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Abstract

Problems aiming at finding budget constrained optimal upgrading schemes to improve net-
work performance have received attention over the last two decades. In their general setting,
these problems consist of designing a network and, simultaneously, allocating (limited) upgrad-
ing resources in order to enhance the performance of the designed network.

In this paper we address two particular optimal upgrading network design problems; in both
cases, the sought layout corresponds to a spanning tree of the input network and upgrading
decisions can be taken on nodes. We design Mixed Integer Programming-based algorithmic
schemes to solve the considered problems: Lagrangian relaxation approaches and branch-and-
cut algorithms. Along with the designed algorithms, different enhancements, including valid
inequalities, primal heuristic and variable fixing procedures, are proposed.

Using two set of instances, we experimentally compare the designed algorithms and explore
the benefits of the devised enhancements. The results show that the proposed approaches are
effective for solving to optimality most of the instances in the testbed, or manage to obtain
solutions and bounds giving very small optimality gaps. Besides, the proposed enhancements
turn out to be beneficial for improving the performance of the algorithms.

1. Introduction, Motivation and Problem Definition

Different models for finding budget constrained optimal upgrading schemes to improve network
performance have been proposed over the last two decades. Roughly speaking, these problems
consist of designing a network and, simultaneously, allocating (limited) upgrading resources in
order to enhance the network’ performance (e.g., its cost efficiency, its connectivity, its stability,
etc.). These type of problems, which can be generally referred to as budget constrained network
upgrading problems [Krumke et al., 1999], can be found in several decision making contexts. For
instance in a multicast communication setting, a backbone server broadcasts a signal to many
subscribers; the layout of such communication network should be such that delays between the
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server and all subscribers must be minimal or bounded. In such a problem, the decision maker
seeks for an arrangement of nodes, technologies, and connections such that a positive function
of node delays is minimized or it fulfills a Quality-of-Service (QoS) requirement [Álvarez-Miranda
et al., 2016]. Another application appears in electric power grids, where transformers and other
costly appliances can be located along the network in order improve its performance by reducing
the risks of shortages or frequency instability [Costa et al., 2011].

In this paper we address two particular optimal upgrading network design problems; in both
cases, the sought layout corresponds to a spanning tree of the input network and upgrading deci-
sions can be taken on nodes. These problems were originally proposed in [Krumke et al., 1999] and
motivated by a telecommunication design problematic. The authors provided approximation algo-
rithms and hardness results for the two variants. Before formally defining the addressed problems,
we first present the considered upgrading model.

Node-based Upgrading Model Let G = (V,E) be an undirected graph, where V is the set of
nodes and E is the set of edges. For each edge e ∈ E, we are given three integers d0e ≥ d1e ≥ d2e ≥ 0;
the value dle (the l-upgrade of edge e) represents the length or delay of e if exactly l of its endpoints
are upgraded. This means that upgrading a node i ∈ V reduces the delay of all the edges that are
incident to it. Additionally, for each node i ∈ V , we are given an upgrade cost ci ≥ 0 which must
be paid in case the corresponding node is upgraded. Edge delays as well as edge upgrading costs
are encoded by vectors d and c, respectively.

As pointed out in [Krumke et al., 1999], this model is a generalization of the node upgrade
model introduced by [Paik and Sahni, 1995], in which d1e and d2e where such that d1e = αd0e and
d2e = α2d0e, for all e ∈ E, for a given α ∈ (0, 1).

We can now present the formal definition of the two problems addressed in this paper.

The Minimum Delay Upgrading MST Problem Let T be the set of all spanning trees on
G. Likewise, let an upgrading scheme S to be encoded by a subset VS ⊆ V , so that all nodes in VS
are upgraded, while the remaining ones are not. An upgrading scheme S is feasible if the cost of
the upgrading actions induced by S,

C(S) =
∑
i∈VS

ci,

does not exceed a given upgrading budget B ≥ 0. Let S denote the family of all upgrading schemes.
Let D(T, S) be the total delay of the spanning tree T ∈ T under upgrading scheme S ∈ S. Using
this notation, we can formulate the minimum delay upgrading MST problem (MDUMST) as

(T ∗, S∗) = arg min {D(T, S) | C(S) ≤ B, S ∈ S and T ∈ T} ; (MDUMST)

in other words, we look for a pair (T ∗, S∗) that minimizes total delay of the corresponding minimum
spanning tree. In [Krumke et al., 1999] the authors provided an (1, (1+ε)2O(log|V |))-approximation
algorithm. In a bicriteria optimization context, this means that the algorithm (i) either produces
a solution for which the value C(S) is most (1 + ε)2O(log|V |) times the specified budget B, and
the value of D(T, S) is the minimum value of a solution that satisfies the budget constraint; or (ii)
correctly provides the information that there is no subgraph which satisfies the budget constraint
C(S) ≤ B.

The Minimum Cost Upgrading MST Problem Let W ≥ 0 be a maximum total delay
bound; we seek for a spanning tree T ∈ T and an upgrading scheme S ∈ S, so that the total
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upgrading cost is minimized while the total delay is at most W , i.e.,

(T ∗, S∗) = arg min {C(S) | D(T, S) ≤W, S ∈ S and T ∈ T} . (MCUMST)

Similar as for the MDUMST, an ((1 + ε)2O(log|V |), 1)-approximation algorithm was provided
in [Krumke et al., 1999].

Previous Work One of the very first references to network upgrading problems based on node-
upgrades can be found in [Paik and Sahni, 1995]. In that paper, five variants of network upgrading
problems are studied. For these variants delays can be caused both along edges and across nodes,
so the upgrade decisions involve both components. The computational complexity of the discussed
problems is provided, showing that they range from polynomially solvable problems up to NP-hard
problems.

In [Ibaraki et al., 2005], the authors study a problem in which the goal is to find a budget
constrained node-upgrading decision so as to minimize the eccentricity, i.e., the largest distance
from one designated node to the other nodes of a tree. Hardness results as well approximation
algorithms are provided for two different node-upgrading models.

Complementary, problems where the designed network corresponds to a path have been also
considered before in the literature. In [Dilkina et al., 2011] the upgrading shortest path problem
(USP) is introduced. The problem is presented in the context of improving landscape connectivity
within natural reserves. Note that in the USP, the shortest-path cost is based on costs of nodes in
the path, which can be improved by upgrading, i.e., the node-upgrading model is different to the
model considered in this work. A Mixed Integer Programming (MIP) model is provided as well as
a basic greedy heuristic. Computational results on a set of randomly generated instances show that
the proposed heuristic is competitive when compared to the direct resolution of the proposed MIP
model in a commercial solver. Later on, in [Álvarez-Miranda et al., 2016], both a branch-and-cut
(B&C) and a Benders decomposition are designed for the USP. Numerical results show that the
designed algorithmic strategies outperform those proposed in [Dilkina et al., 2011] on equivalent
benchmark instances.

It is interesting to note that network upgrading problems can be seen as two-player cooperative
games; one of the players wants to efficiently allocate resources for upgrading the network (e.g., S)
so that the performance of the decision of a second player (e.g., T ) is enhanced. This differs from
the network interdiction problems [see, e.g. Hemmecke et al., 2003, Israeli and Wood, 2002]. In
these problems, one of the players aims at efficiently allocating resources in order to downgrade or
interdict the network, which leads to worsening the decision of a second player.

Our Contribution and Paper Outline In this paper, we propose MIP models for both
MDUMST and MCUMST and design specially tailored Lagrangian relaxations and B&C approaches
to solve the proposed formulations. We also present different enhancements for the devised ap-
proaches, including valid inequalities, primal heuristics and variable fixing procedures.

The proposed algorithmic schemes are shown to be effective for solving to optimality most of the
instances in the testbed, or manage to obtain solutions and bounds yielding very small optimality
gaps. Besides, the proposed enhancements turn out to be beneficial for improving the performance
of the algorithms. The Lagrangian relaxation approaches allow us to tackle even larger instances,
whose sizes represent a burden for the B&C algorithm.

The paper is organized as follows. In Section 2 we present MIP formulations for both problems
and Lagrangian approaches for providing both upper and lower bounds. Enhancements for the ap-
proaches are also discussed in the Section. Alternative MIP formulations based on a transformation

3



of the input graph and B&C approaches to tackle them are presented in Section 3. In Section 4
we report computational results obtained when solving, with the two proposed approaches, two
sets of instances; one comprised by randomly generated instances, and a second one of instances
adapted from the well-knwon SteinLib dataset. Conclusions and paths for future work are discussed
in Section 5.

2. Lagrangian Relaxation Approaches

For a combinatorial optimization CO problem, which can be formulated as MIP with a set of easy
constraints Ax ≤ b and complicating constraints Hx ≤ h, i.e.,

CO : z∗ = min
{
fTx | Ax ≤ b, Hx ≤ h and x ∈ Zn

}
, (CO)

Lagrangian relaxation is an attractive way to solve it [see, e.g., Wolsey, 1998]. Easy and complicating
constraints means, that the problem CO without constraints Hx ≤ h is easy to solve, e.g., using a
combinatorial algorithm. Let λ ≥ 0 be a vector of dual multipliers for Hx ≤ h. Using this vector,
the Lagrangian relaxation of (CO) for a given λ is defined as

zR(λ) = min
{(

fT + λTH
)
x− λTh | Ax ≤ b and x ∈ Zn

}
; (LR)

this relaxation, zR(λ), gives a lower bound for the objective of (CO), i.e., z∗ ≥ zR(λ), and to find
the best lower bound, a maximization problem in λ, called the Lagrangian dual problem, is solved.
We use a subgradient method to solve this maximization problem; details of it are discussed at the
end of this section. Within the subgradient method, the Lagrangian relaxation (LR) gets solved
for different multipliers λ.

In the following, we provide a formulation for MDUMST, in which the Lagrangian relaxation
decomposes into a minimum spanning tree problem and a knapsack problem; and a formulation of
MCUMST, in which the Lagrangian relaxation decomposes into a minimum spanning tree problem
and a problem that can be solved by inspection. Primal heuristics and variable fixing based on
Lagrangian prices are also described in this section.

2.1 MIP Formulations for the MDUMST and MCUMST

Let y ∈ {0, 1}|V | be a vector of binary variables so that yi = 1 if node i ∈ V is upgraded, and yi = 0
otherwise; therefore, a realization of vector y encodes an upgrading scheme. Complementary, let
x ∈ {0, 1}3|E| be a vector binary variables so that xle = 1 if edge e ∈ E is taken as part of the
spanning tree and its l-upgrade, l ∈ {0, 1, 2}, contributes to the total delay; xle = 0, otherwise.
The vector x can also be interpreted as the incidence vector of a multigraph containing three edges
e0, e1, e2 with associated distances d0e, d

1
e, d

2
e for e ∈ E. Considering the definition presented above,

variables y and x are coupled by

x1e + 2x2e ≤ yi + yj , ∀e : {i, j} ∈ E, (COUP)

which forces that if edge e is taken and its 1-upgrade (resp. 2-upgrade) contributes to the total
delay, then exactly one (resp. two) of its endpoints are upgraded.
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For the case of the MDUMST, the upgrading scheme must verify a budget constraint for a given
budget B; in terms of y variables, this can be expressed as∑

i∈V
ciyi ≤ B. (BUD)

Likewise, for the MCUMST, the total delay bound can be expressed as∑
e∈E

(
d0ex

0
e + d1ex

1
e + d2ex

2
e

)
≤W. (DEL)

Finally, let SpT (x) be a generic notation for the constraint that forces the selected edges indi-
cated by x to induce a spanning tree in G. Note that for the purpose of the Lagrangian approach,
we do not need an explicit description of this constraint, since the resulting problem will be solved
in a combinatorial way by calculation of a minimum spanning tree.

Using the elements presented above, for a given cost budget B, the MDUMST can be formulated
as the following MIP model

(MDUMST) min

{
dTx | (COUP), (BUD),

SpT (x), x ∈ {0, 1}3|E| and y ∈ {0, 1}|V |
}

;

similarly, for a given total delay bound W , the following MIP formulation allows to model the
MCUMST,

(MCUMST) min

{
cTy | (COUP), (DEL),

SpT (x), x ∈ {0, 1}3|E| and y ∈ {0, 1}|V |
}
.

Although the formulations presented above are sufficient for a whole description of the set of
feasible solutions, is possible to enhance them by including additional valid inequalities. Note that
the following inequalities are valid for both the MDUMST and the MCUMST. They are based on
the following result.

Theorem 1. The subgraph induced by the edges indicated by x2 and nodes indicated by y must be
a forest.

Proof. Follows from the combination of the facts that (i) an edge e : {i, j} ∈ E can only be selected
at upgrade-level 2, i.e., x2ij = 1, if both nodes i and j are upgraded, and that (ii) the solution
indicated by x must be a tree.

Thus, constraints which induce this fact can be added to the presented models. This can be
achieved with the following set of generalized subtour-elimination constraints (GSECs) [see, e.g.,
Goemans, 1994]. Let S ⊆ V and E(S) = {{i, j} ∈ E | i ∈ S, j ∈ S}, the GSEC constraints are
defined as ∑

e∈E(S)

x2e −
∑
k∈S

yk ≤ yv, ∀v ∈ S, ∀S ⊆ V : |S|≥ 2, (GSEC)
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which in our context ensure, that for every subset S of upgraded nodes, only |S|−1 edges of
upgrade-level 2 in E(S) are selected.

In our approach, we do not use the complete family of (GSEC), since this family is of exponential
size, but only the ones for |S|= 2, i.e.,

x2e − yi ≤ 0 and x2e − yj ≤ 0, ∀e = {i, j} ∈ E; (GSEC-2)

and the one for |S|= |V |, i.e., ∑
e∈E(V )

x2e −
∑
i∈V

yi ≤ 1. (GSEC-V )

The latter is valid since in every feasible solution at most one upgrade must be selected allowing to
replace the right-hand-side by 1.

2.2 Lagrangian Relaxation for MDUMST

To construct a Lagrangian relaxation for MDUMST, we relax the coupling constraints (COUP) and
the valid inequalities (GSEC-2) and (GSEC-V ); these relaxed constraints are encoded as (H,h) in
the remainder of this section. Note that due the structure of the relaxed constraints, all coefficients
of x in H are positive and all coefficients of y are negative. Let λ be a vector of dual multipliers of
appropriate size. We obtain the following Lagrangian relaxation

(MDUMST-LR(λ)) min

{
dTx + λT (H(x,y)− h) | (BUD),

SpT (x), x ∈ {0, 1}3|E| and y ∈ {0, 1}|V |
}

;

since all constraints involving both x and y are relaxed in (MDUMST-LR(λ),) the problem can be
decomposed in a problem only involving x and in another only involving y. Let dλ be the vector
of Lagrangian prizes for x for a given λ, i.e., dλ = d + λTHx, where Hx indicates the part of H
containing the coefficients of x. The problem in x reads

(MDUMST-LR(λ)-x) min

{
dTλx | SpT (x), x ∈ {0, 1}3|E|

}
,

i.e., it is a minimum spanning tree problem in a multigraph. The problem can be easily solved using
a minimum spanning tree algorithm by realizing that of the three edges e0, e1, and e2, e = {i, j},
only the one with minimum Lagrangian prize may occur in the optimal solution.

Complementary, let cλ be the vector of Lagrangian prizes for y for a given λ, i.e., cλ = λTHy,
where Hy indicates the part of H containing the coefficients of y. Recall that all coefficients in Hy

are negative due to the structure of the relaxed constraints. The problem in y reads

(MDUMST-LR(λ)-y) min

{
cTλy | (BUD), y ∈ {0, 1}|V |

}
;

Since all coefficients in Hy are negative and λ ≥ 0, we have that cλ ≤ 0. Consequently, (MDUMST-
LR(λ)−y) is just the 0/1-knapsack problem (stated in minimization form) and we solve it by
dynamic programming [see Martello and Toth, 1990].
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Constructing Primal Solutions Let y∗ be the optimal solution to (MDUMST-LR(λ)−y) for
a given λ. We use y∗ to construct feasible solutions to MDUMST as follows.

1. Take y∗ as upgrading scheme. Note that y∗ is a feasible upgrading scheme, since it ful-
fills (BUD).

2. Compute a minimum spanning tree using the delays induced by y∗.

Variable Fixing We use variable fixing based on Lagrangian prizes to reduce the size of the
problem during the course of the algorithm [see, e.g. Wolsey, 1998]. Let (x−,y−) be the variables
with value zero in the optimal solution (x∗,y∗) to (MDUMST-LR(λ)) for a given λ. Each binary
variable xl−e and y−i is tentatively set to one, and the Lagrangian relaxation is resolved. If the
obtained bound is larger than the objective value, say zI , of the current incumbent, the variable
cannot be one in the optimal solution and thus can be fixed to zero for the remainder of the
algorithm. For the given λ, let zλ(x∗) be the optimal solution value of (MDUMST-LR(λ)−x)
and zλ(y∗) be the optimal solution value of (MDUMST-LR(λ)−y). The optimal solution value
zλ(x∗,y∗) for (MDUMST-LR(λ)) is then zλ(x∗) + zλ(y∗)− λTh. To speed-up the variable fixing
routine, we resolve a relaxation of the Lagrangian relaxation and again use the decomposability of
the problem. Since relaxations give an under-estimation of the value obtained by an exact method,
the procedure remains valid.

• Resolving for a xl−e fixed to one: Clearly, only the optimal value of (MDUMST-LR(λ)−x)
is influenced by the variable fixing. This means, we would need to compute the minimum
spanning tree containing edge el. Let dlλe be the Lagrangian prize of the edge el and d∗λ the
largest value of dlλf amongst all edges f l with x∗lf = 1. It is easy to see that zλ(x∗)+dlλe−d∗λ
is a lower bound on the cost of the minimum spanning tree containing el. Hence, edge xl−e
can be fixed to zero, if zλ(x∗) + dlλe− d∗λ + zλ(y∗)−λTh > zI . Note that similar approaches
have been used for other constrained tree problems [see, e.g., Salles da Cunha et al., 2009,
Savelsbergh and Volgenant, 1985].

• Resolving for a y−i fixed to one: Clearly, only the optimal value of (MDUMST-LR(λ)−y) is
influenced by the variable fixing. We compute the value of the Linear Programming (LP)-
relaxation of the knapsack-problem with the fixed variable. This value is also known as
Dantzig-bound [see, e.g., Martello and Toth, 1990] and can be obtained by sorting all items
with cλi < 0 in ascending according to the ratio cλi/ci, i ∈ V (recall that the problem is
stated in minimization form in our case). Items are picked until the budget B is reached; it
can happen that only a fraction of the last item can be picked. Let ȳ be the obtained solution;
the variable y−i can be fixed to zero, if zλ(x∗) + zλ(ȳ)− λTh > zI .

2.3 Lagrangian Relaxation for MCUMST

In the case of the MCUMST, besides relaxing the coupling constraints and the added valid inequal-
ities, we also relax the total delay constraint (DEL). We again use (H,h) to encode the relaxed
constraints, and since (DEL) contains only positive coefficients of x, it still holds that all coefficients
of x in H are positive, while all coefficients of y are negative. For an appropriately sized vector λ
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of dual multipliers, we obtain the following Lagrangian relaxation for MCUMST

(MCUMST-LR(λ)) min

{
cTy + λT (H(x,y)− h) | SpT (x),

x ∈ {0, 1}3|E| and y ∈ {0, 1}|V |
}

;

the problem (MDUMST-LR(λ)) also decomposes into a problem in x and another in y. Let dTλ be

the vector of Lagrangian prizes for x for a given λ, i.e., dTλ = λTHx. The problem in x reads

(MCUMST-LR(λ)-x) min

{
dTλx | SpT (x), x ∈ {0, 1}3|E|

}
;

i.e., it is similar to (MDUMST-LR(λ)−x), with the only difference being the definition of the
Lagrangian prizes (recall that for MCUMST, they also contained d).

Let cλ be the vector of Lagrangian prizes for y for a given λ, i.e., cλ = c − λTHy. Note that
due to the presence of c, the Lagrangian prizes can be positive, zero, or negative. The problem in
y reads

(MCUMST-LR(λ)-y) min

{
cTλy | y ∈ {0, 1}|V |

}
;

this problem can be solved by inspection, i.e., by setting all variables yi with cλi < 0 to one, and
the remaining ones to zero.

Constructing Primal Solutions We use the Lagrangian prizes cλ for variables y to guide our
search for feasible solutions by using the following primal heuristic:

1. Sort the nodes i ∈ V in an ascending order using cλi, save this ordering in list L.

2. Set k = d|V |/2e, kl = 0, ku = |V |.

3. Construct an upgrading scheme y∗ by upgrading nodes 1 to k on list L.

4. Compute a minimum spanning tree using the delays induced by y∗.

5. If the solution is feasible (i.e., the delay of the spanning tree is at most W ), set ku = k,
k = d(k + kl)/2e and update the incumbent if the solution improves it; otherwise set kl = k,
k = d(k + ku)/2e. If k would not change by this new setting of k, then Stop; otherwise go
back to step 3. In other words, we do a binary search to determine the best k.

The above scheme is speeded-up using the lower bound zLB and upper bound zI ; in other words, if
an upgrading scheme y∗ would cost less than zLB or more than zI we do not need to compute the
spanning tree, since the produced solution cannot be feasible in the first case, and in the second
case, it would not improve the incumbent solution value.

Variable Fixing We also use variable fixing for MCUMST by exploiting the decomposabil-
ity of the problem. The procedure for variables in x− is exactly the same as for MDUMST (as
the problems (MCUMST-LR(λ)-x) and (MDUMST-LR(λ)-x) are the same). The procedure for
variables in y− is simpler than for MDUMST, since the problem (MCUMST-LR(λ)-y) can be
solved by inspection, in contrast to the knapsack problem for MDUMST: sSetting a variable y−i
to one does not change the rest of the solution (x∗,y∗), hence the optimal value after resolving is
zλ(x∗) + zλ(y∗) + cλi − λTh. If this value is larger than zI , yi can be fixed to zero.
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2.4 Details of the Subgradient Method

We use the subgradient method [see, e.g., Wolsey, 1998] to solve the Lagrangian dual problem

max
λ≥0

zR(λ) (LD)

where zR(λ) is (MDUMST-LR(λ)) or (MCUMST-LR(λ)) resp., in order to find the best possible
lower bound. In the subgradient method, zR(λ) gets iteratively resolved for different values of dual
multipliers λ. The value of λt+1, at iteration t+ 1, obtained from the current solution (xt,yt) with
the help of a subgradient gt. Such subgradient is calculated as gt = h−H(xt,yt). In practice, it
often leads to more efficient approaches to use a search direction st calculated with the help of the
subgradient to update λt+1, instead of just using gt. In this paper, we use the average direction
search strategy [see Haouari et al., 2008, Sherali and Ulular, 1990], which is defined as

st = gt +
‖gt‖
‖st−1‖

st−1.

The last ingredient necessary to derive λt+1 is a step size µt, which is calculated as

µt = β
zI − zR

(
λt
)

‖st‖

where β is a given parameter in (0, 2]. The dual multipliers λt+1 are then calculated as max{0,λt−
µtst}.

In our implementation, we initialize with s0 = 0, and β = 2. If there are γ = 20 iterations
without improvement of the lower bound zLB , we set β = β/2 and also set (xt,yt) to the solution
that has provided the best lower bound so far; afterwards, we recalculate the subgradient and the
search direction [a similar strategy has been used in Haouari et al., 2008]. We call the variable
fixing routine and primal heuristic at every iteration. The maximum number of iterations in the
subgradient method is set to 400. Finally, it proved computationally advantageous to initialize the
entries of λ0 with 10−5.

3. Directed MIP Formulation and Branch-and-Cut Algo-
rithm

In this section we propose MIP formulations to solve MDUMST and MCUMST using B&C. The
formulations are extended formulations, which are defined on a graph obtained from bi-directing
G. This is done, since for tree-based problems, such directed formulations are usually more efficient
than formulations based on the original undirected graph G [see, e.g., Ljubić et al., 2006, Salles da
Cunha et al., 2009].

In particular, an instance is transformed as follows: let GA = (V,A) so that A =
{(i, j), (j, i) | ∀e : {i, j} ∈ E}, i.e., each edge is replaced by two directed arcs (one in each direc-
tion). Additionally, the delay values are transformed as follows: d0ij = d0ji = d0e, d

1
ij = d1ji = d1e and

d2ij = d2ji = d2e for all e : {i, j} ∈ E. With a slight abuse of notation, the vector of delay values after
the transformation is given the same name as its undirected counterpart, i.e., d.

Let z ∈ {0, 1}3|A| be a vector of binary variables so that zlij = 1 if arc (i, j) ∈ A is taken in

the spanning arborescence and its l-upgrade, l ∈ {0, 1, 2}, contributes to the total delay; zlij = 0,
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otherwise. For a given set of nodes S ⊆ V , let δ−(S) = {(i, j) ∈ A | i ∈ V \ S, j ∈ S} (resp.
δ+(S) = {(i, j) ∈ A | i ∈ S, j ∈ V \ S}), i.e., the set of incoming (resp. outgoing) arcs of a given
subset of nodes S ⊆ V .

The counterpart of coupling constraints (COUP) is expressed in the (z,y)-variables by

z1ij + 2z2ij ≤ yi + yj , ∀(i, j) ∈ A; (z-COUP)

since for any edge {i, j}, only one arc may be in the solution, these constraints can be replaced by
the following stronger ones

z1ij + z1ji + 2z2ij + 2z2ji ≤ yi + yj , ∀{i, j} ∈ E. (z-COUP+)

The total delay bound can be expressed, in the z-space, as∑
(i,j)∈A

(
d0ijz

0
ij + d1ijz

1
ij + d2ijz

2
ij

)
≤W. (z-DEL)

Note that in this directed graph, instead of looking for a spanning tree we actually look for a
spanning arborescence on G rooted at some chosen node 1. Such topology can be imposed by the
following connectivity constraints,∑

(i,j)∈δ−(S)

(
z0ij + z1ij + z2ij

)
≥ 1, ∀S ⊆ V \ {1}; (z-CONN)

these are the so-called directed cut-set inequalities [see, e.g., Koch and Martin, 1998, Ljubić et al.,
2006], and they impose that in the subgraph induced by z there exists a directed path from 1 to each
of the other nodes in the graph. Since there is an exponential number of constraints (z-CONN),
we do not add them at the start, but separate them on-the-fly within the B&C. The separation
problem for (z-CONN) is a max-flow problem and is discussed in more detail later in this section.
Note that for S = {j} the inequality sign in (z-CONN) can be replaced by equality.

We can now provide the following MIP formulations in the (z,y)-space for the studied problems.
For a given budget level B, the MDUMST can formulated as

(MDUMST-MIP) min

{
dT z

∣∣∣∣(z-COUP+), (BUD), (z-CONN),

z ∈ {0, 1}3|A| and y ∈ {0, 1}|V |
}

;

likewise, for a given total delay bound W , the MCUMST can be modeled as

(MCUMST-MIP) min

{
cTy

∣∣∣∣(z-COUP+), (z-DEL), (z-CONN)

z ∈ {0, 1}3|A| and y ∈ {0, 1}|V |
}
.

Additionally, we can define valid inequalities for both (MDUMST-MIP) and (MCUMST-MIP)
similar to the ones used in Lagrange relaxation. In particular, the counterpart of constraints
(GSEC-2) is given by

z2ij + z2ji ≤ yj , ∀(i, j) ∈ A; (z-GSEC-2)

10



complementary, the counterpart of constraint (GSEC-V ) is given by the following set of constraints∑
(i,j)∈δ−({j})

z2ij ≤ yj , ∀j ∈ V \ {1}. (z-GSEC-j)

Separation of Connectivity Constraints (z-CONN) Let (z̃, ỹ) be the solution of the LP-
relaxation of the MDUMST or the MCUMST at a given node of the branch-and-bound tree. The
separation works by calculating a maximum flow from 1 ∈ V to each of the other nodes k ∈ V \{1}
in G, with capacities of arcs (i, j) set to κ̃ij = z̃0ij + z̃1ij + z̃2ij . If the maximum flow between 1 and
k has a value ε < 1, the corresponding cut-set δ−(S) induces violated connectivity cut (z-CONN).
Note that similar separation routines are used in many constrained tree problems [see, e.g., Koch
and Martin, 1998, Ljubić et al., 2006].

We enhanced the separation routine by modifying it to produce orthogonal cuts [see, e.g. Lucena
and Resende, 2004]. The modification works by setting z̃0ij = z̃1ij = z̃2ij = 1 once arc (i, j) appeared
in a cut-set δ−(S) in the separation for some k. This way, the arc cannot appear in the cut-set
when applying the separation routine for node k′ 6= k. This modification turned out to be very
helpful for performance; otherwise, many similar cuts get added, leading to very large LPs that
need to get resolved.

Additionally, we added an early termination criterion to the cut-loop in order to avoid adding
cuts of type (z-CONN) that do not improve the lower bound (but still increase the size of the
current LP model). If for three rounds of the separation the lower bound at a given node moves
less than 10−3 units, the cut-loop is aborted.

Note that for the correctness of the B&C approach, it is enough to call the separation routine
only for integer solutions. In such case, we do not need to use a max-flow algorithm; we simply
build the connected components of G induced by integer (x̃, ỹ) and construct constraints (z-CONN)
based on the connected components.

Branching Priorities Due to the coupling constraints (COUP) (as well as the valid inequalities
(z-GSEC-2), and (z-GSEC-j)), setting an upgrade variable, say yi, to 0 has immediate implications
on the value of the z variables of its adjacent arcs. If yi = 0 then z2ij = 0 for all (i, j) ∈ δ+(i)

and (j, i) ∈ δ−(i), and if yi = yj = 0 for (i, j) ∈ A, z1ij = z1ji = z2ij = z2ji = 0. Hence, giving
higher branching priorities to the y variables could be helpful to better reduce the search space in
earlier stages of the branch-and-bound tree, boosting the efficacy of the algorithm. The effect of
this setting is analyzed in our computational study.

Constructing Primal Solutions We use primal heuristics within the B&C framework to pro-
duce feasible solutions. These heuristics are modifications of the primal heuristics used in the
Lagrangian relaxation approach and are driven by the values (x̃, ỹ) of the LP-relaxations. In par-
ticular, the heuristics are adapted as follows:

• MDUMST: The upgrading scheme y∗ in Step 1 is constructed by sorting ỹ in an descending
order and then picking nodes until B is reached.

• MCUMST: Nodes are sorted in descending order according to ỹ in Step 1.
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4. Computational Study

The proposed algorithms were implemented in C++. Runs were carried out on an Intel Xeon CPU
with 2.5 GHz and 12GB memory. CPLEX 12.6.2 was used as MIP-solver for the B&C algorithm,
all parameters (except branching priorities, see Subsection 3) were left at the default values and a
time limit of 1800 seconds was set.

We compare four different configurations of our B&C algorithm: i) basic, which just consists of
giving to CPLEX the model (with (z-CONN) for S = {j},∀j ∈ V , and without valid inequalities),
and separating the connectivity cuts (z-CONN); ii) V , which additionally uses the valid inequali-
ties (z-GSEC-2), (z-GSEC-j) (added at initialization); iii) VH , which adds the primal heuristic to
V ; and iv) VHP , which adds branching priorities to VH .

4.1 Benchmark Instances

We considered two sets of instances for our computational study: i) EUCLIDEAN, where the un-
derlying graphs are complete random Euclidean graphs. Euclidean graphs are known to resemble
topologies encountered in real-life telecommunication networks [see, e.g., Johnson et al., 2000]; and
ii) C, which are based on the instance set C of the well-known SteinLIB instance library [see Koch
et al., 2001].

To construct set EUCLIDEAN, |V | points were randomly selected in a 100× 100 plane. The delay
values d2ij are set to the Euclidean distance between i and j rounded up to the next integer, for

all i, j ∈ V . The delay values d0ij and d1ij are obtained as d1ij = dα1
ijd

2
ije and d0ij = dα0

ijd
1
ije, for

all i, j ∈ V . The values α1
ij , α

0
ij are chosen randomly from [1.1, 1.3]. The upgrade costs cv are

randomly chosen integer from the range [1, 10] for every v ∈ V . We created ten instances for each
|V |∈ {100, 150, 200, 500}; they are labeled as e|V |−k, with k ∈ {1, . . . , 10}. Since these instances
are complete graphs, the number of edges |E| is 4950, 11175, 19900 and 124750, respectively. This
generation scheme has been chosen since in practical applications, some correlation between of the
original delay and the upgraded delay can be expected, and upgrade actions are likely to have
comparable cost.

To transform the Steiner tree instances from C, we proceeded in a similar way. The original edge
costs of an instance, which is a random integer in [1, 10] is used as d2, and d1, d0 and c are constructed
as for EUCLIDEAN. There are 20 instances in this set, and all have |V |= 500. The instances are named
c01− c20, and have different levels of sparsity, namely |E|∈ {625, 1000, 2500, 12500}.

For every instance, we tested three different values for B, resp. W . For an instance, let C =∑
i∈V ci and D be the delay value of a minimum spanning tree with no upgrade. The values for B

are b · C and for W are (b+ 1) ·D, with b ∈ {0.1, 0.2, 0.3}.

4.2 Results for MDUMST

We first give a comparison of the different configurations for B&C, to establish which configuration
performs best and then analyze the results produced by the Lagrangian approach and the best
B&C setting in more detail.

B&C Performance Figures 2(a) and 2(b) give a comparison of the root gaps for configurations
basic and V on sets EUCLIDEAN (|V |≤ 200), and C, respectively. The rootgap of an instance is
calculated as 100 · (z∗ − RB)/z∗, where z∗ is the best solution found for the instance (using any
configuration) and RB is the root bound obtained by the configuration. The importance of using
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Figure 1: Rootgaps with respect to the best solution the best solution found by all settings for
problem MDUMST on instance sets EUCLIDEAN and C.
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the valid inequalities can easily be seen; the rootgap for EUCLIDEAN is reduced by around 4%, and
for C by up to 30%. The different densities of the instances of set C seems to influence the gap,
especially when not using the valid inequalities. Adding the valid inequalities leads to maximal
gaps under 2% for EUCLIDEAN, and under 5% for C.

Next, we compare V, VH and VHP using performance profiles [Dolan and Moré, 2002]. Let
I indicate the set of instances, C = {V,VH,VHP} and ti,c is the time that configuration c needs
to solve instance i to optimality. The performance ratio ri,c for configuration c and instance i is
defined as

ri,c =

{
ti,c

minc′∈C{ti,c′}
if c solves i

rM otherwise
,

where rM = maxi∈I,c∈C:c solves i ri,c+1. Performance profiles are plots of the cumulative distribution
functions ρc of the performance ratio for each configuration c ∈ C. The value of ρc(1) gives how
many times configuration c is the fastest and the value of ρc(rM − 1) indicates the percentage of
instances that configuration c can solve within the time limit.

We do not include basic in these profiles, since no instance could be solved within the time limit
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Figure 2: Performance profile of runtimes to optimality for problem MDUMST on instance sets
EUCLIDEAN and C.
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using this setting. Configuration VHP is the winner in about 70% of the instances of set EUCLIDEAN,
and in around 50% of instances of set C. For both set of instances, VHP dominates the other two
configurations, and VH in turn dominates V. Moreover, for both sets, almost 80% of instances were
be solved within the time limit.

Lagrangian Bounds v/s VHP We now compare the performance of the Lagrangian approach
with the performance of VHP by reporting the results obtained by both approaches on the consid-
ered instances.

Table 1 reports detailed results of the Lagrangian approach on instance set EUCLIDEAN. We
provide the value of the best solution (z∗), the attained lower bound (LB), the optimality gap
(g[%], which is calculated as 100 · (z∗−LB)/z∗), and the runtime in seconds (t[s]). The largest gap
is 4.06% and occurs for e100− 9 with b = 0.2. Most of the gaps are under 2%, although instances
of size |V |= 500 have slightly larger gaps (around 3%). A higher value of b seems to lead to larger
gaps, this is more clear from b = 0.1 to b = 0.2, than from b = 0.2 to b = 0.3. The runtime for all
instance with |V |≤ 200 is at most three seconds. For instances with |V |> 200 the runtime makes a
jump to around 30 seconds; the largest runtime is 42 seconds for instance e500− 9 with b = 2.

Table 2, equivalent to Table 1, shows results for the instance set C. Here the largest gap is
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Table 1: Results of the Lagrangian approach on instance set EUCLIDEAN (MDUMST). z∗ gives the
value of the best solution found, LB the lower bound, g[%] the gap and t[s] the runtime.

b=0.1 b=0.2 b=0.3
instance z∗ LB g[%] t[s] z∗ LB g[%] t[s] z∗ LB g[%] t[s]

e100-1 974 967.36 0.68 1 910 901.16 0.97 1 873 861.11 1.36 0
e100-2 1019 1010.48 0.84 1 962 945.15 1.75 1 918 897.58 2.22 1
e100-3 974 964.14 1.01 1 909 897.22 1.30 1 863 848.32 1.70 0
e100-4 999 986.87 1.21 1 928 912.05 1.72 1 884 863.51 2.32 1
e100-5 1026 1004.37 2.11 1 955 929.23 2.70 1 904 877.93 2.88 0
e100-6 1020 1010.08 0.97 1 961 940.17 2.17 0 915 889.46 2.79 0
e100-7 1028 1016.42 1.13 1 962 946.50 1.61 1 914 895.51 2.02 1
e100-8 1020 999.92 1.97 0 949 927.78 2.24 0 900 877.77 2.47 0
e100-9 955 949.09 0.62 0 900 863.47 4.06 1 856 840.97 1.76 0
e100-10 1020 1008.93 1.08 1 959 938.73 2.11 1 916 889.50 2.89 1
e150-1 1165 1147.10 1.54 1 1093 1071.42 1.97 1 1035 1018.64 1.58 1
e150-2 1238 1220.02 1.45 2 1161 1131.13 2.57 1 1101 1070.76 2.75 1
e150-3 1217 1200.93 1.32 1 1135 1114.11 1.84 2 1075 1054.51 1.91 2
e150-4 1231 1215.02 1.30 1 1140 1124.55 1.36 1 1083 1063.77 1.78 1
e150-5 1260 1242.76 1.37 2 1177 1150.21 2.28 1 1115 1088.49 2.38 1
e150-6 1232 1213.97 1.46 1 1153 1125.94 2.35 1 1092 1063.71 2.59 2
e150-7 1247 1216.79 2.42 2 1163 1134.08 2.49 1 1101 1073.68 2.48 1
e150-8 1209 1193.48 1.28 2 1121 1107.40 1.21 1 1072 1047.54 2.28 2
e150-9 1248 1229.99 1.44 2 1166 1140.85 2.16 1 1103 1078.65 2.21 2
e150-10 1214 1202.34 0.96 1 1137 1114.97 1.94 2 1079 1053.00 2.41 2
e200-1 1402 1381.05 1.49 3 1308 1275.41 2.49 3 1236 1204.86 2.52 3
e200-2 1447 1430.38 1.15 2 1354 1323.30 2.27 3 1277 1242.82 2.68 2
e200-3 1444 1415.85 1.95 2 1343 1306.39 2.73 4 1274 1231.68 3.32 2
e200-4 1477 1455.81 1.43 2 1387 1353.67 2.40 2 1318 1282.84 2.67 3
e200-5 1471 1445.62 1.73 2 1374 1335.08 2.83 3 1296 1260.11 2.77 2
e200-6 1483 1462.92 1.35 2 1383 1348.77 2.47 2 1313 1269.98 3.28 3
e200-7 1466 1439.89 1.78 2 1365 1334.70 2.22 3 1296 1262.27 2.60 3
e200-8 1413 1391.03 1.55 3 1319 1286.73 2.45 3 1244 1215.39 2.30 3
e200-9 1486 1463.08 1.54 3 1392 1353.72 2.75 3 1320 1277.75 3.20 3
e200-10 1470 1451.38 1.27 3 1379 1345.19 2.45 3 1314 1272.62 3.15 3
e500-1 2512 2463.91 1.91 29 2324 2259.35 2.78 24 2190 2121.87 3.11 25
e500-2 2466 2427.65 1.56 24 2287 2218.40 3.00 25 2148 2080.17 3.16 26
e500-3 2568 2516.17 2.02 23 2370 2298.46 3.02 23 2228 2152.83 3.37 34
e500-4 2439 2394.87 1.81 23 2254 2203.13 2.26 27 2132 2067.84 3.01 28
e500-5 2424 2378.39 1.88 23 2244 2179.81 2.86 26 2107 2048.99 2.75 31
e500-6 2484 2437.22 1.88 41 2295 2239.69 2.41 27 2170 2106.12 2.94 24
e500-7 2455 2398.62 2.30 26 2259 2206.06 2.34 31 2127 2068.02 2.77 28
e500-8 2526 2464.58 2.43 29 2314 2251.06 2.72 25 2170 2110.99 2.72 27
e500-9 2473 2429.14 1.77 22 2296 2236.57 2.59 42 2164 2098.71 3.02 28
e500-10 2506 2456.80 1.96 27 2324 2253.72 3.02 30 2192 2129.14 2.87 33

31.98% (for instance c12 with b = 0.3), and there three additional instances with gaps over 10%.
Nonetheless, most of the gaps are between 2% and 4%. The sparsity of the instances seems to
influence the difficulty of the problem, with instances c01 to c10 (|E|= 625 and 1000) producing
smaller gaps than c11 − 20 (|E|= 2500 and 12500); the four instances with gap over 10% also fall
into this latter category. The longest runtime is seven seconds and occurs for c16 with b = 0.3. The
value of b seems to have a larger influence on the runtime than the sparsity of the instances.

Table 3 reports the results on instance set EUCLIDEAN using VHP . In the table we report the
value of the best found solution (z∗, in italics if optimality could not be proven within the time
limit), the runtime (t[s], with TL indicating that the time limit is reached), the rootgap (g[%]),
and the number of branch-and-bound nodes (nodes). All instances with |V |≤ 150 are solved to
optimality for all values of b. For |V |= 200, about half of the instances can be solved within the
time limit, amongst them all with b = 0.1. For |V |= 500, all instances remain unsolved. The
deteriorating of the performance with the size of the instance is not surprising, as the size of the
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Table 2: Results of the Lagrangian approach on instance set C (MDUMST). z∗ gives the value of
the best solution found, LB the lower bound, g[%] the gap and t[s] the runtime.

b=0.1 b=0.2 b=0.3
instance z∗ LB g[%] t[s] z∗ LB g[%] t[s] z∗ LB g[%] t[s]

c01 3458 3398.64 1.72 1 3175 3150.06 0.79 2 3025 2915.66 3.61 3
c02 3311 3262.19 1.47 1 3050 3014.70 1.16 3 2871 2846.89 0.84 4
c03 3326 3285.63 1.21 1 3047 3022.86 0.79 2 2903 2818.89 2.90 4
c04 3363 3324.89 1.13 1 3105 3070.19 1.12 3 2923 2901.62 0.73 3
c05 3341 3301.21 1.19 0 3086 3052.48 1.09 2 2903 2879.79 0.80 4
c06 2564 2504.57 2.32 1 2346 2301.03 1.92 3 2211 2153.07 2.62 4
c07 2562 2504.90 2.23 0 2352 2304.53 2.02 2 2219 2160.66 2.63 4
c08 2496 2432.91 2.53 1 2280 2231.34 2.13 2 2146 2075.24 3.30 4
c09 2443 2393.15 2.04 1 2234 2190.15 1.96 3 2084 2054.98 1.39 3
c10 2494 2438.94 2.21 1 2295 2233.30 2.69 2 2129 2103.34 1.21 4
c11 1533 1482.63 3.29 1 1396 1206.66 13.56 3 1246 1219.14 2.16 6
c12 1587 1534.84 3.29 1 1416 1367.16 3.45 2 1317 895.87 31.98 4
c13 1548 1508.61 2.54 1 1402 1330.33 5.11 3 1260 1232.35 2.19 5
c14 1563 1480.50 5.28 1 1418 1320.82 6.85 2 1260 1226.31 2.67 4
c15 1562 1455.54 6.82 0 1414 1307.05 7.56 3 1295 1093.69 15.54 4
c16 978 878.15 10.21 2 832 798.12 4.07 3 764 738.55 3.33 7
c17 971 888.67 8.48 2 831 790.19 4.91 5 755 735.72 2.55 6
c18 964 901.47 6.49 2 834 798.18 4.29 4 763 736.99 3.41 6
c19 951 887.55 6.67 3 835 797.47 4.49 4 761 740.86 2.65 5
c20 960 896.99 6.56 2 833 801.18 3.82 3 765 743.94 2.75 5

MIP model and the separation problem grows. In particular, for the instances with |V |= 500, in
all cases the root-node could not be solved within the time limit. Note the gaps are relatively small
even for the unsolved instances, the largest gap for instances with |V |= 500 is 3.31% for e500 − 8
with b = 0.3.

For instance set C, a similar situation is verified; the largest instances (c16 to c20) are also the
hardest, as reported in Table 4. Only five of these fifteen instances could be solved within the time
limit; interestingly, the solved instances are those with b = 0.3, while for EUCLIDEAN and |V |= 200,
only the instances with b = 0.1 could be solved. Note that some of the smallest instances (c01 to
c05) are solved in the root node.

The results show that the Lagrangian approach is an attractive choice for large-scale instances.
On the one hand, because the attained gaps are often very near the root-gap achieved by the B&C
approach; and on the other hand, because as the size of the instances grow, the Lagrangian approach
scales better when compared to the running times of the B&C approach. This behavior can be
seen in the larger EUCLIDEAN instances (|V |= {200, 500}) and in the larger C instances (c16− c20),
where the B&C often struggles and reaches the time limit, while the Lagrange relaxation algorithm
attains comparable gaps in about 40 (EUCLIDEAN) and 10 (C) seconds.
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Table 3: Results of the VHP approach on instance set EUCLIDEAN (MDUMST). z∗ gives the value
of the best solution found, t[s] the runtime, TL indicates that the instance could not be solved
within a timelimit of 1 800s, g[%] the rootgap, if the instance is solved to optimality and the primal
gap otherwise, and nodes the number of branch and bound nodes.

b=0.1 b=0.2 b=0.3
instance z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes

e100-1 973 9 0.51 51 908 18 0.30 38 867 9 0.32 19
e100-2 1018 14 0.65 38 955 26 0.66 256 913 75 1.01 1405
e100-3 972 14 0.53 65 906 28 0.76 65 859 14 0.68 42
e100-4 994 12 0.63 35 924 24 0.95 119 875 21 0.89 211
e100-5 1021 49 1.32 799 945 23 0.90 291 895 33 0.79 445
e100-6 1020 16 0.73 112 954 33 0.87 211 906 62 0.96 908
e100-7 1025 15 0.59 19 955 18 0.27 28 907 18 0.58 95
e100-8 1014 11 0.76 75 940 11 0.64 61 892 14 0.60 77
e100-9 954 7 0.32 15 892 9 0.34 29 848 12 0.47 32
e100-10 1016 13 0.51 53 954 20 1.12 237 907 61 1.00 773
e150-1 1160 121 0.82 403 1083 94 0.64 315 1029 43 0.39 30
e150-2 1232 125 0.73 275 1148 271 0.93 643 1088 199 0.86 782
e150-3 1211 81 0.51 63 1126 132 0.66 197 1067 58 0.60 76
e150-4 1225 95 0.53 140 1136 81 0.71 132 1074 83 0.52 44
e150-5 1256 129 0.96 412 1169 435 1.15 2379 1110 839 1.16 5414
e150-6 1227 376 0.94 2486 1141 224 0.74 1046 1080 109 0.58 307
e150-7 1235 85 0.79 367 1151 417 0.91 2598 1091 170 0.68 788
e150-8 1203 54 0.55 75 1119 66 0.69 206 1061 106 4.11 376
e150-9 1242 160 0.74 546 1154 161 0.75 570 1094 262 0.70 1198
e150-10 1208 41 0.42 115 1129 153 0.85 851 1069 56 0.53 124
e200-1 1396 725 0.82 2063 1293 846 0.60 1159 1226 TL 0.30 4435
e200-2 1438 242 0.38 64 1338 1166 0.71 3371 1260 564 0.57 1316
e200-3 1435 1404 1.03 3392 1330 TL 0.64 3473 1258 TL 0.54 3805
e200-4 1470 562 0.76 1091 1374 TL 0.52 3703 1300 306 0.55 432
e200-5 1461 526 0.73 1030 1356 TL 0.36 4000 1282 TL 0.23 4763
e200-6 1474 521 0.61 769 1370 1167 0.80 2733 1299 TL 0.61 3715
e200-7 1453 237 0.61 319 1350 461 0.60 1090 1284 TL 0.34 4797
e200-8 1407 1254 0.95 2400 1304 TL 0.13 5146 1233 359 0.66 776
e200-9 1477 1014 0.53 1034 1379 TL 0.65 3900 1306 TL 0.61 3929
e200-10 1467 1648 0.95 3976 1371 TL 0.44 3516 1299 TL 0.23 4900
e500-1 2507 TL 2.14 0 2320 TL 2.98 0 2176 TL 1.62 0
e500-2 2459 TL 1.08 0 2279 TL 2.75 0 2141 TL 1.87 0
e500-3 2556 TL 1.29 0 2357 TL 1.77 0 2218 TL 1.87 0
e500-4 2432 TL 2.17 0 2247 TL 1.36 0 2123 TL 1.48 0
e500-5 2417 TL 1.33 0 2234 TL 1.76 0 2105 TL 1.79 0
e500-6 2470 TL 1.08 0 2298 TL 1.94 0 2166 TL 1.91 0
e500-7 2437 TL 1.12 0 2247 TL 1.41 0 2115 TL 1.35 0
e500-8 2514 TL 2.59 0 2307 TL 1.76 0 2172 TL 3.31 0
e500-9 2461 TL 1.01 0 2284 TL 1.55 0 2153 TL 1.59 0
e500-10 2493 TL 1.08 0 2317 TL 1.79 0 2185 TL 1.67 0
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Table 4: Results of the VHP approach on instance set C (MDUMST). z∗ gives the value of the
best solution found, t[s] the runtime, TL indicates that the instance could not be solved within a
timelimit of 1 800s, g[%] the rootgap, if the instance is solved to optimality and the primal gap
otherwise, and nodes the number of branch and bound nodes.

b=0.1 b=0.2 b=0.3
instance z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes

c01 3422 2 0.98 3 3163 3 0.00 0 2978 6 0.09 10
c02 3283 5 1.97 6 3029 4 0.01 2 2855 5 0.00 0
c03 3299 15 0.00 0 3034 7 0.00 0 2854 7 0.00 1
c04 3337 9 0.36 3 3085 8 0.04 2 2910 11 0.11 5
c05 3315 6 0.01 3 3068 6 0.07 12 2887 5 0.00 2
c06 2534 32 2.87 260 2318 15 2.21 57 2172 15 0.12 30
c07 2532 30 0.18 143 2323 17 1.48 81 2179 14 0.89 15
c08 2461 25 0.26 122 2247 18 1.36 37 2105 13 0.33 21
c09 2415 37 0.54 268 2208 24 3.97 311 2069 30 0.24 257
c10 2463 22 1.95 20 2258 18 0.17 31 2116 24 0.80 152
c11 1509 102 1.07 551 1351 255 1.40 2457 1237 248 0.62 2171
c12 1553 27 1.91 75 1386 48 1.05 271 1271 56 0.38 353
c13 1524 17 1.88 68 1364 412 1.42 3647 1248 786 1.02 5245
c14 1530 50 1.32 261 1367 89 0.48 758 1241 92 0.39 871
c15 1529 22 0.42 42 1366 36 1.15 85 1249 26 0.36 199
c16 953 TL 2.66 301 817 TL 0.66 243 749 60 0.25 27
c17 944 TL 1.50 357 814 TL 0.51 270 745 49 0.26 25
c18 946 TL 2.01 370 820 TL 0.92 369 749 46 0.32 21
c19 936 TL 2.00 258 819 TL 1.20 305 748 417 0.30 210
c20 939 TL 1.38 406 819 TL 0.30 1296 754 56 0.35 34

4.3 Results for MCUMST

We now provide results for MCUMST in a similar fashion as for MDUMST, i.e., we first analyze
the performance of the B&C configurations and then compare the Lagrangian approach and B&C.

B&C Performance The plots of the rootgaps for basic and V , reported in Figures 4(a)
(EUCLIDEAN) and 4(b) (C), follow a pattern similar to those reported for MDUMST. The gaps
for instance set EUCLIDEAN are up to 10% for V , and up to 50% for basic (excluding an outlier
appearing for both settings, which may be caused by a bad best known solution). These gaps are
larger than those for provided for MDUMST on the same instance set. For instance set C, the
gaps for V are not greater than 5%, which is similar to MDUMST. For basic, we can again see the
influence of graph sparsity on the gaps; this time it is more pronounced than for MDUMST, and
the largest gaps are as high as 80%.

In the performance profiles comparing V,VH and VHP, given in Figures 5(a) (EUCLIDEAN)
and 5(b) (C), we can again see the dominance of VHP. For both EUCLIDEAN and C, it is the most
effective configuration in at least 75% of the instances. For EUCLIDEAN, over 85% of instances could
be solved within the timelimit, and for C nearly 100%.

Lagrangian Bounds v/s VHP Regarding the performance of the Lagrangian approach, we
see that the gaps reached for the MDUMST on EUCLIDEAN instances (reported in Table 5) are
much higher than those attained for the MDUMST on the same instances. They are mostly in the
interval of 10% to 20%; notwithstanding, instance e500− 7 with b = 0.3 has a gap of 97%. Despite
of this particular case, there are no other instances with such an extremely bad gap. For |V |= 500,
b seems to influence the quality of the gaps; with b = 0.1, they are around 10%, while for b = 0.3,
they are around 20%. For the smaller instances, this tendency can also be seen, but it is not so
evident. The runtime is comparable to the runtime for MDUMST; for |V |≤ 200, it is at most 5
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Figure 3: Rootgaps with respect to the best solution found by all settings for problem MCUMST
on instance sets EUCLIDEAN and C.
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seconds, while for |V |= 500, it takes in 40 − 60 seconds. However, for e500 − 10 and b = 0.3, the
runtime is 94 seconds. Note that the runtime could be improved by not calling the primal heuristic
at every iteration of the subgradient algorithm.

Interestingly, aside from a few outliers, the Lagrangian relaxation approach works much better
for instances from set C, as reported in Table 6. The gaps are mostly in the range of 1 − 5%.
The few clear outliers correspond to c06, c08 and c09, when setting b = 0.3; note that these three
instances have the same number of edges (1000). On the other hand, the densest instances of this
set, c16 − c20, which were the most troublesome when solving MDUMST, have been solved with
gaps under 1% for b = 0.1.

Table 7 shows the results when tackling instances EUCLIDEAN with the VHP configuration. The
roo tgaps are larger than for MDUMST, and they seem to be influenced by b. They are up to 3%
(aside from e150− 5 with 3.90%) for b = 0.1 and up to 10% for b = 0.3. Similar to the performance
for MDUMST, no instance with |V |= 500 and only few for |V |= 200 (among them all with b = 0.1),
could be solved to optimality within the time limit. For |V |= 500, again the time limit is reached
while still solving the root-node.

For set C, whose results are reported in Table 8, the VHP approach performs much better (as we
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Figure 4: Performance profile of runtimes to optimality for problem MCUMST on instance sets
EUCLIDEAN and C.
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as the Lagrangian relaxation did). The largest gap is 1.50% and around one third of the instances
could even be solved within the root-node. Only one instance, c17 with b = 0.2 remains unsolved,
note that also for b = 0.1 and b = 0.3, c17 is (by far) the most difficult one.

Comparing the Lagrangian approach with the B&C, a similar conclusion as for MDUMST can
be drawn; namely for large-scale instances, the Lagrangian approach may be preferable. However,
MCUMST seems to be more difficult as the obtained gaps for EUCLIDEAN are about five times higher
than those attained when solving MDUMST. In particular the Lagrangian approach gives bad gaps
for a handful of instances. Nonetheless, for instances from C the situation looks better since B&C
managed to solve more instances in the root-node than for MDUMST. Overall, the performance
for MCUMST seems to be more related to the instance class, while for MDUMST the size of the
instance seems to be most influential characteristic.
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Table 5: Results of the Lagrangian approach on instance set EUCLIDEAN (MCUMST). z∗ gives the
value of the best solution found, LB the lower bound, g[%] the gap and t[s] the runtime

b=0.1 b=0.2 b=0.3
instance z∗ LB g[%] t[s] z∗ LB g[%] t[s] z∗ LB g[%] t[s]

e100-1 295 278.83 5.48 1 152 138.03 9.19 1 71 63.81 10.13 1
e100-2 286 266.29 6.89 0 169 141.87 16.05 1 78 68.79 11.81 1
e100-3 279 255.96 8.26 1 156 139.15 10.80 1 81 72.44 10.57 0
e100-4 284 261.32 7.99 1 169 145.45 13.94 1 89 74.52 16.27 1
e100-5 310 274.70 11.39 1 182 150.05 17.56 1 98 79.42 18.95 1
e100-6 326 291.83 10.48 1 193 157.73 18.27 1 101 81.06 19.74 1
e100-7 297 271.93 8.44 0 178 156.53 12.06 1 94 81.97 12.80 0
e100-8 296 257.94 12.86 1 159 136.58 14.10 1 83 67.82 18.29 1
e100-9 289 264.20 8.58 0 162 144.56 10.77 1 79 72.25 8.54 1
e100-10 329 282.61 14.10 1 195 158.73 18.60 1 99 82.86 16.30 1
e150-1 398 351.98 11.56 2 208 183.31 11.87 2 104 86.30 17.02 2
e150-2 439 394.84 10.06 2 264 217.29 17.69 2 141 112.81 20.00 3
e150-3 437 394.84 9.65 2 250 217.05 13.18 2 134 113.95 14.97 2
e150-4 391 355.56 9.06 1 211 186.27 11.72 2 113 96.26 14.81 2
e150-5 445 397.68 10.63 2 278 230.68 17.02 2 151 121.06 19.83 2
e150-6 455 403.63 11.29 2 265 223.27 15.75 2 144 115.16 20.03 2
e150-7 455 411.54 9.55 2 270 226.71 16.03 2 146 117.86 19.28 2
e150-8 425 390.27 8.17 2 242 210.07 13.20 2 119 108.87 8.51 2
e150-9 459 422.53 7.94 2 272 237.79 12.58 2 145 128.41 11.44 2
e150-10 401 353.61 11.82 2 223 189.39 15.07 2 111 97.69 11.99 1
e200-1 615 551.41 10.34 4 371 309.04 16.70 5 198 165.00 16.67 4
e200-2 638 568.04 10.97 3 373 319.55 14.33 4 213 186.55 12.42 4
e200-3 658 585.75 10.98 4 399 336.45 15.68 4 227 183.83 19.02 4
e200-4 601 531.16 11.62 4 344 293.86 14.58 4 182 151.98 16.49 3
e200-5 637 563.32 11.57 4 384 322.20 16.09 4 214 175.78 17.86 4
e200-6 618 544.03 11.97 4 379 301.47 20.46 5 205 169.30 17.41 5
e200-7 635 555.54 12.51 4 384 314.14 18.19 4 199 164.88 17.15 4
e200-8 565 510.44 9.66 4 325 280.16 13.80 4 182 150.47 17.32 4
e200-9 708 630.52 10.94 4 453 366.39 19.12 4 258 207.78 19.46 3
e200-10 629 554.83 11.79 5 379 304.22 19.73 4 202 157.65 21.95 4
e500-1 1688 1525.98 9.60 46 1091 918.42 15.82 65 687 537.79 21.72 84
e500-2 1596 1449.16 9.20 55 1034 858.92 16.93 67 635 505.14 20.45 94
e500-3 1729 1564.59 9.51 54 1143 838.60 26.63 61 697 539.74 22.56 65
e500-4 1611 1466.44 8.97 63 999 833.24 16.59 61 576 458.20 20.45 79
e500-5 1647 1484.68 9.86 39 1039 871.24 16.15 41 638 486.59 23.73 73
e500-6 1706 1546.68 9.34 45 1098 909.92 17.13 62 656 518.96 20.89 92
e500-7 1633 1500.36 8.12 46 1041 823.85 20.86 50 655 16.81 97.43 60
e500-8 1667 1486.38 10.83 44 1052 875.55 16.77 64 644 513.36 20.29 74
e500-9 1728 1551.32 10.22 53 1109 901.16 18.74 65 667 529.12 20.67 69
e500-10 1672 1510.27 9.67 43 1075 874.38 18.66 54 644 509.37 20.91 94
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Table 6: Results of the Lagrangian approach on instance set C (MCUMST). z∗ gives the value of
the best solution found, LB the lower bound, g[%] the gap and t[s] the runtime

b=0.1 b=0.2 b=0.3
instance z∗ LB g[%] t[s] z∗ LB g[%] t[s] z∗ LB g[%] t[s]

c01 1505 1480.35 1.64 1 929 907.27 2.34 1 550 543.70 1.14 0
c02 1491 1461.20 2.00 1 917 899.95 1.86 0 534 528.39 1.05 0
c03 1512 1489.54 1.49 0 956 940.96 1.57 0 576 565.65 1.80 1
c04 1481 1444.46 2.47 1 880 865.04 1.70 0 508 499.66 1.64 0
c05 1481 1438.81 2.85 0 894 865.37 3.20 1 563 328.16 41.71 0
c06 1739 1664.04 4.31 0 1163 1097.07 5.67 0 849 314.14 63.00 0
c07 1655 1594.76 3.64 1 1096 1034.60 5.60 0 700 645.42 7.80 0
c08 1676 1625.71 3.00 0 1112 1056.33 5.01 0 774 287.06 62.91 1
c09 1740 1664.22 4.36 1 1174 1102.62 6.08 1 826 313.09 62.10 0
c10 1696 1633.31 3.70 1 1130 1074.23 4.94 0 729 686.71 5.80 0
c11 2096 2027.48 3.27 1 1617 1520.69 5.96 1 1271 1152.59 9.32 0
c12 2080 2008.94 3.42 1 1594 1491.11 6.46 1 1238 1106.74 10.60 0
c13 2054 2007.68 2.26 1 1562 1453.44 6.95 0 1183 1089.06 7.94 1
c14 2129 2063.64 3.07 1 1679 1551.59 7.59 1 1305 1186.99 9.04 1
c15 2085 2026.37 2.81 1 1585 1481.95 6.50 0 1211 1105.25 8.73 1
c16 2205 2189.37 0.71 2 1773 1414.38 20.23 2 1412 1364.05 3.40 2
c17 2208 2199.08 0.40 2 1790 1737.99 2.91 3 1424 1368.74 3.88 2
c18 2199 2191.47 0.34 2 1760 1751.21 0.50 2 1415 1361.02 3.81 3
c19 2199 2185.43 0.62 2 1765 1749.12 0.90 3 1390 1354.88 2.53 3
c20 2205 2199.00 0.27 2 1784 1420.39 20.38 2 1403 1347.20 3.98 2

5. Conclusion and Further Work

In this paper, we have studied two variants of the upgrading spanning tree problem (UMST), which
is a problem from the family of budget constrained network upgrading problems (BCNUP). In the
problem, we are given a graph G(V,E) and three delay values d0ij > d1ij > d2ij for every edge

{i, j} ∈ E, as well as upgrade costs ci for each node i ∈ V . If a node i gets upgraded, the delay d1ik
may be used for all its adjacent edges {i, k}; and if for an edge {i, j} both nodes i, j are upgraded,
the delay d2ij may be used for this edge. In one variant of UMST, the goal is to find the minimum
delay spanning tree, while not exceeding a given upgrade budget B; while in the other variant, the
goal is to find a minimum cost upgrading scheme, such that the minimum delay spanning tree does
not exceed a given bound W . The problem has been introduced in [Krumke et al., 1999], where
it was studied from an approximation perspective and arises in telecommunication and also in the
design of electrical power grids.

We propose Lagrangian relaxation and branch-and-cut (B&C) approaches for both problems.
The proposed approaches are enhanced using valid inequalities, and we also design primal heuristics
and present variable fixing procedures for the Lagrangian approaches. We asses the efficiency of our
proposed solution methods in a computational study. The B&C approach provides exact solutions
for instances with up to 200 nodes and 19900 edges (resp. 500 nodes and 12500 edges) for the
MDUMST (resp. MCUMST) within a time limit of 1800 seconds (although it typically takes
much less). The proposed valid inequalities are shown to be very important for the efficacy of the
algorithms; likewise, the designed primal heuristics and a strategy to set branching priorities also
have a positive effect on the performance. The Lagrangian approaches are able to provide small
optimality gaps for large-scale instances with 500 nodes and 124750 edges in about 50 seconds for
most of the problems of this size; this makes the Lagrangian approaches an attractive alternative
to the B&C algorithm, especially when dealing with large-scale instances.

Similar approaches to the proposed ones should also be applicable to other problems of the family

22



Table 7: Results of the VHP configuration on instance set EUCLIDEAN (MCUMST). z∗ gives the
value of the best solution found, t[s] the runtime, TL indicates that the instance could not be solved
within a timelimit of 1 800s, g[%] the rootgap, if the instance is solved to optimality and the primal
gap otherwise, and nodes the number of branch and bound nodes.

b=0.1 b=0.2 b=0.3
instance z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes

e100-1 291 5 0.43 7 148 6 2.87 14 70 6 6.12 20
e100-2 284 14 2.55 73 164 50 7.71 1005 77 16 6.60 71
e100-3 277 11 2.14 93 154 13 4.97 58 79 10 5.30 39
e100-4 279 9 1.46 9 163 19 6.15 271 85 8 6.82 31
e100-5 305 7 1.12 32 174 23 5.34 297 94 18 9.31 315
e100-6 315 10 1.65 45 184 48 6.90 857 96 17 8.12 144
e100-7 290 7 1.72 18 173 16 3.81 137 91 7 3.39 12
e100-8 283 7 1.19 35 154 11 4.68 83 81 9 7.02 79
e100-9 281 7 1.86 26 156 11 3.14 87 78 9 3.03 19
e100-10 314 8 2.50 54 187 31 8.29 589 96 15 9.56 231
e150-1 382 15 0.54 6 204 49 4.27 195 100 93 8.08 553
e150-2 424 26 0.96 12 245 216 6.06 1138 133 179 8.66 919
e150-3 425 61 2.82 255 243 64 3.66 113 129 49 5.32 99
e150-4 384 49 2.64 129 205 38 4.02 55 108 32 5.14 47
e150-5 433 94 3.90 476 265 741 6.93 3990 144 171 8.52 901
e150-6 439 47 1.65 117 252 125 4.86 532 139 860 8.56 5881
e150-7 447 26 1.98 77 260 91 4.84 646 140 258 7.02 1577
e150-8 418 24 1.30 14 233 129 4.72 763 118 30 3.18 19
e150-9 450 32 2.29 55 265 182 4.47 1105 145 82 6.36 379
e150-10 391 30 2.15 91 215 72 4.72 349 110 194 8.74 1511
e200-1 598 197 2.68 371 353 TL 5.42 1969 192 736 5.28 1473
e200-2 615 166 2.06 397 361 705 4.03 1198 207 941 4.97 1529
e200-3 638 242 1.83 427 391 TL 6.76 3369 220 TL 6.05 1133
e200-4 585 238 2.17 442 331 247 3.73 473 178 TL 9.18 3515
e200-5 615 419 2.51 1093 365 1072 5.26 3125 206 TL 8.21 4509
e200-6 604 677 2.88 1856 359 TL 7.77 2959 195 635 5.80 1513
e200-7 615 702 1.84 674 369 TL 5.84 4647 192 234 4.73 320
e200-8 550 232 2.02 165 320 821 4.89 1630 173 1255 7.12 2323
e200-9 687 790 2.45 801 434 TL 6.08 4218 248 TL 9.06 3233
e200-10 614 662 2.81 1870 362 TL 5.94 3650 197 TL 10.33 2954
e500-1 1688 TL 4.99 0 1091 TL 7.65 0 692 TL 11.78 0
e500-2 1592 TL 4.79 0 1028 TL 8.78 0 636 TL 11.47 0
e500-3 1721 TL 3.63 0 1113 TL 8.94 0 693 TL 11.63 0
e500-4 1600 TL 4.22 0 1000 TL 8.39 0 590 TL 10.62 0
e500-5 1629 TL 4.37 0 1040 TL 7.77 0 632 TL 10.10 0
e500-6 1706 TL 4.85 0 1085 TL 8.19 0 666 TL 14.00 0
e500-7 1620 TL 2.62 0 1045 TL 9.66 0 612 TL 8.85 0
e500-8 1646 TL 4.74 0 1059 TL 9.54 0 632 TL 8.62 0
e500-9 1717 TL 4.95 0 1108 TL 9.60 0 665 TL 11.14 0
e500-10 1655 TL 3.38 0 1064 TL 6.98 0 648 TL 11.11 0

of BCNUPs. For example, an extension of the proposed approach to a version of UMST where the
spanning tree constraint gets replaced with a Steiner tree constraint is straightforward, by, e.g.,
using Steiner connectivity cuts [Koch and Martin, 1998, Ljubić et al., 2006], or by using a spanning
tree-based Steiner tree relaxation in the Lagrangian approach [see, e.g., Salles da Cunha et al., 2009].
Another fruitful avenue of further research could be the design of an algorithm based on Benders
decomposition for the studied problems, as the presented formulation gives very good bounds, but
suffers from scalability issues. Benders decomposition with only keeping the updating variables in
the master may alleviate these issues. Again, such a Benders decomposition approach should also
be applicable to other problems of the family BCNUP. Finally, studying a bi-objective version of
the problem taking into account both objectives at the same time may also be a worthwhile topic
for further studies.
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Table 8: Results of the VHP configuration on instance set C (MCUMST). z∗ gives the value of the
best solution found, t[s] the runtime, TL indicates that the instance could not be solved within a
timelimit of 1 800s, g[%] the rootgap, if the instance is solved to optimality and the primal gap
otherwise, and nodes the number of branch and bound nodes.

b=0.1 b=0.2 b=0.3
instance z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes z∗ t[s] g[%] nodes

c01 1501 4 0.07 5 919 3 0.82 9 547 3 0.00 2
c02 1482 3 0.24 6 911 4 0.00 0 531 3 0.19 22
c03 1507 4 0.27 7 949 4 0.00 0 571 3 0.00 0
c04 1467 5 0.00 0 876 6 0.51 7 505 5 0.30 9
c05 1468 4 0.37 12 878 3 0.11 6 514 3 0.39 12
c06 1716 6 0.17 9 1140 6 0.22 14 731 10 0.65 46
c07 1641 5 0.00 1 1066 5 0.09 2 668 7 1.09 17
c08 1667 6 0.28 29 1089 7 0.96 30 696 8 0.81 50
c09 1720 7 0.82 45 1151 6 0.70 27 749 16 1.18 195
c10 1676 6 0.17 5 1108 6 1.50 7 711 26 1.76 313
c11 2063 2 0.00 0 1581 31 0.46 143 1222 203 1.37 1846
c12 2045 1 0.00 0 1551 4 0.21 16 1186 34 0.53 164
c13 2037 4 0.34 19 1519 20 0.72 67 1153 426 1.40 3867
c14 2095 3 0.00 0 1634 64 0.78 536 1266 82 1.39 572
c15 2056 3 0.00 0 1551 59 0.97 572 1174 135 1.23 1514
c16 2201 29 0.18 17 1762 62 0.17 37 1375 74 0.25 38
c17 2208 330 0.18 167 1773 TL 0.27 765 1383 639 0.22 394
c18 2199 4 0.00 0 1758 7 0.00 0 1373 7 0.00 0
c19 2199 5 0.00 0 1758 7 0.00 0 1365 715 0.17 270
c20 2202 5 0.00 0 1758 5 0.00 0 1366 10 0.00 0
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