node can be removed because there is always an optimal solution without it.

Test 2. Terminal of Degree 1 (TD1): Given a terminal node with exactly one incoming
arc, this arc must be part of all optimal solutions, and may be fixed.

Test 3. Non-Terminal of Degree 2 (NTD2): Given a non-terminal node i with exactly
two adjacent nodes j and k, as well as incoming arc (j, i) and outgoing arc (i, k), these arcs
are either both part of an optimal solution or neither of them are. Thus (j, i) and (i, k)
may be replaced by a new arc (j, k) with costs cjk := cji + cik and wlji := wlji + wlik for all
l ∈ L.

Test 4. Non-Terminal Reachability (NTR): A non-terminal not reachable from the
root through a directed path may be removed.

The validity of Tests 1–4 follows directly from their definition. Note that for Test
NTD2, if there already exists an arc (j, k) such that its costs (cjk and wljk, for all l ∈ L) are
incomparable to the newly inserted arc’s costs, neither can replace the other, making G a
multigraph. For simplification, in the proposed implementation the test is always skipped
in this specific case, which only occurs for an relatively few non-terminals. Otherwise, all
tests are applied applied exhaustively.

5. Test Instances

In the following, the benchmark instances considered in the computational experiments
are described. As already explained in the introduction, these instances come from two
very different application contexts.

Biological Network Analysis Instances proposed in [26] are considered as part of this
dataset. They are based on the same biological network or interactome, which is comprised
of 10 169 nodes and 44 738 bidirectional interactions. The first instance, ER-export, con-
sists of the original network with two labels (52 and 33 terminals). The second instance,
Influenza, consists of four labels (with 7, 14, 17 and 34 terminals, respectively); for this
instance, the network is augmented by adding an artificial root node, additional nodes and
interactions, resulting in 25 additional nodes and 144 additional bidirectional interactions.
Note that, as in the original paper [26], terminals not reachable from the root are excluded.

18

Each bidirectional interaction is represented by two anti-parallel arcs, whose arc weights
are set to one; hence, the number of interactions is minimized. In the following these two
instances will be referred to as BIO dataset.

Additional instances associated to Bioinformatics applications have been generated
from the ACTMOD dataset, originally proposed for the prize-collecting Steiner tree problem [1]
and related to the problem presented in [12]. This set is composed of 8 instances. These
instances represent undirected biological networks, in which nodes and arcs are assigned
non-negative weights. For the purpose of generating SStA instances, each edge is replaced
by two anti-parallel arcs, and nodes with weight greater than the weight of each adjacent
edge are treated as terminals. For each graph, instances with 2, 4 and 6 labels have been
generated, where each label contains 5% to 55% of all terminals, selected at random. This
leads to a total of 24 SStA instances. Note that all arc weights are set to one.

Telecommunication Network Design In [22], two groups of network design instances
have been generated from real-world telecommunication networks, that are anonymized
for the data protection purposes. Starting with these instances (originally proposed for
the Steiner tree problem), the following subsets are considered: The first group, which
is labeled as VIENNA, contains instances that have been preprocessed using the Steiner
tree preprocessing procedures; 20 instances have been selected from the original dataset
instances with less than 5500 nodes (after preprocessing). The second group contains
instances to which no preprocessing has been applied (GEO). Due to the fact that many
instances in this group are of similar structure, only the first 7 instances have been selected
from the original dataset (G101-G107). These instances are, on average, as large as the
others within this dataset. Complementary information on this dataset is available in [22].

For each original instance, new SStA instances with 3, 6 and 9 labels have been gener-
ated, leading to a total of 60 SStA instances in VIENNA and 21 in GEO. Labels are divided
equally into three groups depending on the size of the corresponding set of terminals. Each
label group is regarded as small, medium and large retailer, with 10-20%, 40-60% and 70-
90% of randomly selected terminals, respectively. Each edge from the original instance is
split into two anti-parallel arcs. Original arc weights are used for the shared network costs,
while the costs for each label are assigned randomly in the range of ±20% of the shared
network’s arc costs. The resulting graphs contain between 160 and 5195 nodes, with the
number of arcs ranging from 474 to 15722. The instances are available from authors upon
request.

6. Computational Results

Experimental Setting The algorithmic scheme described in §4 has been implemented
in C++ and compiled using GCC 4.9. The framework is based on OGDF [8] for graph data
structures and CPLEX Concert framework 12.6 for the solution of MIP formulations. The
experiments have been performed on an Intel Xeon CPU with 2.5 GHz and 20 cores. A

19

single core has been used for formulation (CUT) and (SCF). The master problem of Benders
reformulation (B) is processed by a single core, while the subproblems are processed in
parallel using up to four cores. A fixed memory limit of 16 GB RAM has been imposed,
which is increased to 32 GB for the large-scale GEO instances. Unless stated otherwise,
computational results report the relative optimality gap between the lower and upper
bound computed per algorithm, which is abbreviated as “gap” within tables.

Effect of Preprocessing The results obtained by applying the preprocessing tests
described in §4.4 are reported in Table 1 for datasets BIO, ACTMOD and GEO. In the case of
BIO instances, two labels are considered for the ER-export instance, and 4 labels for the
Influenza instance. In the case of ACTMOD dataset, instances with six labels are taken into
account. Finally, instances with 9 labels are considered from the GEO dataset. Results for
other numbers of labels are omitted due to the fact that the preprocessing effectiveness is
nearly independent from the number of labels. The results on biological networks show
that the proposed preprocessing is highly effective for the metabol expr mice instances,
where more than 60% of all arcs are eliminated (|AP |/|A|< 0.40). The tests are much less
effective on the other instances, in which networks are densely connected and most nodes
have a high degree. More sophisticated tests could possibly reduce these graphs further.
For the GEO dataset, even slightly more than half of all arcs can be eliminated, mainly due
to the NTD2 test.

For dataset VIENNA, detailed preprocessing results have also been omitted, since the
performed tests are unable to remove any nodes or arcs on this instance type. The reason
is that VIENNA has been generated from preprocessed Steiner tree instances, where already
several tests stronger than the ones proposed in this paper have been applied.

Benefits of Stabilizing and Parallelizing The effect of the stabilization and paral-
lelization on the decomposition scheme associated with Benders reformulation (B) has been
evaluated. Figure 2 shows the influence of the in-out separation on a example of instance
I053a (|L|= 9) from the VIENNA dataset. As expected, by employing the stabilization,
the tailing-off effect is strongly decreased [see also 17]. Curve B (Benders decomposition
without stabilization) contains steps. This behavior can be explained by the fact that
without stabilization, Benders feasibility cuts (i.e., cuts ensuring the connectivity of the
shared network) have to be separated until the support graph GS is connected. Using the
in-out separation, moving into the direction of the chosen stabilization point increases the
likelihood of connectivity, enabling earlier separation of optimality cuts (and consequently,
an earlier improvement of lower bounds).

The benefits of the stabilization can be better appreciated when comparing, in Figure 2,
the curves induced by the (CUT) formulation and the stabilized Benders; although at the
very begging the (CUT) formulation provides tighter bounds, the stabilized Benders yields
much better results already after a couple of seconds.

Table 2 shows a computational comparison of different parameter settings used to
apply the stabilization procedure, described before, for datasets VIENNA and ACTMOD. For

20

original preprocessed

instance |V | |A| |T | |VP | |AP | |TP | |AP |/|A|
HCMV 3481 57420 66 2763 55622 66 0.97

drosophila001 5226 186788 125 3911 183638 125 0.98

drosophila005 5226 186788 242 3925 183678 242 0.98

drosophila0075 5226 186788 484 3947 183740 473 0.98

lymphoma 2034 15512 73 1260 13824 73 0.89

metabol expr mice 1 2786 7458 156 701 2852 142 0.38

metabol expr mice 2 2777 7432 69 643 2686 67 0.36

metabol expr mice 3 2192 5654 97 444 1882 88 0.33

ER 10169 89476 86 6151 80902 86 0.90

Influenza 10194 89764 58 6168 81178 57 0.90

(average) 0.73

G101 67966 164970 100 22874 71220 100 0.43

G102 111707 321008 2052 62288 220304 2052 0.69

G103 135543 403606 3033 82369 295890 3033 0.73

G104 158212 480044 3914 100866 364156 3914 0.76

G105 79244 202378 550 31824 104266 550 0.52

G106 204621 636272 5556 137526 501138 5556 0.79

G107 85568 228226 938 39120 132838 938 0.58

(average) 0.64

Table 1: Preprocessing results for datasets ACTMOD (|L|= 6), GEO (|L|= 9) and BIO . The columns show the
number of nodes, arcs and terminals before and after preprocessing. The last column contains the ratio
between the number of arcs before and after preprocessing.

each strategy the total number of instances solved to optimality (“#solved”), the average
gap (in %) attained by those not solved to optimality (“gap”), and the average running
time (“time”) in seconds, are reported. Columns “W/O STAB.” show results when no
stabilization is used. Columns “IN-OUT 1” show the effect of incorporating the in-out
separation by choosing the closest violated cut to the interior point; here separation is
executed for multiple points, and separation is stopped as soon as a violated optimality
cut has been found [see 5, for a further explanation]. In columns “IN-OUT 2” the effect
of implementing the in-out separation (c.f. §3.3) using the on average best stabilization
parameter is reported. In all cases, the best results are marked in bold. The results show
that the first variant already has a strong effect on the average gap. One less instance
is solved than without in-out stabilization. This can be attributed to the fact that on
average the time spent solving problems to optimality is longer, and thus less cutting plane
iterations are performed within the time limit. Variant 2 spends less time finding separation
points, but manages to preserve the quality of lower bounds due to the improved way of
choosing the parameter Λ. Due to the faster separation, six more instances from VIENNA

21

1 2 5 10 20 50 100 200 500

20200k

20400k

20600k

OPT = 20833823

●●

●

●

●

runtime (sec.)

lo
w

er
 b

ou
nd

●

B−IO
B
CUT

Figure 2: Effect of the stabilization procedures for instance VIENNA/I053a (|L|= 9). (B-IO) shows the
performance with in-out separation and (B) shows performance without stabilization. CUT shows the
lower bound evolution corresponding to the (CUT) formulation. These lower bound values are drawn in
relation to the runtime in seconds, given in logarithmic scale. The optimal objective value is displayed by
OPT and the dashed line.

W/O STAB. IN-OUT 1 IN-OUT 2

dataset #inst. #solved gap (%) time (s) #solved gap (%) time (s) #solved gap (%) time (s)

VIENNA 60 15 0.92 2791 16 0.16 2740 22 0.14 2490

ACTMOD 24 10 4.25 2309 9 2.19 2403 10 2.11 2136

Table 2: Parameter comparison for stabilization procedures applied to all instances from groups VIENNA

and ACTMOD.

are solved to optimality. Thus Variant 2 has been selected for all subsequent experiments.
Table 3 compares the influence of subproblem parallelization for formulation (B). The

results show that for both the VIENNA and ACTMOD dataset, the improvements are only
minor on average. For explaining this behavior, it must be noted that in the proposed
implementation for each label optimality cuts are separated until the next master problem
is solved. This may introduce a large amount of idle time if a single subproblem requires
much more computation time than the rest, thus limiting the achievable speedup. However,
parallelization is still a considerable factor when dealing with instances that have a very
high number of labels.

Comparing Performances: (CUT) v/s (B) Tables 4 and 5 show detailed compu-
tational results on biological networks from ACTMOD and BIO, respectively. In both cases,
performance measures are provided in columns “gap” (as %) and “time” (in seconds), for
the different algorithmic strategies and for different number of labels. Additionally, for the
BIO the gap calculated with respect to the best found primal solution is also provided in

22

1 THREAD 2 THREADS 4 THREADS

dataset #inst. #solved gap time #solved gap time #solved gap time

VIENNA 60 20 0.19 2556 21 0.16 2514 22 0.14 2490

ACTMOD 24 10 2.30 2158 10 2.19 2140 10 2.11 2136

Table 3: Parameter comparison for parallel solution of formulation (B). For each tested number of threads
and dataset, the columns list the number of solved instances, the average optimality gap in percent and the
average runtime in seconds, given a one-hour timelimit. The best results are marked in bold.

columns “p.gap” (as well as %). Note that the performance on the real-world dataset BIO
and the bioinformatics-based ACTMOD instances is very similar. This shows that also ACTMOD

instances capture the difficulty of the problem, even though the labels were assigned ran-
domly. Formulation (SCF) performs worst for all instances. One observes that for a small
number of labels, there is no computational advantage in decomposition, what results in
(CUT) outperforming (B) for |L|= 2 (ACTMOD) and for both BIO instances. However, by
increasing the number of labels, the gaps of (B) are getting closer to those returned by
(CUT). Furthermore, for the largest ACTMOD instances (drosophila001, drosophila005), gaps
obtained by (B) are the best ones, which marks the point at which the high number of
variables in (CUT) becomes too much of a burden. At this point formulation (B) becomes
the more favorable choice.

Table 6 shows detailed computational results on infrastructure networks from GEO

and VIENNA. In comparison with the biological networks, the associated graphs are much
sparser. Again, formulation (SCF) performs worst on all instances. (B) outperforms (CUT)
in most of the cases, already for |L|= 3. On the largest instances, gaps obtained by (B)
after one hour of computation are up to one order of magnitude smaller than for (CUT).
This trend continues for higher values of |L|, for which decomposition enables (B) to scale
much better. Note that after reaching the one-hour time limit, (B) has always computed
near-optimal bounds, but fails to prove optimality for most instances. This behavior is
attributable to the strong tailing-off effect of the Benders decomposition, which remains
noticeable despite using the in-out separation.

The results in Table 6 show that for the large-scale GEO instances, both formulation
(CUT) and (SCF) are much less effective due to their extremely high number of variables.
Formulation (SCF) fails to solve the root relaxation within the time limit for most instances.
Formulation (CUT) produces gaps ranging between 35% and 70%. In contrast, (B) scales
much better, and computes bounds with gaps within 5-10%, even for |L|= 9.

Figure 3 shows a graphical performance summary on datasets VIENNA and GEO. For
each number of labels, a plot compares the number of instances solved within a certain
gap per formulation. The plots clearly show that the proposed stabilized Benders decom-
position approach outperforms the other two algorithmic alternatives, specially for the GEO

instances. Take, for instance the plot for GEO instances with |L|= 6. While the decomposi-

23

tion approach is able to solve all 7 instances with gaps less or equal than 10%, the (CUT)
approach produces 6 solutions with more than 40%, and the (SCF) approach is simply
unable to provide a primal bound. A similar situation repeats for the other group and for
other values of |L|.

Tables 7 and 8 compare the quality of upper bounds computed within a time limit of
one hour for datasets ACTMOD, VIENNA and GEO. The number of nodes |V | and arcs |A| after
preprocessing is given for |L|= 6 (ACTMOD) and |L|= 9 (VIENNA, GEO). For each number of
labels, column “best” lists the objective values of the best solution found. The next three
columns list for each algorithm the gap between the best solution and the algorithm’s best
found solution. Results show that the quality of upper bounds is generally much better
than the quality of lower bounds for (CUT) and (SCF), and that formulation (B) achieves
the best upper bounds on average. This highlights another advantage of the Benders
reformulation versus the other two MIP models: for the SStA, Benders decomposition is
capable of delivering high-quality solutions within a short computing time, and thus, may
be a competitive tool against heuristics, with the clear advantage of computing good lower
bounds as a guarantee for the solution quality.

24

|L|= 2 |L|= 4 |L|= 6

B CUT SCF B CUT SCF B CUT SCF

instance gap time gap time gap time gap time gap time gap time gap time gap time gap time

HCMV 2.14 TL 0.00 1877 38.81 TL 1.41 TL 0.29 TL 36.69 TL 1.91 TL 0.89 TL 38.49 TL

drosophila001 1.14 TL 0.00 847 32.54 ML 2.68 TL 3.86 TL 34.08 ML 8.36 TL 11.49 TL 39.24 TL

drosophila005 1.74 TL 0.00 1605 30.48 TL 4.10 TL 3.20 TL 31.99 TL 7.64 TL 9.96 TL 35.64 TL

drosophila0075 1.22 TL 0.54 TL 24.87 ML 4.49 TL 3.73 TL 26.14 TL 7.31 TL 6.96 TL 82.30 TL

lymphoma 0.00 339 0.00 12 23.66 TL 1.47 TL 1.07 TL 21.09 TL 5.04 TL 2.33 TL 27.00 TL

metabol expr mice 1 0.00 1 0.00 1 10.03 TL 0.00 19 0.00 5 18.73 TL 0.00 305 0.00 54 23.75 TL

metabol expr mice 2 0.00 1 0.00 1 3.89 TL 0.00 116 0.00 17 24.55 TL 0.00 46 0.00 43 24.92 TL

metabol expr mice 3 0.00 4 0.00 1 16.59 TL 0.00 8 0.00 3 19.01 TL 0.00 25 0.00 15 19.97 TL

(average) 0.78 1843 0.07 993 22.61 3143 1.77 2268 1.52 2253 26.53 3406 3.78 2297 3.95 2264 36.41 3600

Table 4: Computational results for dataset ACTMOD. A time limit of one hour and memory limit of 16GB has been used.

B CUT SCF

instance best gap p.gap time gap p.gap time gap p.gap time

ER 144.5 2.56 0.01 TL 0.77 0.00 TL 33.73 0.08 TL

Influenza 136.5 4.71 0.02 TL 1.85 0.00 TL 35.36 0.06 TL

Table 5: Computational results for dataset BIO. A time limit of one hour and memory limit of 16 GB has been used.

25

|L|= 3 |L|= 6 |L|= 9

B CUT SCF B CUT SCF B CUT SCF

instance gap time gap time gap time gap time gap time gap time gap time gap time gap time

G101 6.63 TL 32.88 TL 60.45 TL 7.50 TL 41.12 TL - TL 8.65 TL 50.81 TL - TL

G102 7.44 TL 52.36 TL 76.75 TL 8.74 TL 60.67 TL - TL 9.33 TL 66.75 TL - TL

G103 6.91 TL 57.69 TL - TL 8.66 TL 65.49 TL - TL 9.36 TL 69.06 TL - TL

G104 6.16 TL 59.70 TL - TL 8.62 TL 63.47 TL - TL 8.86 TL 68.58 TL - TL

G105 6.92 TL 26.87 TL 63.48 TL 7.98 TL 36.45 TL - TL 8.33 TL 45.43 TL - TL

G106 32.45 TL 56.91 TL - TL 7.62 TL 60.80 TL - TL 21.55 TL 61.96 TL - TL

G107 8.09 TL 45.89 TL 82.37 TL 9.49 TL 60.00 TL - TL 9.99 TL 70.07 TL - TL

(average) 10.66 3600 47.47 3600 83.29 3600 8.37 3600 55.43 3600 - 3600 10.87 3600 61.81 3600 - 3600

I004a 0.00 95 0.00 5 15.23 TL 0.01 TL 0.00 116 14.73 TL 0.01 TL 0.00 420 18.51 TL

I005a 0.00 478 0.00 31 17.46 TL 0.00 TL 0.00 422 21.64 TL 0.00 TL 0.00 2098 20.82 TL

I012a 0.00 TL 0.00 1343 14.24 TL 0.02 TL 3.29 TL 16.52 TL 0.06 TL 5.14 TL 16.72 TL

I014a 0.00 1284 0.00 311 12.74 TL 0.00 1148 1.27 TL 16.41 ML 0.00 TL 4.53 TL 14.71 TL

I021a 0.31 TL 3.67 TL 21.98 TL 0.61 TL 11.52 TL 23.38 TL 1.05 TL 15.48 TL 24.61 TL

I039a 0.00 TL 0.00 1290 8.08 TL 0.04 TL 3.04 TL 8.17 TL 0.10 TL 3.60 TL 8.83 TL

I043a 0.05 TL 0.13 TL 10.64 TL 0.27 TL 3.27 TL 12.43 TL 0.45 TL 5.01 TL 12.45 ML

I048a 0.15 TL 0.00 1888 15.23 TL 0.59 TL 3.80 TL 14.67 ML 0.44 TL 5.55 TL 16.62 TL

I052a 0.00 1 0.00 1 0.85 TL 0.00 1 0.00 1 5.61 TL 0.00 1 0.00 1 9.93 ML

I053a 0.00 3 0.00 10 6.42 TL 0.00 16 0.00 33 8.06 TL 0.00 23 0.00 103 8.99 TL

I054a 0.00 1 0.00 5 19.18 TL 0.00 4 0.00 86 22.62 TL 0.00 10 0.00 240 28.25 TL

I055a 0.08 TL 0.00 1339 14.15 TL 0.33 TL 2.18 TL 17.20 TL 0.58 TL 4.68 TL 16.41 TL

I056a 0.00 1 0.00 1 9.25 TL 0.00 1 0.00 3 11.99 TL 0.00 1 0.00 17 14.47 TL

I059a 0.00 285 0.00 106 17.01 TL 0.00 TL 0.00 1678 19.01 TL 0.00 TL 4.37 TL 18.42 TL

I065a 0.00 112 0.00 57 9.57 TL 0.00 1161 0.00 863 10.61 TL 0.00 3232 0.28 TL 11.99 TL

I066a 0.23 TL 4.43 TL 18.21 TL 0.09 TL 10.26 TL 21.61 ML 0.16 TL 13.46 TL 24.85 TL

I069a 0.10 TL 0.00 2211 8.46 TL 0.21 TL 1.79 TL 10.75 ML 0.51 TL 4.00 TL 11.15 TL

I074a 0.00 TL 0.00 1421 9.67 TL 0.07 TL 2.01 TL 11.99 TL 0.11 TL 4.18 TL 11.61 TL

I076a 0.22 TL 1.58 TL 17.13 TL 0.63 TL 6.21 TL 17.50 TL 0.95 TL 9.45 TL 19.03 TL

I085a 0.00 1160 0.00 794 15.37 ML 0.00 3572 1.71 TL 17.39 TL 0.00 TL 3.78 TL 18.37 TL

(average) 0.06 1971 0.49 1261 13.04 3560 0.14 2635 2.52 2320 15.11 3178 0.22 2863 4.18 2664 16.34 3457

Table 6: Computational results for datasets GEO and VIENNA. For each number of labels, column pairs B, CUT and SCF list optimality
gaps in percent and runtimes in seconds, given a one-hour time limit, a 16 GB memory limit for VIENNA and 32 GB for GEO. Runs which
reached the time limit are denoted by TL. Runs which reached the memory limit are denoted by ML. If the formulation’s root relaxation
could not been solved within the time limit, then “-” is written instead of a gap value. For each instance and label configuration, the best
results are marked in bold.

26

|L| = 3

in

st

0
5

10
15

20

0 5 10 15 20 25 30

●

● ● ● ● ● ●

|L| = 6

0
5

10
15

20

0 5 10 15 20 25 30

●

●

●

● ● ● ●

|L| = 9

0
5

10
15

20

0 5 10 15 20 25 30

●

●

●

●

● ● ●

|L| = 3

gap (%)

in

st

0
1

2
3

4
5

6
7

0 10 20 30 40 50 60 70 80

● ● ●

●

●

●

● ● ●

|L| = 6

gap (%)

0
1

2
3

4
5

6
7

0 10 20 30 40 50 60 70 80

● ● ● ●

●

●

●

● ●

|L| = 9

gap (%)

0
1

2
3

4
5

6
7

0 10 20 30 40 50 60 70 80

● ● ● ● ●

●

●

● ●

GEO

VIENNA

●B CUT SCF

Figure 3: Performance comparison of formulations on datasets ACTMOD and VIENNA. For each number of labels and dataset, the number of
instances solved below a given gap within a one-hour time limit is shown.

27

|L|= 2 |L|= 4 |L|= 6

instance |V | |A| best B CUT SCF best B CUT SCF best B CUT SCF

HCMV 2753 55622 69.5 0.71 0.00 3.47 174.5 0.29 0.00 2.79 168.0 0.00 0.00 4.00

drosophila001 3911 183638 112.5 0.88 0.00 7.41 261.5 0.00 1.51 5.94 387.5 0.00 2.52 3.49

drosophila005 3925 183678 199.0 1.00 0.00 7.23 439.0 0.79 0.00 4.98 696.0 0.00 2.32 3.27

drosophila0075 3947 183740 355.0 0.28 0.00 6.21 934.5 0.05 0.00 3.26 1230.0 0.00 0.20 1.13

lymphoma 1260 13824 41.0 0.00 0.00 5.75 130.0 0.00 0.38 5.11 205.5 1.44 0.00 6.16

metabol expr mice 1 701 2852 118.0 0.00 0.00 0.00 252.0 0.00 0.00 1.18 518.0 0.00 0.00 1.99

metabol expr mice 2 643 2686 39.5 0.00 0.00 0.00 259.5 0.00 0.00 1.70 353.5 0.00 0.00 1.53

metabol expr mice 3 444 1882 163.5 0.00 0.00 0.91 140.5 0.00 0.00 2.09 354.5 0.00 0.00 2.34

Table 7: Comparsion of upper bounds for dataset ACTMOD.

28

|L|= 3 |L|= 6 |L|= 9

instance |V | |A| best B CUT SCF best B CUT SCF best B CUT SCF

G101 22874 71220 5105588.5 0.00 2.02 1.64 8391072.0 0.00 3.03 13.14 11416759.5 0.00 2.30 11.54

G102 62288 220304 21786805.5 0.01 2.85 0.00 36218123.5 0.00 2.66 12.06 48512857.0 0.00 2.78 11.85

G103 82369 295890 26776824.0 0.00 2.76 7.00 46714297.0 0.00 3.13 12.06 64348279.5 0.00 3.32 11.61

G104 100866 364156 36272316.5 0.00 3.19 7.48 59588363.0 0.00 3.62 12.02 83926883.5 0.00 3.67 11.92

G105 31824 104266 15815768.0 0.37 2.46 0.00 28027163.0 0.00 2.44 10.40 39863061.0 0.00 2.87 10.88

G106 137526 501138 58301945.0 0.00 0.25 1.83 104908497.5 0.00 4.49 11.26 140736008.5 0.00 0.23 8.38

G107 39120 132838 10828742.0 0.00 1.62 0.67 18646401.5 0.00 2.69 13.27 26406929.5 0.00 2.27 11.76

I004a 867 2476 55852413.0 0.00 0.00 2.11 87131485.0 0.01 0.00 2.38 116976915.5 0.00 0.00 5.48

I005a 1677 4860 72857405.0 0.00 0.00 3.50 117034442.5 0.00 0.00 5.14 155166293.0 0.00 0.00 5.23

I012a 3500 10428 28743567.5 0.00 0.00 0.79 45757352.5 0.00 0.65 1.04 60100451.5 0.00 0.92 0.89

I014a 3577 10622 24977019.5 0.00 0.00 0.45 39299654.0 0.00 0.40 0.84 55503382.5 0.00 0.94 0.77

I021a 5195 15722 23164442.5 0.00 0.42 1.05 36818149.5 0.00 1.05 1.02 51903560.5 0.00 1.07 0.73

I039a 3719 11066 23746901.5 0.00 0.00 0.38 42890149.5 0.00 0.42 0.40 61563684.0 0.00 0.57 0.42

I043a 4511 13480 28329402.0 0.01 0.00 0.43 48107646.5 0.00 0.44 0.37 67962103.5 0.00 0.54 0.40

I048a 4920 14712 16451422.5 0.09 0.00 0.84 32073780.5 0.00 0.41 0.72 41657940.5 0.00 0.80 0.72

I052a 160 474 2742172.0 0.00 0.00 0.01 4595363.0 0.00 0.00 0.00 6115941.0 0.00 0.00 0.05

I053a 693 2046 10345270.0 0.00 0.00 0.14 14261180.5 0.00 0.00 0.28 20833823.0 0.00 0.00 0.27

I054a 540 1634 5297628.5 0.00 0.00 0.08 9908443.0 0.00 0.00 0.12 13717847.0 0.00 0.00 0.10

I055a 4701 13958 17845784.0 0.04 0.00 0.84 25207862.0 0.00 0.59 0.97 35610520.5 0.00 0.68 0.73

I056a 290 878 4689298.5 0.00 0.00 0.09 10104636.5 0.00 0.00 0.09 11852180.0 0.00 0.00 0.03

I059a 2800 8314 18704918.0 0.00 0.00 0.73 27415545.5 0.00 0.00 0.68 37887414.0 0.00 0.65 0.71

I065a 1185 3512 5944593.0 0.00 0.00 0.55 11228197.5 0.00 0.00 0.88 13267573.0 0.00 0.20 0.91

I066a 4551 13642 41687203.0 0.00 0.62 0.64 61969175.0 0.00 0.74 0.88 84193036.5 0.00 1.21 1.11

I069a 3508 10312 23233334.5 0.06 0.00 0.53 32910704.0 0.00 0.51 0.67 49106774.0 0.00 0.58 0.55

I074a 4441 13124 52389470.0 0.00 0.00 0.84 79616273.5 0.00 0.42 0.98 108915470.5 0.00 0.63 0.87

I076a 4909 14536 41906321.5 0.00 0.41 1.67 69129431.5 0.00 0.87 0.76 93747265.5 0.00 1.02 0.53

I085a 2780 8246 20782753.0 0.00 0.00 0.45 28672185.5 0.00 0.39 0.76 41758859.0 0.00 0.56 0.72

Table 8: Comparsion of upper bounds for datasets GEO and VIENNA.

29

Analyzing GEO Solutions Figure 4 compares the structure of feasible solutions com-
puted on instance GEO/G101 after a one-hour time limit. In Plots 4(a)-4(c), one has |L|= 3
and α = {0, 0.5, 1}. Note that for α = 0, an optimal solution to SStA corresponds to an
optimal Steiner tree on the union of all terminal sets Tl, and for α = 1, an optimal solution
is the union of optimal Steiner arborescence for each Tl. In Plot 4(a), where α = 0, the
computed solution, although not optimal, already takes the form of a tree. In Plot 4(b),
where α = 1, the computed SStA solution contains numerous cycles due to the overlapping
Steiner trees for each label. In Plot 4(c), where α = 0.5, the computed solution combines
features present in the solutions shown in Plots 4(a) and 4(b), as now both parts of the
objective function are of equal importance. Aside from a single cycle, the solution is a tree.
Cycles will only appear when their inclusion brings an advantage, which for |L|= 3 does
not seem to be the case very often. In Plot 4(d), a different root node is chosen, α = 0.5
and |L|= 9. In comparison with Plot 4(c), most parts of the solution remain unchanged,
especially in areas of the graph where only relatively few terminals exist. However, due to
the inclusion of additional labels several “shortcuts” have been included into the solution.
The inclusion of these paths form alternative connections between subtrees, such that for
some labels a cheaper connection can be realized.

7. Conclusions and Future Work

In this work the MCSN problem has been introduced, and a special case where the
subproblems are Steiner arborescences, the SStA, has been computationally explored. A
cut-based MIP model and a Benders decomposition thereof are introduced. An algorithmic
framework with a specialized stabilization method based on in-out separation has been
implemented, together with problem-specific preprocessing and a primal heuristic.

Results show that the algorithmic approach based on Benders decomposition outper-
forms the proposed cut-model for large-scale instances, i.e., when the graphs or the number
of labels are large. For small-scale instances, the cut-formulation is slightly more successful
at solving instances to optimality. Both variants significantly outperform the previous MIP
formulation initially proposed by Mazza et al. [see 26].

As future work, it would be interesting to establish a connection between the MCSN and
other applications, such as the design of bus rapid transit networks within cities [see, e.g.
19]. In this more complex setting, the network operator would aim at finding a minimum
cost network of exclusive lanes (shared network), on which a set of bus routes (entities)
will provide transportation service (which shall be also economically efficient).

30

(a) |L|= 3, α = 0 (b) |L|= 3, α = 1

(c) |L|= 3, α = 0.5 (d) |L|= 9, α = 0.5

Figure 4: Plots of GEO/G101. Each label is marked in a different color, i.e., its terminals and the arcs
connecting them to the root (marked red) in the best feasible solution computed after a one-hour time
limit. Multi-colored nodes represent terminals that belong to multiple labels. Gray lines represent arcs that
do not belong to the solution. Figure (a)-(c) show the best feasible solutions for L=3 and α = {0, 0.5, 1}.
Figure (d) shows the best feasible solution for L=9 and α = 0.5. For each solution, the relative gap to the
computed lower bound is within 3-10%.

Acknowledgment The authors want to thank to M. Fischetti for useful inputs concerning
the stabilization of the Benders approach. E. Álvarez-Miranda acknowledges the support
of the Chilean Council of Scientific and Technological Research, CONICYT, through the

31

grant FONDECYT N.11140060 and through the Complex Engineering Systems Institute
(ICM:P-05-004-F, CONICYT:FBO16). The research of M. Sinnl was supported by the
Austrian Research Fund (FWF, Project P 26755-N19). M. Luipersbeck acknowledges the
support of the University of Vienna through the uni:docs fellowship programme.

[1] 11th DIMACS Implementation Challenge. Steiner tree problems, 2014. URL http:
//dimacs11.cs.princeton.edu/home.html.

[2] E. Álvarez-Miranda, I. Ljubić, and E. Fernández. The recoverable robust facility
location problem. Transportation Research Part B, 79:93–120, 2015.

[3] C. Backes, A. Rurainski, G. Klau, O. Müller, D. Stöckel, A. Gerasch, J. Küntzer,
D. Maisel, N. Ludwig, M. Hein, A. Keller, H. Burtscher, M. Kaufmann, E. Meese, and
H. Lenhof. An integer linear programming approach for finding deregulated subgraphs
in regulatory networks. Nucleic Acids Research, 1:1–13, 2011.

[4] R. Battiti, R. Lo Cigno, F. Orava, and B. Pehrson. Global growth of Open Access
networks: From warchalking and connection sharing to sustainable business. In Pro-
ceedings of the 1st ACM International Workshop on Wireless Mobile Applications and
Services on WLAN Hotspots, WMASH, pages 19–28. 2003.

[5] W. Ben-Ameur and J. Neto. Acceleration of cutting-plane and column generation
algorithms: Applications to network design. Networks, 49(1):3–17, 2007.

[6] I. Bomze, M. Chimani, M. Jünger, I. Ljubić, P. Mutzel, and B. Zey. Solving two-
stage stochastic Steiner tree problems by two-stage branch-and-cut. In O. Cheong,
K. Chwa, and K. Park, editors, Proceedings of ISAAC 2010, volume 6506 of LNCS,
pages 427–439. Springer, 2010.

[7] B. Cherkassky and A. Goldberg. On implementing push-relabel method for the max-
imum flow problem. In E. Balas and J. Clausen, editors, Proceedings of IPCO IV,
volume 920 of LNCS, pages 157–171. Springer, 1995.

[8] M. Chimani, C. Gutwenger, M. Jünger, G. Klau, K. Klein, and P. Mutzel. The open
graph drawing framework (OGDF). Handbook of Graph Drawing and Visualization,
pages 543–569, 2011.

[9] A. Costa. A survey on benders decomposition applied to fixed-charge network design
problems. Computers & operations research, 32(6):1429–1450, 2005.

[10] M. de Aragão and R. Werneck. On the implementation of MST-based heuristics for
the Steiner problem in graphs. In D. Mount and C Stein, editors, Proceedings of
ALENEX 2002, volume 2409 of LNCS, pages 1–15. Springer, 2002.

[11] M. de Aragão, E. Uchoa, and R. Werneck. Dual heuristics on the exact solution of
large Steiner problems. Electronic Notes in Discrete Mathematics, 7:150–153, 2001.

[12] M. Dittrich, G. Klau, A. Rosenwald, T. Dandekar, and T. Muller. Identifying func-
tional modules in protein-protein interaction networks: an integrated exact approach.
Bioinformatics, 24(13):i223–i231, 2008.

32

http://dimacs11.cs.princeton.edu/home.html
http://dimacs11.cs.princeton.edu/home.html

[13] C. Duin. Steiner’s problem in graphs. PhD thesis, University of Amsterdam, 1993.

[14] C. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Net-
works, 19(5):549–567, 1989.

[15] M. Fischetti and D. Salvagnin. An in-out approach to disjunctive optimization. In
A. Lodi, M. Milano, and P. Toth, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, volume 6140 of
Lecture Notes in Computer Science, pages 136–140. Springer Berlin Heidelberg, 2010.

[16] M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Sal-
vagnin, and M. Sinnl. Thinning out Steiner trees: A node-based model for uniform
edge costs. Workshop of the 11th DIMACS Implementation Challenge, 2014.

[17] M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning Benders Decomposition for Large
Scale Facility Location. Management Science, 2016. to appear.

[18] M. Forzati, C. Larsen, and C. Mattsson. Open access networks, the swedish experience.
In Proceedings of the 12th IEEE International Conference on Transparent Optical
Networks, pages 1–4, 2010.

[19] K. Kepaptsoglou and M. Karlaftis. Transit route network design problem: Review.
Journal of Transportation Engineering, 135(8):491–505, 2009.

[20] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Net-
works, 32(3):207–232, 1998.

[21] G. Laporte and F. Louveaux. The integer l-shaped method for stochastic integer
programs with complete recourse. Operations Research Letters, 13(3):133–142, 1993.

[22] M. Leitner, I. Ljubić, M. Luipersbeck, M. Prossegger, and M. Resch. New real-world
instances for the Steiner tree problem in graphs. Technical report, Technical report,
ISOR, University of Vienna, 2014.

[23] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel, and M. Fischetti. An algo-
rithmic framework for the exact solution of the prize-collecting Steiner tree problem.
Mathematical Progamming, Series B(105):427–449, 2006.

[24] I. Ljubić, P. Mutzel, and B. Zey. Stochastic survivable network design problems.
Electronic Notes in Discrete Mathematics, 41:245—-252, 2013.

[25] Thomas L Magnanti, Paul Mireault, and Richard T Wong. Tailoring Benders decom-
position for uncapacitated network design. Springer, 1986.

[26] A. Mazza, I. Gat-Viks, H. Farhan, and R. Sharan. A minimum-labeling approach for
reconstructing protein networks across multiple conditions. Algorithms for Molecular
Biology, 9(1):1–8, 2014.

[27] T. Polzin and S. Daneshmand. Improved algorithms for the Steiner problem in net-
works. Discrete Applied Mathematics, 112(1):263–300, 2001.

33

[28] A. Quilliot. Network Design Problems: Fundamental Methods. In V. Paschos, editor,
Applications of Combinatorial Optimization, chapter 9, pages 253–289. John Wiley &
Sons, 2013.

[29] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem
in graphs. Mathematica Japonica, 24(6):573–577, 1980.

[30] Richard T. Wong. A dual ascent approach for Steiner tree problems on a directed
graph. Mathematical Programming, 28(3):271–287, 1984. ISSN 0025-5610. doi: 10.
1007/BF02612335.

[31] T. Yamamoto, H. Bannai, M. Nagasaki, and S. Miyano. Better decomposition heuris-
tics for the maximum-weight connected graph problem using betweenness centrality.
In J. Gama, V. Costa, A. Jorge, and P. Brazdil, editors, Discovery Science, volume
5808 of LNCS, pages 465–472. Springer, 2009.

[32] N. Yosef, E. Zalckvar, A. Rubinstein, M. Homilius, N. Atias, L. Vardi, I. Berman,
H. Zur, A. Kimchi, E. Ruppin, and R. Sharan. ANAT: A tool for constructing and
analyzing functional protein networks. Science Signaling, 4(196):pl1–pl1, 2011.

34

	Introduction and Motivation
	Problem Definition and Previous Work
	The Minimum-Cost Shared Network Problem
	Previous Work and Related Problems

	Benders Decomposition
	Benders Reformulation
	Separation Procedure
	Stabilization Techniques

	Implementation Details
	Formulation (CUT): separation details
	Benders Reformulation (B): Separation Details
	Primal and Initialization Heuristic
	Preprocessing

	Test Instances
	Computational Results
	Conclusions and Future Work

