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Abstract

The Steiner tree problem with revenues, budget and hop-constraints (STPRBH) is a variant of the classical Steiner

tree problem. The goal is to find a tree maximizing the collected revenue, which is associated with nodes, subject to

a given budget for the edge cost of the tree and a hop-limit for the distance between the given root node and any other

node in that tree.

In this work, we introduce a novel generic way to model hop-constrained tree problems as integer linear programs

and apply it to the STPRBH. Our approach is based on the concept of layered graphs that gained widespread attention

in the recent years, due to their computational advantage when compared to previous formulations for modeling hop-

constraints. Contrary to previous MIP formulations based on layered graphs (that are arc-based models), our model

is node-based. Thus it contains much less variables and allows to tackle large-scale instances and/or instances with

large hop-limits, for which the size of arc-based layered graph models may become prohibitive. The aim of our

model is to provide a good compromise between quality of root relaxation bounds and the size of the underlying MIP

formulation.

We implemented a branch-and-cut algorithm for the STPRBH based on our new model. Most of the instances

available for the DIMACS challenge, including 78 (out of 86) previously unsolved ones, can be solved to proven

optimality within a time limit of 1000 seconds, most of them being solved within a few seconds only. These instances

contain up to 500 nodes and 12500 edges, with hop-limit up to 25.

1 Introduction

The Steiner tree problem in graphs (SPG) is a classical problem in operations research, see e.g., [20, 21, 29] and the

references therein. In the SPG, we are given a graph G(V,E) with edge costs c : E 7→R
+ and a set of terminals T ⊆V ,

and the goal is to find a tree of minimal cost, which contains all terminals. In this work, we consider a variant of

the SPG known as the Steiner tree problem with revenues, budget and hop-constraints (STPRBH), whose definition is

given below. The problems has been intensively studied in the last years using exact [7, 22, 27] and heuristic [6, 13, 14]

approaches.

Definition 1 (The Steiner Tree Problem with Revenues, Budget and Hop-Constraints (STPRBH)). We are given an

undirected graph G = (V,E) with edge costs c : E 7→ R
+, node revenues p : V 7→ R

+, a dedicated root node r ∈V, a

hop-limit H ∈ N
+ and a budget limit B ∈R

+.

A feasible solution of the STPRBH is a subtree T = (VS ⊆V,ES ⊆ E) rooted at r, where every node in VS can be

reached form the root r using at most H edges and the total cost of the edges in ES does not exceed B, i.e., ∑e∈ES
ce ≤ B.

The goal is to find a feasible subtree T ∗ that maximizes the revenue defined as ∑v∈VS
pv.

Figure 1 depicts an instance of the STPRBH and its optimal solution.
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Figure 1: (1a) Graph of an instance of the STPRBH problem. Let p1 = 10, p2 = 0, p3 = 4, p4 = 9, p5 = 5, the cost of

the solid edges be one, and of the dashed edges be five. (1b) The optimal solution for H = 2 and B = 3 has objective

value 15.

Our Contribution. In this work, we present a novel generic way to model hop-constrained tree problems as integer

linear programs (ILPs) and apply it to the STPRBH. Our approach is based on layered graphs, a concept which has

gained widespread attention in the last few years. On the one hand, layered graphs allow for significant improvements

of computing times when compared to previously available extended formulations (see [19]). On the other hand,

they are also shown to theoretically dominate most of the available extended formulations that model hop-constraints.

Instead of modeling the problem on G, a layered graph is constructed such that for each layer 1 ≤ h ≤ H, a copy

of the nodes of G is established, and nodes between two consecutive layers are connected whenever there exists a

connection between them in G (for more details, see Section 2). The underlying problem is then formulated as a

Steiner arborescence problem using arc variables on such obtained layered digraph. While this formulation often

provides very good LP-bounds (see, e.g. [19]), the number of variables (which is O(H|E|)), often becomes prohibitive

when the problem is formulated on larger graphs, or when larger hop-limits H are considered.

To overcome this latter drawback, we apply the “thinning out” idea recently exploited in [10, 11] for solving

Steiner trees and facility location problems, respectively. In our approach, the set of arc variables of the layered graph

is projected out, resulting in two new formulations that comprise only node variables on the layered graph (along with

node and arc variables on G). Whereas the standard layered graph approach involves O(H|E|) variables, our new

models deal with O(H|V |+ |E|) variables only. One of our models is compact, i.e., it requires only a polynomial

number of constraints to ensure connectivity of the solution. However, we show that better bounds can be obtained by

imposing an exponential number of subtour elimination constraints on G. In both cases, our models provide a good

compromise between quality of obtained LP-bounds and the size of the underlying model.

A branch-and-cut-algorithm for the STPRBH derived from our new formulation solves most of the in-

stances from the DIMACS Challenge [8] to provable optimality in a short time (often within a few sec-

onds). This includes 78 (out of 86) instances for which the optimal solution has been previously unknown.

Our framework won the category STPRBH in the challenge. The program is made available online under

http://homepage.univie.ac.at/markus.sinnl/program-codes/stprbh/.

Outline of the Paper. Our paper is structured as follows: In Section 2, a short review of layered graphs is followed

by the presentation of our generic new model together with valid inequalities. Section 3 contains a description of our

solution framework, including a preprocessing phase and primal heuristics. Computational results are presented in

Section 4. Section 5 concludes the work with a short summary and a discussion of future work. It points out a broader

potential of the proposed “thinning out” approach for modeling hop- or diameter-constrained trees.

Previous Work. The STPRBH has been introduced by [7] where three branch-and-cut approaches have been pre-

sented: one based on Miller-Tucker-Zemlin constraints, one on Dantzig-Fulkerson-Johnson (also known as subtour-
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elimination) constraints, and one on hop-indexed formulation. Note that the latter formulation is based on hop-indexed

edge variables, i.e., it can be viewed as a compact arc-based MIP formulation on a layered graph. Instances derived

from sets B and C of the OR-library [2] have also been introduced in [7]. All instances from the set B and instances

C1 to C5 have been solved to optimality with the approaches from [7]. These instances contain 500 nodes and 625

edges. However, the authors of [7] have demonstrated that no single model works well for all instances. In [6], the

same authors proposed a greedy heuristic and a tabu search with some improvement procedures. They also reported

some results for C6 to C20. These instances consist of 500 nodes and up to 12500 edges. According to [6], for these

instances, not even the root relaxation of the models presented in [7] could be solved within a time limit of two hours

(in most of the cases). Branch-and-price approaches for the STPRBH have been studied in Master Thesis of Sinnl

[27]. A lifted Miller-Tucker-Zemlin formulation and a formulation based on reformulation-linearization techniques

were given in [22]. The two latter works provide computational results on the instances from sets B and C1 to C5,

but offer no consistent speed up, when compared to [6]. Recently, a breakout local search algorithm (see [13]) and a

memetic algorithm (see [14]) have been proposed. These two recent papers provide improved feasible solutions for

some of the unsolved instances (C6 to C20). Some new instances based on graphs C16 to C20 are also introduced in

[14].

2 Problem Formulation and Valid Inequalities

Let GL = (VL,AL) be the layered graph associated with a rooted graph G(V,E) and hop-limit H. It is defined as follows

(see, e.g., [19]): The node set VL = r∪V 1 ∪V 2 ∪ . . .∪V H , where V h contains a copy vh of all nodes v ∈V \ {r}. Note

that the root node r is the only node at layer zero. The arc set AL = A1 ∪A2 ∪ . . .∪AH , where Ah contains a directed

copy (i, j) of an edge {i, j} ∈ E , iff i ∈V h−1 and j ∈V h.1 Thus the layered graph has size O(H(|V |+ |E|)). Figure 2

shows the layered graph associated with our exemplary instance from Figure 1a and H = 3.
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Figure 2: Layered graph associated with the graph from (1a) and H = 3.

It has been shown in [19] that the optimal hop-constrained spanning/Steiner tree problem can be obtained by

solving the Steiner tree problem on the layered graph GL with additional constraints that each Steiner/terminal node

v has to be visited at most/exactly once across all layers. To this end, hop-constrained problems are formulated on

1Observe that in the definition in [19], there is an additional set of arcs going from a node vh on any layer 1 ≤ h ≤ H − 1 to its corresponding

node vH on the last layer, we do not need these arcs in our approach.
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GL by associating variables to the arcs AL of the layered graph, e.g., xh
i j is one, if arc {i, j} is used on layer h (see,

e.g., [19, 23]). While this usually gives models with strong LP-bounds, the size of the resulting MIP formulations

soon becomes prohibitive. We thus propose to project out arc variables from the layered graph and model the hop-

constraints by associating variables with the nodes VL of the layered graph.

To do so, we transform the graph G into a rooted digraph D = (V,A), where A are the bidirected edges from E

(incoming arcs to the root node are removed). We use the following sets of binary variables to model our problem

(resp., generic hop-constraint trees)

xa =

{

1 if arc a is part of the solution

0 otherwise
for a ∈ A;

yv =

{

1 if node v is part of the solution

0 otherwise
for v ∈V ;

yh
v =

{

1 if node v is on layer h in the solution

0 otherwise
for v ∈V \ {r},1 ≤ h ≤ H.

For 1 ≤ i ≤ H − 1, let Hi = {i, . . . ,H}. Furthermore, let δ−(W ) = {(i, j) ∈ A : i 6∈ W, j ∈ W} and δ+(W ) = {(i,
j) ∈ A : i ∈W, j 6∈W}. Let T = {v ∈V : pv > 0} and S = V \{T ∪{r}}. It can be easily seen, that there always exists

an optimal solution to the STPRBH, where only nodes from T are leaf nodes. We will refer to T as set of terminals,

and S as Steiner nodes.

Using this notation, we obtain a generic set of inequalities for modeling hop-constrained tree problems, denoted

by (NODEHOP):

(NODEHOP)

x(δ−(W )) ≥ yv ∀W ⊆V,v ∈W ∩T,r 6∈W (CCuts)

yr = 1 (Root)

x(δ−(v)) = yv ∀v ∈V \ {r} (Indegr)

∑
h∈H1

yh
v = yv ∀v ∈V \ {r} (NH-Link)

xrv = y1
v ∀(r,v) ∈ A (Root-Link)

yh−1
v + xvw ≤ 1 + yh

w ∀(v,w) ∈ A,v 6= r,h ∈ H2 (HLink-)

yH
v + xvw ≤ 1 ∀(v,w) ∈ A,v 6= r (HEnd-)

(xa,yv,y
h
v) ∈ {0,1}|A|×|V |×H|V\{r}| (Binary)

Constraints (CCuts), (Root) and (Indegr) comprise the cut-set formulation for the (prize-collecting) Steiner tree

problem (see, e.g. [24]) and ensure that our solution contains an arborescence rooted at r. The remaining set of

inequalities (NH-Link)-(HEnd-) deals with the hop-constraint: Node-hop link inequalities (NH-Link) ensure that if a

node is part of the solution, it must lie on some layer. Hop-end inequalities (HEnd-) make sure that if a node lies on

layer H, there can be no outgoing arc from it. Moreover, if the arc going from the root to node v is used, node v must

lie on layer 1, which is ensured by (Root-Link). Hop-link constraints (HLink-) make sure that if a node v lies on layer

h− 1 (2 ≤ h ≤ H) and arc (v,w) is taken in the solution, then node w must lie on layer h. Note that crucial for the

validity of our model is the tree/arborescence property: since every node only has one incoming arc (see constraints

(Indegr)), the layer of each node is uniquely defined. Thus, constraints (CCuts) to (Binary) ensure in a generic way

that the solution is an arborescence, satisfying the hop-constraint.

Using the generic model NODEHOP, it is easy to obtain the following formulation for the STPRBH:
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(STPRBH) max ∑
v∈T

pvyv (obj)

∑
a∈A

caxa ≤ B (Budget)

(x,y,yh) ∈ NODEHOP

The objective function (obj) ensures maximization of the profit, while constraint (Budget) makes sure that a solu-

tion does not exceed the given budget B. Our model contains |A|+(H +1)|V | variables, and an exponential number of

connectivity constraints (CCuts). Next, we show that even a compact formulation obtained by replacing (CCuts) with

a smaller family of constraints, provides a valid model for the STPRBH.

Theorem 1. Let sNODEHOP denote the compact model obtained from NODEHOP by replacing constraints (CCuts)

with generalized subtour elimination constraints of size two:

xvw + xwv ≤ yw, v,w ∈V (GSEC2)

This compact model is valid for the STPRBH.

Proof. Let (x,y,yh) ∈ sNODEHOP be the optimal solution of sNODEHOP and let Sol be the graph associated with

this solution. We show that Sol is connected, does not contain cycles and does not violate the hop-limit.

In-degree constraints (Indegr), together with inclusion of the root (with in-degree zero), and constraints (GSEC2)

ensure that the number of nodes in Sol is the number of arcs plus one. In-degree constraints ensure that there cannot

be isolated nodes, except maybe the root node. Sol is cycle-free because each node has to be associated to exactly one

layer h, 1 ≤ h ≤ H. A cycle in Sol would imply (due to inequalities (HLink-)) that there will be a node v in the cycle

with yh
v = yℓv = 1, for 1 ≤ h < ℓ≤ H, which violates inequality (NH-Link). Hence, the resulting solution is cycle-free,

with the number of edges being one less than the number of nodes, which implies that Sol is a tree.

It only remains to show that for every node v ∈ Sol, there exists a directed path from r to v using at most H arcs.

Assume there is a node v ∈ Sol for which the above condition does not hold. This is however a contradiction with

constraints (HLink-) and (HEnd-), which concludes the proof.

In the following we provide some valid inequalities for the proposed new model NODEHOP. Some of these

inequalities are only valid, when T 6= V , i.e., for Steiner tree problems, but not for their spanning tree counterparts.

Hop-Link Inequalities First, note that in both constraints (HLink-) and (HEnd-), the value 1 can be down-lifted to

yv. The constraints still remain valid, since any of yh−1
v , yH

v and xvw set to one also implies that yv is set to one.

Moreover, for any arc (v,w), constraints (HEnd-) can be made redundant by replacing inequalities (HLink-) with

a lifted version with yH
v added to the left-hand-side. This is summarized in the following result:

Theorem 2. Let h ∈ H2 and (v,w) ∈ A,v 6= r. Then the hop-link inequality

yH
v + yh−1

v + xvw ≤ yv + yh
w, ∀(v,w) ∈ A,v 6= r (HLink)

is valid for NODEHOP.

Moreover, if H ≥ 3, for any arc (v,w), constraints (HLink-) and (HEnd-) can be replaced by (HLink) for 2≤ h≤H.

Proof. First, we show the validity of the constraints, when they are added to NODEHOP (i.e., (HLink-) and (HEnd-)

remain in the model). Observe that only one of yH
v + yh−1

v can be one, due to (NH-Link). Suppose yH
v is zero, then the

inequality reduces to (HLink-). Suppose yH
v is one, then xvw must be zero due to (HEnd-).

Now we assume all (HLink-) and (HEnd-) are replaced by constraints (HLink). The first argument of the previous

proof still works, for yH
v zero, then the inequalities reduces to (HLink-). It now remains to show that the presence

of the complete set of inequalities is enough to force xvw to zero for the case that yH
v is one. Thus, suppose both yH

v

and xvw are one. Then for any constraint (HLink) for the given arc (v,w), the left-hand-side is two (and due to the

assumption H ≥ 3, there exist a least two constraints). However, due to (NH-Link), for only one h, we can have that

yh
w is one, and thus for only one constraint (HLink) the right-hand-side can be two, which is a contradiction.
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Generalized Hop-Link Inequalities Using constraint (NH-Link) corresponding to node v, inequality (HLink) for

an arc (v,w), v 6= r and a given layer h : 2 ≤ h ≤ H can be rewritten as

xvw ≤ yh
w + ∑

k∈H1,k 6=(h−1),k 6=H

yk
v (1)

It has the intuitive meaning that if arc (v,w) is in the solution, it either ends at layer h (and thus has started at layer

h− 1), or it must have started at some other layer smaller than H and other than h− 1. Consider now another layer

l 6= h: Inequality (1) is valid, because when arc (v,w) ends at layer l, it must have started at layer l − 1 and there is

yl−1
v on the right-hand-side of (1).

To motivate the generalization of these inequalities, observe that when the arc (v,w) ends at some layer 6= l,h, the

variable yl−1
v must be zero in a valid solution. Moreover, when arc (v,w) ends at layer l, the variable yl

w must be one in

any feasible solution. Thus it follows that yl−1
v can be replaced by yl

w in constraint (1) and the constraint remains valid.

Generalizing this idea further, we observe that for each layer h ≥ 2, in the summation on the right-hand-side, we must

either include yh−1
v or yh

w. This brings us to the following family of inequalities:

Theorem 3. Let P be the family of binary functions P = 2H2 , p∈ P and (v,w)∈ A,v 6= r. Then the generalized hop-link

inequality

xvw ≤ ∑
h∈H2

(

phyh−1
v +(1− ph)y

h
w

)

(g-HLink)

is valid for NODEHOP.

Proof. Clearly, when node w lies on layer 1 it must be connected to the root node and xvw must be zero. Thus suppose

there exists a feasible solution, where node w lies on some layer k : 2 ≤ k ≤ H, xvw is one, i.e., the arc (v,w) is used and

the right-hand-side of (g-HLink) is zero. Since node w lies on layer k and the arc (v,w) is used, it follows that node v

must lie on layer k− 1. This implies that both yk−1
v and yk

w are one. Due to the definition of the function p, pk = 1 or

pk = 0 and consequently, we have either yk−1
v or yk

w on the right-hand-side and thus the right-hand-side is one, which

is a contradiction to the assumption that the inequality is violated.

For each arc (v,w) ∈ A, constraints (g-HLink) can easily be separated in O(H) time: Given a fractional solution

(x̃, ỹ, ỹh), for each layer h ≥ 2, we consider the sum ∑h∈H2
min{ỹh−1

v , ỹh
w}. If the obtained sum is smaller than x̃vw, a

violated constraint is detected.

Let us now consider a pair of inequalities of type (g-HLink), one associated to (v,w) and the other to (w,v).
Let p̂ and p̃ be the functions from P defining the first and second inequality, respectively. Summing up this pair of

inequalities, we obtain

xvw + xwv ≤ ∑
h∈H3

(

(p̂h +(1− p̃h−1))y
h−1
v +(p̃h +(1− p̂h−1))y

h−1
w

)

+

p̂2y1
v + p̃2y1

w +(1− p̃H)yH
v +(1− p̂H)yH

w

Thus, depending on the functions p̂ and p̃, the coefficients of yh
v and yh

w are zero, one or two in the resulting

inequality. Since xvw + xwv ≤ 1 (this follows from inequalities (CCuts) and equalities (Indegr), respectively from

inequalities (GSEC2)), all coefficients of value two can be down-lifted to one.

Thus, the validity of the new derived families of inequalities presented in the following two theorem follows

immediately. The first set of inequalities is obtained with p̂ = p̃ =

{

1 if h is even

0 otherwise
and the second one with p̂ = p̃ =

{

0 if h is even

1 otherwise
.

Theorem 4. Let (v,w) ∈ A, v 6= r. Then the odd two-arc hop-link inequality

xvw + xwv ≤ ∑
h∈H1,h odd

(

yh
v + yh

w

)

(o2AHLink)

is valid for NODEHOP.
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Theorem 5. Let (v,w) ∈ A, v 6= r. Then the even two-arc hop-link inequality

xvw + xwv ≤ ∑
h∈H2,h even

(

yh
v + yh

w

)

(e2AHLink)

is valid for NODEHOP.

For each pair of arcs (w,v),(v,w) ∈ A, constraints (o2AHLink) and (e2AHLink) can easily be separated in O(H)
time in a similar fashion to inequalities (g-HLink).

Cut Inequalities on the Layered Graph If a node w lays on a layer h, there obviously must be at least one node

v 6= w at layer h− 1 in the solution. This leads to the following family of node-hop-index inequalities:

∑
(v,w)∈A

yh−1
v ≥ yh

w (2)

Such inequalities (expressed in terms of arc-variables on the layered graph) are commonly used in the hop-indexed

models for hop-constrained problems (see, e.g. [15]). They represent a compact way of ensuring a connectivity of

a solution. However, these hop-indexed compact models are known to suffer from weak lower bounds. In state-of-

the-art approaches, connectivity constraints are therefore modeled using cut-set inequalities on layered graphs (see,

e.g. [19, 23]).

By considering a modified layered graph, where nodes are split into directed arcs, it is not hard to see, that one

can consider cut-set inequalities derived on the layered graph using yh and x variables. Preliminary computational

experiments, however, showed that addition of such type of inequalities in general was not beneficial for our problem,

due to the high cost of separation (which involves max-flow computations on this modified layered graph). Instead,

we use a subfamily of these cut-set inequalities, node-arc-cut-inequalities, which we illustrate next.

Observe first that if the input graph is complete, node-hop-index inequalities will be in general very weak, since

the left-hand-side contains all nodes on layer (h− 1) in this case. Clearly, also the following inequality holds for any

h ≥ 2 and node w 6= r, since it is a weaker version of inequalities (CCuts) for W = {w}:

∑
(v,w)∈A,v6=r

xvw ≥ yh
w. (3)

Observe that in both (2) and (3), the right-hand-side is the same, and we sum over all arcs on the left-hand-side.

Hence, we can derive a more general family of inequalities, which contains both (2) and (3) as a special case.

Theorem 6. Let R be the family of functions R = 2A and r ∈ R, w ∈ V and 2 ≤ h ≤ H. Then the node-arc-cut-

inequalities

∑
(v,w)∈A,v6=r

(

rvwxvw +(1− rvw)yh−1
v

)

≥ yh
w (NACut)

are valid for NODEHOP.

Proof. Suppose there exists a feasible solution, where yh
w is one, i.e., node w lies on layer h, and the left-hand-side is

zero. However, since the node lies on layer h, there must be an incoming arc (v,w) from some node v lying on layer

h−1, thus both yh−1
v and (v,w) must be one. One of these variables is on the left-hand-side of constraint (NACut), and

thus the left-hand-side is one, which concludes the proof.

Constraints (NACut) can be separated in polynomial time as follows: Given a fractional solution (x̃, ỹ, ỹh) and a

node w and layer h, consider all nodes v, such that (v,w) ∈ A, and calculate the sum ∑v:(v,w)∈A min{x̃vw, ỹ
h−1
v }. If the

resulting sum is smaller than the LP-value of yh
w, a violated inequality is obtained.

There is an interesting connection between the constraints (NACut) and constraints (g-HLink), which can be

derived as follows. For a fixed v′ and w, let r ∈ R := {rv′w = 0;rvw = 1,∀v 6= v′}. Consider the aggregation of

(NACut) over all 2 ≤ h ≤ H. We obtain

∑
(v,w)∈A,v6=v′,r

(H − 1)xvw + ∑
h∈H2

yh−1
v′

≥ ∑
h∈H2

yh
w.
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Since the right hand side can be at most one, we can downlift the coefficient (H − 1) on the left hand side to one.

Using equation (Root-Link), we obtain xrw + ∑(v,w)∈A,v6=v′,r xvw + ∑h∈H2
yh−1

v′
≥ ∑h∈H1

yh
w.This can be further rewritten

using equations (Indegr) and (NH-Link) to get xrw + ∑(v,w)∈A,v′ 6=v,r xvw + ∑h∈H2
yh−1

v′
≥ ∑(v,w)∈A xvw. Canceling out the

x-variables on both sides, we arrive at

∑
h∈H2

yh−1
v′

≥ xv′w,

which is an inequality of the family (g-HLink).

Flow-Conservation Constraints The so-called flow-conservation constraints (FlowC), which have been shown to

strengthen the directed (prize-collecting) Steiner tree cut formulation, (see, e.g., [21, 24]) are easily seen to be valid

for NODEHOP.

x(δ−(v)) ≤ x(δ+(v)), ∀v ∈ S (FlowC)

The constraints ensure (in the x-space) that no node in S can be a leaf node in an solution. They can be generalized

in a version involving yh-variables in a similar fashion to (NACut).

Theorem 7. Let F be the family of functions F = 2A and f ∈ F, v ∈ S and 2≤ h≤ H. Then the hop-flow-conservation-

inequalities

∑
(v,w)∈A

(

fvwxvw +(1− fvw)yh
v

)

≥ yh−1
v (HFlowC)

are valid for NODEHOP.

Proof. Suppose there exists a feasible solution, where yh−1
v is one, i.e., node v lies on layer h−1, and the left-hand-side

is zero. However, since the node v is a Steiner node, there always exists an optimal solution, where v is no leaf node.

Thus, there must be an arc (v,w) to some node v lying on layer h in the solution, thus both yh
w and (v,w) must be

one. One of these variables is on the left-hand-side of constraint (NACut), and thus the left-hand-side is one, which

concludes the proof.

3 The Solution Framework

We have implemented a branch-and-cut algorithm based on our model, using the state-of-the-art commercial solver

CPLEX 12.6. Before the branch-and-cut algorithm gets started, a preprocessing phase, as presented in Section 3.1 is

performed. Moreover, a primal heuristic (described in Section 3.2) is also part of our solution framework. Branching-

priorities and details of the separation routines are described in Section 3.3. The selection of the valid inequalities to

include in our framework is discussed in Section 4 together with the computational results.

3.1 Preprocessing

The aim of the preprocessing phase is to remove nodes, arcs and hop-indexed variables, which cannot be in an optimal

solution. Moreover, the information gained in this phase also allows the lifting of some of the inequalities of the

model. Let dist(u,v) be the distance between two nodes u and v, this distance can be calculated with the help of a

breadth-first-search (BFS). Moreover, let dist(v,T ) = minw∈T dist(v,w) be the distance between v and a closest node

from the terminal set T . Note that these distances are calculated on a digraph, since the directed root cost test may

remove some arcs in one direction. Some of the following results use the fact, that there always exists an optimal

solution for STPRBH (and other Steiner tree problems), where no Steiner node v ∈ S is a leaf.

Shrinking the Size of the Model Note that our model is defined on a digraph, while the problem is defined on an

undirected graph. In our preprocessing, we first work on the undirected graph, and try to remove as much edges/nodes

as possible, before we transform it into the directed graph on which our model is defined. The digraph is then further

preprocessed. The preprocessing is comprised of the following tests:

8



• directed root cost test: If arcs (v,w) and (r,w) exist, and it holds that crw ≤ cvw, arc (v,w) can be removed, since w

can always be connected to the root node. This test has been described in [19] for the hop-constrained spanning

tree problem. A variant of this test, denoted by undirected root cost test, can be done before the transformation

into a directed graph: If edges {v,w}, {r,v} and {r,w} exist, and it holds that crv ≤ cvw and crw ≤ cvw, edge

{v,w} can be removed.

• degree-one test: This is a classical test from Steiner tree literature (see, e.g., [9]), every Steiner node with

degree-one can be removed. Note that the degree-two test, which combines two edges into one, is not possible

in our setting due to the op-constraints.

• start/end-layer test: Obviously, all variables yh
v with h < dist(r,v), where r is the root node, can be removed. For

a similar approach, see also [23]. By definition of dist(v,T ), if v ∈ S, we must cross at least dist(v,T )−1 layers

in order to reach a node in T from v. It follows that all variables yh
v with h > H − dist(v,T ) can be removed.

Consequently, all variables nodes v with dist(r,v)+ dist(v,T ) > H, can be removed. Also, all arcs (v,w), with

dist(r,v) ≥ H − dist(w,T ) can be removed.

The preprocessing starts with the undirected root cost test, followed by the degree-one test. Then the graph is

transformed in a digraph and the directed root cost test is applied followed by the start/end-layer test. Finally, the

degree-one test is the done again, since the start/end-layer test may remove some nodes, which could allow the

degree-one test to also remove some additional nodes. Note that due to the directed root cost test, we can end up with

|dist(v,T )−dist(w,T )|> 1 for two nodes v,w ∈ S with an edge {v,w} in the original graph since one of the arcs (v,w)
or (w,v) may be removed.

Lifting Inequalities based on Preprocessing Preprocessing can be used to lift some of the valid inequalities. We

demonstrate this on the family (HLink). First, observe that for any arc (v,w) with dist(v,T ) > 0, e.g., for all v ∈ S,

the lifting by adding yH
v , which has been done to obtain (HLink) from (HLink-) does not have any effect, since the

start/end-layer test removed the yH
v variable. However, due to the information gained by the dist-calculation, some

other variables yh
v could be added to the left-hand-side. Suppose we are given an arc (v,w) with dist(w,T )> dist(v,T ).

Let h∗(w) = H − dist(w,T ), i.e., h∗ is the last layer, where w can lie, define h∗(v) analogously. Thus, whenever, yh
v is

in the solution for some h ≥ h∗(w), the arc (v,w) cannot be taken. Following the same argumentation as for the lifting

of (HLink-) to (HLink) by adding yH
v , the lifting works by adding ∑

h∗(v)
k=h∗(w)

yk
v to the left-hand-side of (HLink-). The

resulting lifted inequalities (l-HLink) are denoted by lifted hop-link inequalities.

h∗(v)

∑
k=h∗(w)

yk
v + yh−1

v + xvw ≤ yv + yh
w, ∀(v,w) ∈ A,v 6= r,dist(r,v)+ 1 ≤ h ≤ h∗(v,w). (l-HLink)

where h∗(v,w) = min(h∗(v),h∗(w)). Recall that in case the interval for which the constraint would be defined is

empty, the start/end-layer test has removed the variable xvw. Note that the sum can only go to h∗(v), since the other yh
v

variables have been removed. Some caution must be taken, when the constraints (l-HLink) for a given arc only remain

for one layer due to preprocessing. In this case, the validity of the lifting does not hold anymore, since it is based

on the condition that at least two constraints (l-HLink) for an arc exist in the model. A (lifted) version of constraints

(HEnd-) denoted by lifted hop-end inequalities (see (l-HEnd)) needs to be added in this case.

h∗(v)

∑
k=h∗(w)

yk
v + xvw ≤ yv (l-HEnd)

Observe that for dist(w,T ) = 0, i.e., w ∈ T , the original version of (HLink) remains, since the sum boils down to

yH
v . Lifted versions of the families (g-HLink),(o2AHLink), (e2AHLink)follow immediately by using the same ideas,

i.e., the summation only needs to be over the range, where no yh
v ,y

h
w variables have been removed by preprocessing

(respectively in the separation of these inequalities, the removed variables can be viewed as fixed to zero , and are

always preferred to be ”taken” in the separated inequality). This latter view can also be applied to the separation of

inequalities (NACut) and (HFlowC).
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In addition to this lifting above, for all flow-balance inequalities (FlowC), where both the indegree and the outde-

gree of v is one, the inequality can be replaced by equality.

3.2 Primal Heuristic

Our primal heuristic is a modification of the improved version Prim-I [1] of the well-known Prim-based Steiner tree

heuristic [28]. The heuristic works similar to Prim’s minimum spanning tree algorithm [26], which starts with some

node (the root node r, in our case) and then greedily grows the solution tree Sol by adding the node v 6∈ Sol, with

minimum connection cost to Sol, i.e., the minimum cost edge e = argmin{ce=vs : (v,s) : v ∈ V \ Sol,s ∈ Sol}, until

all nodes are added. In the Steiner tree case, the solution Sol is grown by greedily adding terminal nodes t 6∈ Sol,

with minimum connection cost, the connection cost is now not the cost of a single edge, but the cost from Sol to the

terminal. When adding the chosen terminal to Sol, all the nodes on the paths are also added to Sol. We modified the

algorithm Prim-I for the STPRBH, by taking the hop-limit and the budget into account. This can be easily achieved,

since Prim-I works similar to Dijsktra’s shortest path algorithm: Whenever an arc is going to be considered as part

of a shortest path to a terminal, we check, if the hop-constraint is still fulfilled after adding the arc (note that for this

check, the value H − dist(v,T ) can be used, instead of the hop-limit), if not, we ignore the connection offered by the

arc. The budget-constraint is checked, whenever a terminal is added, if it would be violated, we of course do not

add the terminal. Moreover, if the LP-value ỹv of a terminal-variable v ∈ T is smaller than 0.001, we consider the

terminal as Steiner node in the algorithm. When using this algorithm as primal heuristic, we set the arc weights to

c̄a = ca(1− x̃a), where x̃a is the current LP-value of variable xa. We have also experimented to take the information

offered by LP-values ỹh
v into account for the arc weights, but in general this produced worse results. A simple local

search consisting of exchange of leaf nodes is done at the end as improvement procedure. The algorithm is also used

as starting heuristic, in this case, the original arc weights ca are used.

The primal heuristic is put in the heuristic callback of CPLEX, which gets called after each LP at the root

node and at the end of each node in the branch-and-bound tree. Moreover, we also call it in the lazy constraint

callback of CPLEX, this callback gets called, whenever CPLEX encounters an integer solution. Such integer so-

lutions can be produced by interal heuristics of CPLEX (which we explicitly turned on). In case that we do not add

all inequalities of NODEHOP in the beginning, but separate them on the fly, these solutions produced by CPLEX

may violate some of the not-yet added constraints, but can be repaired to feasible solutions (e.g., if not all inequalities

(l-HLink) are already added, CPLEX can set some yh to a wrong value). We thus aim to repair such a solution with a

call to our primal heuristic. Moreover, we also try a simpler repairing procedure, which just consists of setting the right

values for the yh variables (this of course will not work, if the heuristic solution violated the hop-constraint). If we are

successful in repairing, we store the solution and add it to CPLEX at the next call of the heuristic callback.

3.3 Further Enhancements

Branching Priorities The branching priorities are set as following: Each variable yv is assigned priority pv +1+H,

each variable yh
v gets priority H − h and arc variables are assigned priority zero. This setting is chosen, since we

conjecture that the most important decision in the STPRBH is to decide, which nodes, especially nodes with positive

revenue, are in the solution. Moreover, if a node v lies on a layer near the root node, it is likely to greater influence the

structure of the solution, than v lying on a layer near H.

Details of the Separation Routines The presented families of inequalities are all of a large size, some of them are

even of exponential size, thus it is not practicable to add (all of) them in the beginning of the branch-and-cut algorithm,

but separate them on-the-fly, when they are violated by an LP-solution. The separation of (the lifted versions of)

inequalities (g-HLink), (o2AHLink), (e2AHLink), (NACut) has already be discussed above, inequalities (l-HLink),

(FlowC) and (HFlowC) can also be separated in polynomial time by inspection.

Inequalities (CCuts) are separated using a max-flow algorithm [5], when the LP-relaxation is fractional, and using

a BFS when an integer solution is encountered. The max-flow separation is enhanced using minimum-cardinality

cuts, and nested cuts, moreover, we only add back-cuts, i.e., the incoming cut in the terminal-component, when the

separation gives back more than one potential cuts, see [21, 24] for more details. The terminals are permuted before
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separation, so that we do not always separate to the same terminal first, since using nested cuts changes the capacities

for subsequent separations. Moreover, also in the fractional case, we start a BFS on all arcs with LP-value one, and

only do the separation for terminals not reachable this way. Once we have finished the separation for a terminal, we

also start a similar BFS from this terminal, and all terminals found this way are also not considered for separation.

Additionally, before adding a cut, we check if the nodes outside the component, to which the cut is incoming, could

provide enough revenue to construct a better solution than the current incumbent. If not, we replace the y-variable on

the right-hand-side of the cut to add with one, since any optimal solution must take a node from this component.

4 Computational Results

The algorithm is implemented in C++ and compiled using g++4.9.2 with option O3. The framework OGDF [25] is

used for graph-data-structures and CPLEX 12.6 is used as ILP-solver. The dual simplex algorithm with steepest edge

pricing was chosen to solve the LP-relaxations. The computational results are obtained using a single core of an Intel

E5-2670v2 with 2.5GHz and 64GB RAM. We used a time limit of 1 000 seconds for our testruns.

4.1 Instances

We tested our algorithm on the instances provided at the 11th DIMACS implementation challenge on Steiner trees,

available at [8]. These instances have been proposed by [7] and [14]. Both are based on the graphs from the sets B and

C of the Steiner tree problem graphs of OR-lib [2]. The transformation into STPRBH-instances is done as follows:

• terminal nodes from the STP are used as profitable nodes by associating a random profit to it (see Table 1)

• the budget B is determined as ∑e∈E ce/b, where b is a given divisor

• a hop-limit H is given

Using this transformation, the following set of instances have been created in [7] and [14] (see Table 1).

Table 1: Instances from the DIMACS-homepage. Instances of the upper group have been proposed by [7], the remain-

ing ones by [14].

graphs |V | |E| |T | p b H number of inst.

B1-B18 50-100 63-200 9-50 [1-100] 5, 20 3, 6, 9, 12 144

C01-C05 500 625 5-250 [1,10], [1,100] 10, 30 5, 15, 25 60

C06-C10 500 1000 5-250 [1,10], [1,100] 20, 50 5, 15, 25 60

C11-C15 500 2500 5-250 [1,10], [1,100] 10, 100 5, 15, 25 60

C16-C20 500 12500 5-250 [1,10], [1,100] 100, 200 5, 15, 25 60

C16 500 12500 5 [1,10], [1,100] 10000 5, 15, 25 6

C17 500 12500 10 [1,10], [1,100] 5000 5, 15, 25 6

C18-C20 500 12500 83-250 [1,10], [1,100] 1000 5, 15, 25 18

Following [14], the instances can be grouped in five categories according to their difficulty.

• Group G1 contains all instances based on set B. They have been solved to optimality by exact algorithms [7, 27]

(some of them also by [22]). The size of this group is 144.

• Group G2 contain the instances based on C01-C05. They have also been solved to optimality by exact algorithms

[7, 27] (again, some of them also by [22]). The size of this group is 60.

The remaining three groups, based on larger (denser) graphs than G1 and G2, have only been tackled with heuristics

so far.

11



• Group G3 contains instances proposed by [7], for which the trivial bound (namely the sum ∑v∈T pv) is the

optimal solution value. For all G3 instances, heuristics from [7, 13, 14] were able to establish corresponding

feasible (and, thus, optimal) solutions connecting all terminals within the given budget. The size of this group

is 124.

• Group G4 contains the remaining instances proposed by [7]. For these instances, the optimal solutions are

unknown. The size of this group is 56.

• Group G5 contains the instances proposed by [14]. The optimal solutions for these instances are unknown. The

size of this group is 30.

4.2 Studying the Influence of the Valid Inequalities

In this section, we analyze the influence of the valid inequalities to the performance of the branch-and-cut approach.

As a testbed for this analysis, we focus on G5 which is the most difficult group of instances. We consider the value

of the LP-relaxation at the root node and the running time needed to obtain this value, as two main indicators for the

usefulness of proposed valid inequalities.

We compare the following settings:

• basic: This is our initial model that consists of constraints (Indegr), (NH-Link), (Root-Link), (Budget), (FlowC),

(GSEC2) and a constraint, that the root must have at least one outgoing arc (this is a special case of constraints

(CCuts)). Inequalities (l-HLink) and (l-HEnd) are separated on the fly by enumeration, since preliminary runs

showed that including all of them in the initial model slows down the performance.

• cut: This is basic enlarged by (CCuts) that are dynamically separated, and

• nacut: This is basic, enlarged by (CCuts) and (NACut), both of them being dynamically separated.

For these three settings, Figures 3 and 4 show performance profiles considering the LP-gaps and the running time

at the root node of the branch-and-cut tree, respectively. The LP-gaps are calculated with respect to the optimal/best

known solution.

It can be seen from Figure (3) that both (CCuts) and (NACut) improve the quality of LP-relaxation bounds. Com-

paring the running times needed to solve the root node relaxation, it turns out that there is a significant trade-off

between the separation time required by (NACut), and the quality of attained bounds. More precisely, for 7 out of 30

instances, calculation of the LP-bounds at the root node has been aborted due to the imposed time limit. Nevertheless,

the obtained bounds were always better than those achieved by basic and cut.

We have also investigated the influence of inequalities (g-HLink), (o2AHLink), (e2AHLink), (FlowC), (HFlowC)

in this manner, however, we do not report detailed results in the above figures for sake of readability. It turned out

that inequalities (g-HLink), (o2AHLink) and (e2AHLink) all help to improve the quality of LP-bounds. However,

the improvement is rather marginal, at a a very high cost of increasing the overall running time. On the other hand,

inequalities (FlowC) and (HFlowC), did not help in improving the LP-gaps.

In these experiments, we often observed a tailing-off effect, i.e., subsequent separation and resolving of LPs did

only marginally improve the gaps after a certain number of iterations. We thus implemented a tailing-off control for

the cut-loop. If ubprev − ubcur < ρ , where ubprev is the bound obtained from the previous LP-relaxation, ubcur the

bound obtained by the current one, and ρ is a given parameter, we skip the separation routines and resort to branching.

Figures 5 and 6 report the performance profiles concerning the obtained root relaxation gaps and associated running

times for basic, cut and nacut with ρ = 0.0001, respectively.

Compared to the settings without the tailing-off control the gaps do not change too much. On the other hand,

the time needed to solve the root relaxation drastically decreases. This may be explained by the fact that only the

y-variables appear in the objective function, and the continuous addition of violated inequalities mainly influences the

values of the x and yh variables (without significantly changing the values of y-variables). A more sophisticated cut-

loop scheme, like, e.g., in-out separation considered in [4, 12], could theoretically further improve the performance,

however, we did not investigate this further, since the current tailing-off control already worked very well within the

branch-and-cut algorithm, as it is demonstrated in the next section.

12



0 2 4 6 8 10 12

0
5

10
15

20
25

30

gap [%]

#
in

st
an

ce
s

basic
cut
nacut

Figure 3: Root relaxation gaps for three different settings.

4.3 Main Results

For our main runs, setting nacut was chosen, with the tailing-off parameter ρ set to 0.0001. The global upper bound

of the branch-and-cut tree is taken as ubprev for the tailing-off test. Note that (NACut) are added to CPLEX using the

purgeable option—this option allows CPLEX to remove constraints, if it deems them as not helpful. The following

general purpose cuts of CPLEX have been set to one (moderate generation of cuts): fractional, zero-half, cover,

all the other cuts are left at the default parameter.

In this section we concentrate on 86 instances of groups G4 and G5, for which the optimal solution values were

unknown prior to this work. The results for group G4 are given in Table 2 and for group G5 in Table 3. Tables for

groups G2 and G3 are given in the appendix (Tables 4 to 7). Note that our approach solves all instances from G2 and

G3 to optimality, most of them already at the root node. Only a handful of instances from group G2 requires more

than 10 seconds of computing time (but not more than 43 seconds), while for G3, the longest computing time is below

3 seconds.

Each table reports the obtained solution value (sol. val), which is shown in bold, if we have been able to prove

optimality. The obtained global upper bound (UB) is also given (note that for the given instances, all costs/prizes are

integers, thus we used UB− sol. val < 1 as stopping criterion). In addition, the gap after the timelimit is provided

[Gap%], as well as the root relaxation gap [RGap%]. These gaps are given with respect to the best found solution

value. If we have UB− sol. val < 1, opt is written instead. Note that this does not mean that optimality is proven at

the root node, since the optimal solution may have not been found yet. On the other hand, CPLEX in some cases is able

to use problem-specific information to prove optimality even if the root relaxation gap is greater than one. Moreover,

due to repeated presolving and potential variable fixing and general purpose cuts of CPLEX, the root relaxation gaps

can be different to the results reported in the previous section, where we looked at pure LPs. The time (t[s]) needed to

prove optimality is also reported. If we were not able to prove optimality within our time limit of 1 000 seconds, the

corresponding entry in the table is “-”. The entry tbest[s] contains the time when the best solution has been found and

nodes gives the number of nodes in the branch-and-cut tree.
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Figure 4: Time to solve the root relaxation for three different settings.

For instance group G4, we observe that only four of the 56 instances remain unsolved. Interestingly, these instances

all have a hop-limit of 15 and a budget-divisor of 20. About half of the instances from this group can be solved within

the root node, and (aside from the unsolved ones) only five instances need more than 60 seconds of computing time.

For instance group G5, also four instances remain unsolved — in contrast to group G4, three of the unsolved

instances now have a hop-limit of 5, and only one has a hop-limit of 15. Again, about half of the instances from the

group can be solved to optimality at the root node and (aside from the unsolved ones) only four instances need more

than 100 seconds.

To summarize, out of 86 previously unsolved instances, only eight remain. As mentioned before, larger hop-limits

are one of main bottlenecks for the exact methods considered in previous literature. The obtained results clearly

demonstrate that our new approach deals very well with larger hop-limit, as we have been able to solve all instances

from literature with a (largest considered) hop-limit of 25 to proven optimality.
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Figure 5: Root relaxation gaps for three different settings with tailing-off control.
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Figure 6: Time (in seconds) needed to solve the root relaxation for three different settings with tailing-off control.
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Table 2: Results for group G4 of previously unsolved instances

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C08-10 20 5 230 230.00 opt opt 0.04 0.03 0

C08-10 50 5 116 116.00 opt opt 0.08 0.06 0

C08-10 20 15 331 331.00 opt 0.38 18.5 18.14 19

C08-10 50 15 171 171.00 opt 0.95 17.05 16.65 24

C08-10 20 25 332 332.00 opt opt 3.46 2.89 0

C08-10 50 25 172 172.00 opt opt 5.51 4.37 0

C08-100 20 5 2380 2380.00 opt opt 0.06 0.02 0

C08-100 50 5 1216 1216.00 opt 0.21 0.13 0.03 2

C08-100 20 15 3431 3447.09 0.47 0.75 - 15.05 301

C08-100 50 15 1776 1776.00 opt 0.77 31.35 18.21 62

C08-100 20 25 3455 3455.00 opt 0.05 17.93 4.01 5

C08-100 50 25 1792 1792.00 opt 0.31 23.8 3.13 12

C09-10 20 5 304 304.00 opt opt 0.71 0.21 0

C09-10 50 5 149 149.00 opt 0.67 0.68 0.17 2

C09-10 20 15 381 384.04 0.8 1.05 - 38.53 258

C09-10 50 15 185 185.00 opt 1.44 21.26 9.78 35

C09-10 20 25 385 385.00 opt opt 11.07 10.37 2

C09-10 50 25 187 187.00 opt opt 6.41 6.40 0

C09-100 20 5 3133 3133.00 opt opt 0.59 0.19 0

C09-100 50 5 1563 1563.00 opt opt 0.33 0.14 1

C09-100 20 15 3945 3945.00 opt 0.75 144.26 24.50 114

C09-100 50 15 1906 1906.00 opt 1.54 60.03 24.59 132

C09-100 20 25 3974 3974.00 opt opt 15.54 10.91 1

C09-100 50 25 1933 1933.00 opt opt 12.38 3.19 0

C10-10 20 5 391 391.00 opt opt 0.1 0.08 0

C10-10 50 5 185 185.00 opt opt 0.36 0.11 0

C10-10 20 15 573 580.59 1.32 1.51 - 427.87 123

C10-10 50 15 257 257.00 opt opt 5.07 0.89 0

C10-10 20 25 580 580.00 opt 0.28 204.05 200.85 43

C10-10 50 25 258 258.00 opt opt 5.26 4.07 0

C10-100 20 5 4096 4096.00 opt opt 0.11 0.08 0

C10-100 50 5 1940 1940.00 opt 0.44 0.4 0.09 7

C10-100 20 15 5906 5983.91 1.32 1.46 - 92.20 116

C10-100 50 15 2657 2657.00 opt 0.53 22.31 4.77 14

C10-100 20 25 5972 5972.00 opt 0.36 206.1 25.59 193

C10-100 50 25 2683 2683.00 opt opt 6.13 3.11 0

C13-10 100 5 257 257.00 opt opt 5.35 5.35 0

C13-10 100 15 319 319.00 opt 0.63 21.62 17.47 16

C13-10 100 25 319 319.00 opt 0.63 57.38 43.81 22

C13-100 100 5 2653 2653.00 opt opt 6.87 6.31 0

C13-100 100 15 3312 3312.00 opt 0.14 18.21 13.47 5

C13-100 100 25 3317 3317.00 opt opt 33.43 33.42 0

C14-10 100 5 373 373.00 opt opt 3.07 2.58 0

C14-10 100 25 404 404.00 opt opt 7.15 7.14 0

C14-100 100 5 3887 3887.00 opt opt 5.88 3.56 0

C14-100 20 15 6566 6566.00 opt opt 0.41 0.05 0

C14-100 100 15 4205 4205.00 opt opt 1.26 1.26 0

C14-100 100 25 4205 4205.00 opt opt 4.31 4.30 0

C15-10 20 5 1248 1248.00 opt opt 45.71 45.61 27

C15-10 100 5 480 480.00 opt opt 3.5 3.33 0

C15-10 100 15 568 568.00 opt 0.35 63.19 61.94 52

C15-10 100 25 569 569.00 opt opt 12.93 4.36 0

C15-100 20 5 12533 12533.00 opt opt 35.42 32.21 17

C15-100 100 5 5000 5000.00 opt opt 2.62 2.19 0

C15-100 100 15 5889 5889.00 opt 0.32 223.32 171.03 275

C15-100 100 25 5905 5905.00 opt 0.01 55.51 28.54 3
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Table 3: Results for group G5 of previously unsolved instances

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C16-10 10000 5 19 19.00 opt opt 5.27 0.16 0

C16-10 10000 15 19 19.00 opt opt 7.68 7.67 0

C16-10 10000 25 19 19.00 opt opt 17.39 0.19 0

C16-100 10000 5 203 203.00 opt opt 5.4 0.17 0

C16-100 10000 15 203 203.00 opt opt 8.14 8.13 0

C16-100 10000 25 203 203.00 opt opt 18.17 0.19 0

C17-10 5000 5 47 47.00 opt 6.38 11.71 5.72 5

C17-10 5000 15 50 50.00 opt opt 9.5 7.27 0

C17-10 5000 25 50 50.00 opt opt 17.97 13.43 0

C17-100 5000 5 481 481.00 opt 3.33 22.58 0.15 7

C17-100 5000 15 513 513.00 opt opt 13.66 7.16 0

C17-100 5000 25 513 513.00 opt opt 22.17 16.08 0

C18-10 1000 5 318 322.54 1.43 1.69 - 123.47 51

C18-10 1000 15 341 341.00 opt 0.41 38.98 35.78 11

C18-10 1000 25 341 341.00 opt 0.37 89.76 63.70 7

C18-100 1000 5 3320 3366.71 1.41 1.5 - 73.77 50

C18-100 1000 15 3552 3552.00 opt 0.49 268.94 65.22 106

C18-100 1000 25 3557 3557.00 opt 0.25 244.38 232.40 16

C19-10 1000 5 404 404.00 opt opt 49.76 43.32 0

C19-10 1000 15 428 428.00 opt opt 12.73 7.75 0

C19-10 1000 25 428 428.00 opt 0.04 96.05 65.21 1

C19-100 1000 5 4179 4179.00 opt 0.32 81.67 31.00 25

C19-100 1000 15 4435 4435.00 opt opt 25.5 20.42 0

C19-100 1000 25 4435 4435.00 opt 0.03 61.65 57.37 2

C20-10 1000 5 460 460.00 opt 0.76 305.45 71.42 37

C20-10 1000 15 502 506.20 0.84 0.9 - 50.21 102

C20-10 1000 25 506 506.00 opt opt 33.45 25.32 0

C20-100 1000 5 4768 4768.00 opt 0.65 537.88 347.55 50

C20-100 1000 15 5222 5250.20 0.54 0.6 - 604.62 131

C20-100 1000 25 5256 5256.00 opt opt 51.58 51.56 0
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5 Conclusion and Outlook

The power of layered graphs has been recently demonstrated for many problems, including hop- and diameter-

constrained spanning trees [19], hop-constrained connected facility location [23], or for problems that involve more

general hop- or diameter-constraints (see, e.g., [16], [17]).

In this paper, we propose a new extended formulation based on a layered graph for hop-constrained span-

ning/Steiner tree problems. Our formulation follows a “thinning out” idea proposed in [10, 11]: instead of using

variables associated with arcs of the layered graph, our new model projects them out and relies only on variables as-

sociated to the nodes of the layered graph. Thus, the resulting MIP formulation is considerably smaller than the ones

considered in previous literature, which allows us to tackle instances based on larger graphs and/or hop-limits.

We apply the new model to solve the Steiner tree problem with revenues, budget and hop-constraints (STPRBH),

which has been part of the DIMACS challenge [8]. A branch-and-cut approach based on our model allows us to

significantly improve results from the available literature. Previous to our study, 86 out of 414 available instances

have been unsolved. We prove the optimality for all except eight out of these 414 instances, often within seconds. For

these remaining eight instances, we improve the best known solutions.

We consider the following topics as important directions for the future research:

• First, considering a theoretical comparison with other models for hop-constrained problems. A (potential)

connection of our model to a disaggregation of MTZ-constraints (that have been recently revisited in [3]) is

particularly interesting. Besides, it would be important to conduct a theoretical and computational comparison

of the node-based versus the arc-based layered graph approach for the hop-constrained spanning/Steiner tree

problem.

• Second, it is worth mentioning that diameter-constrained spanning/Steiner tree problems can also be solved

using our new modeling approach. It remains an open question how the proposed model relates with the recent

formulation derived in the natural space of edge variables (see [18]), and with the arc-based layered graph

formulation studied in [19].

• Finally, we believe that broader applications involving hop- and diameter-constrained trees (see above), espe-

cially problems with large-scale instances, might significantly benefit from the proposed “thinning out” ap-

proach.
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Appendix: Detailed Results for previously solved instances based on set C

Table 4: Results for group G2 of instances previously solved to optimality by other exact approaches

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C01-10 10 5 8 8.00 opt opt 0.01 0.00 0

C01-10 30 5 8 8.00 opt opt 0.01 0.00 0

C01-10 10 15 27 27.00 opt opt 0.07 0.02 0

C01-10 30 15 27 27.00 opt opt 0.07 0.02 0

C01-10 10 25 27 27.00 opt opt 0.14 0.02 0

C01-10 30 25 27 27.00 opt opt 0.15 0.03 0

C01-100 10 5 71 71.00 opt opt 0.01 0.00 0

C01-100 30 5 71 71.00 opt opt 0.01 0.01 0

C01-100 10 15 274 274.00 opt opt 0.06 0.01 0

C01-100 30 15 274 274.00 opt opt 0.07 0.02 0

C01-100 10 25 274 274.00 opt opt 0.15 0.02 0

C01-100 30 25 274 274.00 opt opt 0.15 0.03 0

C02-10 10 5 32 32.00 opt opt 0.01 0.00 0

C02-10 30 5 32 32.00 opt opt 0.01 0.00 0

C02-10 10 15 59 59.00 opt opt 0.08 0.02 0

C02-10 30 15 53 53.00 opt opt 0.47 0.47 0

C02-10 10 25 59 59.00 opt opt 0.15 0.02 0

C02-10 30 25 53 53.00 opt opt 0.84 0.84 0

C02-100 10 5 328 328.00 opt opt 0.03 0.02 0

C02-100 30 5 328 328.00 opt opt 0.01 0.00 0

C02-100 10 15 604 604.00 opt opt 0.09 0.02 0

C02-100 30 15 546 546.00 opt opt 0.51 0.51 0

C02-100 10 25 604 604.00 opt opt 0.15 0.02 0

C02-100 30 25 546 546.00 opt opt 0.80 0.80 0

C03-10 10 5 151 151.00 opt opt 0.01 0.01 0

C03-10 30 5 95 95.00 opt opt 0.02 0.01 0

C03-10 10 15 289 289.00 opt 0.27 4.43 4.28 15

C03-10 30 15 129 129.00 opt opt 0.82 0.31 0

C03-10 10 25 289 289.00 opt opt 3.12 1.70 0

C03-10 30 25 129 129.00 opt opt 1.90 1.10 0

C03-100 10 5 1519 1519.00 opt opt 0.01 0.00 0

C03-100 30 5 968 968.00 opt 0.91 0.08 0.02 18

C03-100 10 15 2971 2971.00 opt 0.39 22.17 3.88 117

C03-100 30 15 1343 1343.00 opt opt 0.89 0.16 0

C03-100 10 25 2979 2979.00 opt 0.34 21.77 3.08 62

C03-100 30 25 1343 1343.00 opt opt 3.45 0.38 0

C04-10 10 5 115 115.00 opt opt 0.01 0.00 0

C04-10 30 5 84 84.00 opt opt 0.01 0.01 0

C04-10 10 15 336 336.00 opt 1.51 16.09 10.14 51

C04-10 30 15 134 134.00 opt 2.13 3.00 2.86 7

C04-10 10 25 341 341.00 opt opt 3.06 1.96 0

C04-10 30 25 136 136.00 opt opt 3.09 1.96 0

C04-100 10 5 1148 1148.00 opt opt 0.01 0.01 0

C04-100 30 5 854 854.00 opt opt 0.01 0.01 0

C04-100 10 15 3458 3458.00 opt 0.55 26.88 16.24 111

C04-100 30 15 1380 1380.00 opt 1.42 7.21 3.13 51

C04-100 10 25 3504 3504.00 opt opt 6.55 0.42 0

C04-100 30 25 1396 1396.00 opt 0.24 12.61 11.65 4

C05-10 10 5 258 258.00 opt opt 0.01 0.01 0

C05-10 30 5 154 154.00 opt opt 0.01 0.01 0

C05-10 10 15 494 494.00 opt 0.53 17.07 17.03 27

C05-10 30 15 182 182.00 opt 1.4 9.26 8.20 18

C05-10 10 25 495 495.00 opt 0.37 22.70 21.01 18

C05-10 30 25 183 183.00 opt 0.84 7.71 6.22 2

C05-100 10 5 2600 2600.00 opt opt 0.01 0.00 0

C05-100 30 5 1584 1584.00 opt opt 0.01 0.00 0

C05-100 10 15 5032 5032.00 opt 0.47 20.07 16.96 37

C05-100 30 15 1857 1857.00 opt 0.91 7.50 6.14 35

C05-100 10 25 5044 5044.00 opt 0.23 28.86 27.49 45

C05-100 30 25 1860 1860.00 opt 0.76 16.37 12.61 34
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Table 5: Results for group G3 of instances previously solved to optimality by heuristics, 1/3

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C06-10 20 5 27 27.00 opt opt 0.01 0.01 0

C06-10 50 5 27 27.00 opt opt 0.01 0.01 0

C06-10 20 15 27 27.00 opt opt 0.16 0.03 0

C06-10 50 15 27 27.00 opt opt 0.14 0.03 0

C06-10 20 25 27 27.00 opt opt 0.33 0.04 0

C06-10 50 25 27 27.00 opt opt 0.39 0.04 0

C06-100 20 5 274 274.00 opt opt 0.01 0.01 0

C06-100 50 5 274 274.00 opt opt 0.01 0.01 0

C06-100 20 15 274 274.00 opt opt 0.16 0.03 0

C06-100 50 15 274 274.00 opt opt 0.17 0.04 0

C06-100 20 25 274 274.00 opt opt 0.34 0.04 0

C06-100 50 25 274 274.00 opt opt 0.38 0.04 0

C07-10 20 5 49 49.00 opt opt 0.01 0.01 0

C07-10 50 5 49 49.00 opt opt 0.01 0.01 0

C07-10 20 15 59 59.00 opt opt 0.18 0.03 0

C07-10 50 15 59 59.00 opt opt 0.18 0.03 0

C07-10 20 25 59 59.00 opt opt 0.40 0.04 0

C07-10 50 25 59 59.00 opt opt 0.40 0.04 0

C07-100 20 5 503 503.00 opt opt 0.01 0.01 0

C07-100 50 5 503 503.00 opt opt 0.01 0.01 0

C07-100 20 15 604 604.00 opt opt 0.15 0.03 0

C07-100 50 15 604 604.00 opt opt 0.17 0.03 0

C07-100 20 25 604 604.00 opt opt 0.34 0.04 0

C07-100 50 25 604 604.00 opt opt 0.39 0.04 0

C11-10 20 5 27 27.00 opt opt 0.04 0.02 0

C11-10 100 5 27 27.00 opt opt 0.04 0.02 0

C11-10 20 15 27 27.00 opt opt 0.37 0.05 0

C11-10 100 15 27 27.00 opt opt 0.35 0.05 0

C11-10 20 25 27 27.00 opt opt 0.69 0.06 0

C11-10 100 25 27 27.00 opt opt 0.67 0.06 0

C11-100 20 5 274 274.00 opt opt 0.04 0.01 0

C11-100 100 5 274 274.00 opt opt 0.04 0.02 0

C11-100 20 15 274 274.00 opt opt 0.33 0.05 0

C11-100 100 15 274 274.00 opt opt 0.36 0.06 0

C11-100 20 25 274 274.00 opt opt 0.65 0.06 0

C11-100 100 25 274 274.00 opt opt 0.65 0.06 0

C12-10 20 5 59 59.00 opt opt 0.05 0.02 0

C12-10 100 5 59 59.00 opt opt 0.05 0.02 0

C12-10 20 15 59 59.00 opt opt 0.34 0.05 0

C12-10 100 15 59 59.00 opt opt 0.32 0.04 0

C12-10 20 25 59 59.00 opt opt 0.63 0.06 0

C12-10 100 25 59 59.00 opt opt 0.65 0.06 0

C12-100 20 5 604 604.00 opt opt 0.05 0.02 0

C12-100 100 5 604 604.00 opt opt 0.06 0.02 0

C12-100 20 15 604 604.00 opt opt 0.37 0.05 0

C12-100 100 15 604 604.00 opt opt 0.37 0.05 0

C12-100 20 25 604 604.00 opt opt 0.71 0.07 0

C12-100 100 25 604 604.00 opt opt 0.71 0.07 0
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Table 6: Results for group G3 of instances previously solved to optimality by heuristics, 2/3

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C13-10 20 5 439 439.00 opt opt 0.10 0.03 0

C13-10 20 15 439 439.00 opt opt 0.38 0.05 0

C13-10 20 25 439 439.00 opt opt 0.67 0.06 0

C13-100 20 5 4463 4463.00 opt opt 0.11 0.03 0

C13-100 20 15 4463 4463.00 opt opt 0.34 0.04 0

C13-100 20 25 4463 4463.00 opt opt 0.72 0.06 0

C14-10 20 5 648 648.00 opt opt 0.29 0.29 0

C14-10 20 15 648 648.00 opt opt 0.39 0.05 0

C14-10 100 15 404 404.00 opt opt 4.64 2.39 0

C14-10 20 25 648 648.00 opt opt 0.67 0.06 0

C14-100 20 5 6566 6566.00 opt opt 0.29 0.28 0

C14-100 20 25 6566 6566.00 opt opt 0.68 0.06 0

C15-10 20 15 1248 1248.00 opt opt 0.43 0.06 0

C15-10 20 25 1248 1248.00 opt opt 0.78 0.07 0

C15-100 20 15 12533 12533.00 opt opt 0.39 0.06 0

C15-100 20 25 12533 12533.00 opt opt 0.75 0.07 0

C16-10 100 5 27 27.00 opt opt 0.68 0.14 0

C16-10 200 5 27 27.00 opt opt 0.70 0.15 0

C16-10 100 15 27 27.00 opt opt 1.29 0.18 0

C16-10 200 15 27 27.00 opt opt 1.32 0.16 0

C16-10 100 25 27 27.00 opt opt 2.08 0.18 0

C16-10 200 25 27 27.00 opt opt 2.05 0.17 0

C16-100 100 5 274 274.00 opt opt 0.75 0.16 0

C16-100 200 5 274 274.00 opt opt 0.71 0.15 0

C16-100 100 15 274 274.00 opt opt 1.45 0.19 0

C16-100 200 15 274 274.00 opt opt 1.34 0.16 0

C16-100 100 25 274 274.00 opt opt 2.08 0.18 0

C16-100 200 25 274 274.00 opt opt 2.14 0.19 0

C17-10 100 5 59 59.00 opt opt 0.75 0.15 0

C17-10 200 5 59 59.00 opt opt 0.72 0.17 0

C17-10 100 15 59 59.00 opt opt 1.27 0.15 0

C17-10 200 15 59 59.00 opt opt 1.27 0.15 0

C17-10 100 25 59 59.00 opt opt 1.95 0.16 0

C17-10 200 25 59 59.00 opt opt 2.06 0.17 0

C17-100 100 5 604 604.00 opt opt 0.71 0.16 0

C17-100 200 5 604 604.00 opt opt 0.73 0.15 0

C17-100 100 15 604 604.00 opt opt 1.32 0.16 0

C17-100 200 15 604 604.00 opt opt 1.39 0.17 0

C17-100 100 25 604 604.00 opt opt 2.19 0.19 0

C17-100 200 25 604 604.00 opt opt 1.96 0.16 0
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Table 7: Results for group G3 of instances previously solved to optimality by heuristics, 3/3

inst budget hop sol. val UB Gap [%] RGap [%] t [s] tbest [s] nodes

C18-10 100 5 439 439.00 opt opt 0.83 0.16 0

C18-10 200 5 439 439.00 opt opt 0.79 0.15 0

C18-10 100 15 439 439.00 opt opt 1.37 0.16 0

C18-10 200 15 439 439.00 opt opt 1.38 0.20 0

C18-10 100 25 439 439.00 opt opt 2.15 0.17 0

C18-10 200 25 439 439.00 opt opt 2.19 0.19 0

C18-100 100 5 4463 4463.00 opt opt 0.71 0.14 0

C18-100 200 5 4463 4463.00 opt opt 0.75 0.14 0

C18-100 100 15 4463 4463.00 opt opt 1.34 0.15 0

C18-100 200 15 4463 4463.00 opt opt 1.37 0.15 0

C18-100 100 25 4463 4463.00 opt opt 2.17 0.18 0

C18-100 200 25 4463 4463.00 opt opt 2.23 0.19 0

C19-10 100 5 648 648.00 opt opt 0.72 0.14 0

C19-10 200 5 648 648.00 opt opt 0.83 0.16 0

C19-10 100 15 648 648.00 opt opt 1.39 0.16 0

C19-10 200 15 648 648.00 opt opt 1.39 0.16 0

C19-10 100 25 648 648.00 opt opt 2.21 0.19 0

C19-10 200 25 648 648.00 opt opt 2.13 0.17 0

C19-100 100 5 6566 6566.00 opt opt 0.73 0.15 0

C19-100 200 5 6566 6566.00 opt opt 0.79 0.15 0

C19-100 100 15 6566 6566.00 opt opt 1.42 0.16 0

C19-100 200 15 6566 6566.00 opt opt 1.45 0.18 0

C19-100 100 25 6566 6566.00 opt opt 2.30 0.18 0

C19-100 200 25 6566 6566.00 opt opt 2.07 0.16 0

C20-10 100 5 1248 1248.00 opt opt 0.78 0.15 0

C20-10 200 5 1248 1248.00 opt opt 0.76 0.15 0

C20-10 100 15 1248 1248.00 opt opt 1.39 0.17 0

C20-10 200 15 1248 1248.00 opt opt 1.38 0.16 0

C20-10 100 25 1248 1248.00 opt opt 2.24 0.20 0

C20-10 200 25 1248 1248.00 opt opt 2.03 0.16 0

C20-100 100 5 12533 12533.00 opt opt 0.83 0.16 0

C20-100 200 5 12533 12533.00 opt opt 0.91 0.18 0

C20-100 100 15 12533 12533.00 opt opt 1.51 0.18 0

C20-100 200 15 12533 12533.00 opt opt 1.56 0.20 0

C20-100 100 25 12533 12533.00 opt opt 2.31 0.20 0

C20-100 200 25 12533 12533.00 opt opt 2.32 0.20 0
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