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Abstract. In this paper, a generalization of a recently proposed op-
timal path problem concerning decisions for improving connectivity is
considered (see [Dilkina et al.l 2011)). Each node in the given network is
associated with a connection delay which can be reduced by implement-
ing upgrading actions. For each upgrading action a cost must be paid,
and the sum must satisfy a budget constraint. Given a fixed budget, the
goal is to choose a set of upgrading actions such that the total delay
of establishing paths among predefined node pairs is minimized. This
model has applications in areas like multicast communication planning
and wildlife reserve design.

A novel formulation is provided along with an ad-hoc branch-and-cut and
a stabilized Benders decomposition algorithm. These strategies exploit
connections of the considered problem with other well-known network
design problems. Computational results on a large set of instances show
the efficacy of the proposed preprocessing methods and optimization al-
gorithms with respect to existing alternatives for the problem. Comple-
mentary, the scalability of the models and the corresponding algorithms
is investigated with the aim of answering questions raised by (Dilkina
et al.} 2011).

1 Introduction and Motivation

Finding optimal paths in networks is a fundamental task in a plethora of decision
making contexts involving traffic in some form. The basic variant consists of
finding a minimum distance path between two predefined points (nodes), source
and target. The decision on which connections (or edges) must be chosen to
connect source and target is typically taken by considering the sum of the lengths
or weights of these edges (which is generally minimized), while respecting some
other set of topological and/or operative requirements (the reader is referred
to [Vassilevska), 2008; [Fournier, 2010, and the references therein, which propose
models and algorithms for different optimal path problems).

Although edge-weighted networks offer a broad range of modeling possibilities
in several applications, there exist problems in which decisions must be taken
based on the set of nodes traversed by a given path. Hence, the performance



of a path depends on node weights rather than edge weights. For instance, in
a multicast communication setting a backbone server broadcasts a signal to
many subscribers; the layout of such communication network should be such
that delays (which express when the signal traverses a node) between the server
and all subscribers must be minimal or bounded. In such a problem, the decision
maker seeks for an arrangement of nodes, technologies, and connections such that
a positive function of node delays is minimized or it fulfills a Quality-of-Service
(QoS) requirement.

The Upgrading Shortest Path problem (USP), originally proposed by (Dilk-
ina et al [2011)), fits within the above mentioned context. In this problem, an
upgrading action can be taken, at a certain cost, in order to decrease the delay
induced by nodes. The optimization problem corresponds to (i) finding an up-
grade strategy that induces a minimum network delay while respecting a total
upgrade cost budget, or (ii) finding an upgrade strategy that yields a minimum
total upgrade cost while ensuring that the overall delay is not greater than a
given QoS bound. Moreover, and as stated in (Dilkina et al.; 2011, the USP can
be regarded as a decision aid tool for the design of wildlife reserves (see, e.g.,
Dilkina and Gomes, 2010)).

The problem of finding optimal upgrading schemes for improving network
effectiveness has been addressed before. In the seminal work (Paik and Sahnil
1995) several variants of network upgrading problems are proposed. For these
variants delays can be caused both along edges and across nodes, so the up-
grade decisions involve both components. The complexity of these problems is
provided, showing that they range from polynomially solvable problems up to
NP-hard problems. Later on, in (Krumke et al.l{1999), a problem closely related
to the USP is proposed. If a node is upgraded at a given cost, the weight of
all incident edges is decreased. The goal is to find an upgrade strategy so as
to reduce the total weight of a corresponding minimum spanning tree in the
graph. Only complexity results are provided. In (Campbell et al., 2006) a set
of arc-based upgrading problems is proposed; in all cases the aim is to find an
upgrading strategy so that a min-max type of objective is optimized. Complexity
results are provided as well as heuristic approaches.

From an algorithmic point of view, (Dilkina et al.| |2011)) first prove that the
USP is NP-hard. Additionally, the authors provided a mixed integer linear pro-
gramming (MIP) formulation for the USP and designed two greedy algorithms.
The performance of these algorithms is contrasted with results obtained by solv-
ing the formulation using a stand-alone MIP solver. The MIP model and the
heuristics are able to tackle synthetic grid instances with up to 20x20 nodes
and a medium size real-world instance taken from a wildlife planning applica-
tion. Although interesting, the obtained results reveal the need of developing
more sophisticated exact tools able to solve larger instances while still providing
reasonable guarantees of optimality.

Contribution and Paper Outline The aim of this paper is to provide
different exact algorithmic tools to solve the budget constrained variant of the
generalized counterpart of the USP. Generalized means that one can choose



among several upgrading actions at each node. This generalization is mentioned
in (Dilkina et al., 2011) as an interesting topic for further work. Experimental
results on a large set of benchmark instances show that the proposed methods
are capable of outperforming the results provided by the compact formulation
presented in (Dilkina et al.| 2011 and, moreover, are capable of solving larger
instances.

The paper is organized as follows. A formal definition of the problem and
a formulation based on node separators, along with a corresponding exact al-
gorithm, are presented in Section [2| A decomposable formulation along with a
Benders decomposition scheme is provided in Section [3] Computational results
on different data sets are reported in Section [@ Finally, concluding remarks are
drawn in Section [l

2 Cut-based Formulation

In this Section a formal definition of the problem is first presented. Afterwards,
a formulation based on connectivity cuts is given along with a B&C scheme for
tackling it.

Problem Definition Let G = (V, E) be an undirected graph, where V' is the
set of nodes and F is the set of edges. Set P C V x V corresponds to the set
of node pairs, say p = (s,t), that must be connected by paths. Let d, > 0, be
the delay of node v, v € V; likewise, for each upgrading level | € L and node
v €V, let d, > 0 be the reduced delay of node v, if the node is upgraded to level
I. Complementary, ¢!, > 0 corresponds to the cost of upgrading node v € V to
level | € L. Finally, let B > 0 be the total cost budget.

An upgrading scheme S is a partition VO UV U...U V! of the node set V,
with the meaning that a node i € V! is updated to level [, a node i € V9 is
not updated. An upgrading scheme S is feasible, if the cost of the upgrading
actions induced by S do not exceed B. Let S denote the family of all upgrading
schemes. Let D,(S) be the delay of the shortest path connecting p = {s,t}
under upgrading scheme S. Using this notation, the problem can be formulated
as follows

min %ZDP(S) 1> <B,Ses

pEP leL veV!

In other words, we look for a feasible upgrading scheme that induces a minimum
average path delay. This definition corresponds to the budget-constrained variant
of the general USP. Note that even in the case where |L| = 1, the problem has
been proven to be NP-hard (Dilkina et al., [2011). In the following, the constant
term ﬁ will be neglected for ease of exposition.

2.1 Node separators and MIP Formulation

Let x € {0, 1}IVIXILl be a vector of binary variables such that 2!, = 1 if node v €
V is upgraded to level I € L, and z!, = 0 otherwise. Likewise, let y € {0, 1}‘V|X|P‘



be a vector of binary variables such that y,, = 1 if node v € V is part of the

path connecting the pair p = (s,t) € P, and y,, = 0 otherwise. Complementary,

let z € {0, 1}/VIXIPIXIL be a vector of binary variables such that ziw =1 if the

node v € V, upgraded to level [ € L, is part of the path connecting the pair

p=(s,t) € P, and zllw = 0 otherwise. For an arbitrary set of nodes, say S C V,

for any pair p € P and for a given [ € L, the notation y,(S) = >, g yvp and
l

z,(S) =3 ,cg 2., will be used. The following definition is required.

Definition 1. (Node separator) For a given pair (s,t) € P, a subset of nodes
N C V\ {s,t} is called (s,t) node separator if and only if after eliminating
N from V there is no (s,t) path in G. A separator N is minimal if N \ {i} is
not a (s,t) separator, for any i € N. Let N(s,t) denote the family of all (s,t)
separators.

With these elements, a feasible set of paths along with an upgrading scheme
must fulfill the following set of constraints,

Yo(N)+ > 7(N) > 1, VN € N(s,t),p=(s,t) € P (C.1)
leL
z;w <zl Vie L, Voe V\{st}, Vp=(s,t) € P (C.2)
Z Z cal < B. (C.3)
leL veV

Constraints ensure that for every pair p = (s,t) in P, there is a path com-
prised by a combination of normal nodes or upgraded nodes. Constraint
imposes that an upgraded node can be used (zéw = 1), if and only if it has been
actually upgraded (z! = 1). Finally, constraint imposes that any feasible
upgrading scheme must meet the budget limitation. Hence, one can formulate
the budget constrained USP as follows,

(NODE) min )" > <dvyp1, +>° d@zgv> (1)

(5,£)=pEP VEV |4z leL
st. (CI)-(C3) (2)
(x,y,2) € {0, 1}V IHIEHIVIIPIVEARRALL, 3)

Note that although this formulation contains an exponential number of con-
straints (C.1J), it can be solved efficiently by a branch-and-cut (B&C) algorithm
in which these constraints are added on-the-fly.

2.2 Branch-and-Cut Algorithm

The main ingredient of the B&C approach is its separation scheme, in which
violated constraints of type (C.1]) are identified during the exploration of the
branch-and-bound tree. Moreover, two primal heuristic procedures are also dis-
cussed in this Section.

Separation Schemes FEach time (NODE) is solved, the current LP solution
(X,¥,%) is used to compute a set of violated inequalities (C.1]). To perform



separation, the following transformation of G into a bi-directed graph Gy =
(V', A’) is needed (see also (Alvarez-Miranda et al., 2013; Fischetti et al., 2014)
for similar transformations). This graph is obtained by first bi-directing G (i.e.,
each edge is replaced by two anti-parallel arcs), and then splitting each node
i € V into an arc (i1,42). In other words, a graph G’y = (V’, A’) is created such
that V! = {iy | i e VIU{iza | i € V}, A" = {(i2,51) | (4,)) € AYU{(i1,i2) |5 € V}.
To separate inequalities for a path (s,t) = p € P, arc capacities in G’y are
defined as follows:

~ ~l . . . . .
cap. = Upi + D er Zpin  Hfu=i,v=iz,i €Vii#s,t
uw 00, otherwise.

Next, the maximum flow/minimum cut between s, and ¢ in G4 is calculated.
Note that due to the choice of arc capacities, a minimum (sg,¢1) cut in G4
solely contains split-arcs, and thus corresponds to an (s, ) node separator in G.
If the computed maximum flow is smaller than one, the associated inequality of
type is violated, and subsequently added to (NODE).

Alternatively, if the current LP solution (X,¥,Z) is integer at a given node
of the search tree, the following more efficient separation scheme runs in linear
time for each p € P:

Let GP = (V?,EP) be the subgraph induced by V? = {v € V | §py +
DL Eéw = 1}. If G contains a path between s and t, no violated inequality
exists. Otherwise, GP contains at least two disconnected components H P and
HY, such that s € H? and t € H}.

Let H} be the set of neighboring nodes of H} in G, i.e., H = {v eV \ H! |
F{u,v} € E and v € HP}. A minimal separator between s and ¢ can be found
as follows: (i) delete from G all edges induced by HY U H’; (ii) apply a BFS
from s, and let R(s) be the set of all the reached nodes; finally, (iii) the set
Nt = R(s)N HY defines a minimal (s, ¢) node separator, and the corresponding
cut of type is added to the model.

Primal Heuristic In order to accelerate the convergence of the method,
a simple, but effective, LP-based procedure has been designed with the aim
of using the current LP values for the construction of feasible (and eventually
incumbent) solutions.

Let (X,¥,7) be the current LP solution; the primal heuristic works as follows,

Step 1: For every v € V, find /, = arg max;c,(Z}), and calculate d, = (1 — &% )d, +
ibd! .

Step 2: Compute the shortest path (SP) for every (s,t) = p € P using the delay
values calculated in Step 1;let Y = {f/l,lﬂ, e ,?'P‘} be such paths.

1 ~
dvc_ld“ > pep )Yp N v’ . Afterwards,

use a knapsack-like heuristic to pack as many upgrades into the paths as
possible (which defines x), considering the order given by the values .

Step 3: Forevery v € V and [ € L, compute 'yf, =



In this procedure, the values of the x variables are set in Step 3; hence, the
values of the (y,z) variables can be straightforwardly calculated from the paths
obtained in Step 2.

Local Branching Along with the above mentioned construction heuristic, a
state-of-the-art procedure for generating primal solutions using an MIP-solver as
black-box, known as Local Branching is implemented (see (Fischetti and Lodi,
2003); the technique is also known as Limited Discrepancy Search (Harvey and
Ginsberg, [1995)) within the constraint programming community).

Roughly speaking, for a given (feasible) upgrade scheme %X, Let S = {({,v) |
#L =1, Yv € V,Vl € L} be a set of pairs such that each element denotes if a
node is upgraded using a certain upgrade type in the current incumbent solution.
The goal is to find an improved neighboring solution containing at least |S| — k
upgrades from the current incumbent solution. This is achieved by solving the
current model via branch-and-bound (B&B) after adding the following so-called
asymmetric local branching constraint » - ,ycg(1 — zl) < k.

Initially, & := 10 and a B&B node limit of 10000 and time limit of 10 seconds
are imposed. If within the current neighborhood no improving solution is found
for the given node and time limit, & is increased by 5. The procedure is repeated
as long as k < 20. As soon as an improving solution has been found, the B&B
is restarted, and k is reset to its initial value. In each B&B node the proposed
primal heuristic is executed. Only integer solutions are cut off, i.e., inequalities
are only separated when the current LP solution is integral. The cuts separated
are gathered in a cut pool and added to the model for subsequent iterations.

At the beginning of the resolution process, the previously described primal
heuristic is used to produce a starting solution, using the original delay values.

3 Benders-based Formulation

3.1 Decomposable Formulation

The USP problem embodies the typical structure of a two-stage like problem:;
in a first stage one would decide over the upgrading scheme, and on a second
stage one would define the corresponding shortest paths. Therefore, the USP
becomes a natural candidate to be solved via Benders Decomposition: the master
problem decides over the values of vector x (upgrading decisions); this solution is
then used as parameter when solving the corresponding slave problems (shortest
paths) whose solutions are mapped back in the master in the form of so-called
(optimality) Benders cuts.

Considering the definition of variables presented before, the master problem
is given by

(BF) min {Zep |0 > &(x, P), (C3), x € {0,1}V*I* and 6 € R;’O} . (MP)

pEP



where 8 € RLPO‘ corresponds to a set of | P| auxiliary variables, where each of them

serves as a surrogate of the lower-bound, given by ®(x, p), of corresponding p-th
path.

Recall the graph transformation described before for the separation of con-
nectivity cuts for the linear case. For an optimal solution, say x*, of , and
a given path (s,t) = p € P, the underlying slave problem corresponds to

(BF-Sub) &(x",p) =min » (dvyv + Zdizi) (SP.1)
VEV |y#s,t leL
st zh <l VieL, YveV (SP.2)
S© fee=0and Y fre=1 (SP.3)
e€d—(s7) eest(st)
> fre=land > fre=0 (SP.4)
e€s—(t7) eest(tt)
Y. fee=tet) moand D fre=Gut ) 5, WeEV\{st} (SP5)
e€s—(v™) leL e€st(vt) leL
(3,2) € {0, 1}VIHIVIXIEL ang £ e [0, 1)1, (SP.6)

where f € [0, 1]“4/' is a set of flow variables that enable to model an s, t-path on
G’ and associate the corresponding delay values in the objective function.

The algorithmic scheme designed on the basis of this decomposable formula-
tion will be outlined in detail in

3.2 Benders Decomposition

In the following, the generation of Benders cuts and the details of the imple-
mented stabilization procedure are described. Note that in this paper the Ben-
ders decomposition has been implemented within a B&C framework.

Benders Cuts: Fractional and Integer Case Due to the structure of the
above presented formulation, it holds that the slave problem is always feasible for
any master solution; therefore the generated cuts are then regarded as optimality
cuts.

The separation of Benders cuts depends on whether the current master solu-
tion X is integer or not. If X is fractional, the corresponding slave problem —
is solved as a linear problem and the dual multipliers are then used to
build the cut.

Note that this decomposition scheme falls within the general scheme for solv-
ing fixed-charged (uncapacitated) network design problems (see Magnanti et al.,
1986; |Costal, |2005, for further details). In particular, for integer X, the subprob-
lem for a p € P reduces to a shortest-path problem in the graph induced by the
upgrades selected in X. Let SP,(X) be the value of a shortest-path in this graph
and for each [ € L, let S' = {v € V | & = 1}. If for a given p € P it holds that



0, < SP,(X,p), the following inequality cuts off the current integer point,

0p > SPy(%,p) — Y Y (dy — di)al. (CC)

leL vgSt

The validity of can be explained as follows. Clearly, removing any node
from S! cannot improve the value of the shortest path. Moreover, adding a node v
to some S! may improve the value S P,(%,p) obtained with the currently selected
updates, but the improvement is bounded by (d, — d.).

Stabilization  Benders decomposition frequently exhibits a strong tailing-off
effect, i.e., cutting planes get significantly less effective as the lower bound in-
creases. A possible strategy to address this issue is to include some form of stabi-
lization into the performed separation scheme. In the proposed implementation, a
simple stabilization procedure similar to the in-out-method (see Ben-Ameur and
Netol 2007; [Fischetti and Salvagninl |2010|) is applied at the root node. Instead
of performing separation for the (optimal) master LP solution X, a separation
point Xgep is computed as linear combination between a stabilization point X
and the optimal LP solution X.

For X, the vector 1™ is used. The separation point X, is computed as
Xsep = 7 X+ (1 —7) X, for some v € (0.1,1]. In each cutting plane iter-
ation, separation points are iteratively generated until the generated point is
violated. The parameter y is chosen in the form of a binary-search, approaching
X with each iteration. If no violated point is found within five iterations, the
stabilization procedure is terminated and separation is performed for x.

When performing separation based on X, adding a small € to X improves the
strength of cuts. However, during the final cutting plane iterations, this approach
may lead to numerical difficulties, so the € is removed once the lower bound
increase between iterations is below a fixed threshold. If the removal of € does not
decrease tailing-off, the cut-loop is terminated and branching is performed. After
the root node, separation of optimality cuts is performed without stabilization
and the number of cutting plane iterations is limited to five per B&B node.

Primal Heuristic As for the B&C approach, a scheme for generating primal
(master) feasible solutions is embedded into the Benders decomposition. This
scheme is basically equivalent to the one designed for the B&C: the master
(optimal) solution X is used for computing a vector of delays d (Step 1), which
are then used to compute a new feasible vector % along with values 67 (the value
of the corresponding p-th shortest path). The pair (%, ) is therefore a candidate
of a new incumbent solution.

4 Computational Results

Experimental Setting  The algorithmic schemes described in §2and §3|have
been implemented in C++ using the CPLEX 12.6 Concert framework. All ex-
periments have been performed on an Intel Xeon CPU with 2.5 GHz and 20



cores (only one core is used per run). A fixed memory limit of 16 GB and a
time limit of 1800 seconds have been imposed. The budget B has been set to
BBmaz, where B, corresponds to the total budget necessary to achieve the
shortest delay possible. Three different budget configurations have been tested,
ie., B €{0.1,0.25,0.5}.

Benchmark Instances Two types of instances are considered. The first type
corresponds to NxN grid graphs (see Dilkina et al., |2011)). The second type are
random instances generated by the following scheme: Given the number of nodes,
arcs are placed randomly between nodes until a specified density o = |E|/|V] is
reached and the graph is connected. For each type, set P is defined by randomly
selecting | P| pairs of nodes.

For both types of instances, the upgrade costs ¢ have been chosen uniformly
at random from the range [50, 1000]. For defining the delay of upgraded nodes,
the following schemes have been considered (Dilkina et all 2011)): (i) Scaled —
each upgraded delay value is set to d, = cd,, Yv € V, where ¢ € [0,1] scales
d,. For experiments, ¢ has been set to 0.1, 0.5 and 0.9. (ii) Constant — each
upgraded delay value di, = 50. (iii) Tiered — for d, € (500, 1000], d,, = 500, for
d, € (100,500}, di, = 75, and for d, € [50,100], d;, = 50. Thus in total five up-
grading schemes are considered: Scaled=0.1, Scaled=0.5, Scaled=0.9, Constant,
Tiered.

One grid instance has been generated for every combination between upgrad-
ing schemes, graph size N € {20,30} and number of paths |P| € {5, 10,20, 40}
(40 grid instances). Similarly, one dense instance has been generated for every
combination between upgrading schemes, number of nodes |V| € {1000, 2000}
and graph density a € {4,8,6,32}, with a fixed number of paths |P| = 20
(40 dense instances).

4.1 Algorithmic Performance

First, experiments are reported which measure the average effect of all imple-
mented algorithmic components separately, i.e., the stabilization procedure, pri-
mal heuristics and preprocessing. Afterwards, a detailed comparison of the al-
gorithmic strategies is given. These strategies include B&C algorithms based
on the proposed Benders formulation (BF) and cut formulation based on node
separators (NODE). As a third strategy the multi-commodity flow formulation
(MCF) proposed in (Dilkina et al.| [2011) is considered.

Table [1I| shows the average influence of the implemented stabilization proce-
dure. For each considered budget slack (, all instances have been run once with
and without stabilization. Columns #;(s) and tg(s) display the average root
relaxation solution time for formulation (BF), with and without stabilization,
respectively. The column gr(%) lists the average root gap to the best known
solution. Results show that the speedup increases with the value of S, reaching
one order of magnitude for g = 0.5. The gap of the root relaxation is on aver-
age already close to the optimum, suggesting that both (MCF) and its Benders
reformulation (BF) achieve high-quality bounds.



Table 1. Comparison of the average root relaxation solution time for formulation (BF)
with (tr) and without stabilization ().

B tr(s) tr(s) gr(%)
0.1 2149 19.88  1.59
025 5819 44.62  3.64
0.5 57348 2343  0.69

Table [2| compares the influence of primal heuristics. For each considered bud-
get slack 3, all instances have been run once with and without primal heuristics.
The columns compare running time and gap for each configuration. Average
results are reported only for formulations (NODE) and (BF). For formulation
(MCF), the implemented primal heuristics did not manage to outperform the
default CPLEX heuristics, and were thus switched off for (MCF) in all sub-
sequent runs. The results show that the primal heuristics play a crucial role
for formulations (BF) and (NODE), where less information is available for the
LP solver to exploit than for (MCF). Note that since the implemented local
branching heuristic is potentially very time-consuming, as the exploration of
neighborhoods involves the solution of LPs, in our implementation it is only
applied once after solving the root relaxation.

Table 2. Average influence of primal heuristics on running time and gap.

B=0.1 B =0.25 B=05
t(s) (%) t(s) g(%) t(s) &%)
W/O HEUR. 535 551 600 893 470 4.47
HEUR. 391 268 451 470 365 2.04

As a preprocessing step the same procedure as proposed in (Dilkina et al.
2011)) is implemented, which can be directly incorporated into (BF) and (NODE).
On average, the percentage of fixed node variables is 2.82% (constant), 4.64%
(scaled=0.1), 25.28% (scaled=0.5), 57.24% (scaled=0.9) and 24.55% (tiered).
The results show that the preprocessing is not very effective for the delay types
which were established as difficult in (Dilkina et al., [2011]).

Tables [3| and [4| compare the algorithms’ performance for |L| = 1. For each
setting both the running time (in seconds, columns “t(s)”) and optimality gap
(in percent, columns “g(%)”) are reported. All results are partitioned based on
budget slack 8 and delay structure (scaled, tiered, constant). If a run exceeds
its time limit, the corresponding time column contains TL. If for a run the
formulation’s root relaxation could not be solved within the time limit, the gap
column contains “-”. For each configuration the best results are marked in bold.



B=0.1
MCF BF

Table 3. Test results on grid graphs.

NODE
[Pl t(s) 8(%) (s) 8(%) t(s) 8(%)| t(s) 8(%) t(s) g(%)

MCF

B =0.25

BF

NODE

MCF

t(s) g(%)[ £(s) &(%)

B=05
BF

NODE
t(s) g(%) t(s) (%)

N=20 x 20, Constant

5 4 00 4 0.0 26 00/ 16 0.0 159 0.0 143 0.0f 6 0.0 229 0.0 28 0.0
100 5 0.0 5 0.0 21 0.0/ 30 0.0 76 00 63 0.0 1 0.0 7 00 12 0.0
20/271 0.0266 0.0 7L 0.1 741 0.0 7L 5.8 TL 17.1/]146 0.0 254 0.0 549 0.0
40| TL10.6 TL 185 TL 24.00 TL15.0 TL 22.3 TL 41.3/693 0.0 TL 0.8 TL 55
N=20 x 20, Scaled=0.1

5 2 00 4 00 20 00/ 14 0.0 72 0.0 187 0.0 10 0.0 61 0.0 44 0.0
10 10 0.0 12 0.0 59 0.0 52 0.0 178 0.01363 0.0, 20 0.0 90 0.0 78 0.0
20/184 0.0112 0.01279 0.0/1662 0.0 7L 0.5 TL 22.1|197 0.0 530 0.01692 0.0
40| TL 5.7 TL 4.1 TL 242 TL 181 TL15.8 TL 437/ TL 1.6 TL 6.1 TL 313
N=20 x 20, Scaled=0.5

5 2 00 2 00 9 00 3 00 2 0.0 16 0.0/ 2 0.0 2 0.0 7 0.0
100 2 00 1 0.0 18 0.0 2 00 3 00 22 00 1 0.0 1 0.0 15 0.0
200 9 00 5 0.0 93 0.0 6 00 6 0.0 74 0.0 29 0.0 28 0.0 117 0.0
40[310 0.0 42 0.0 TL 0.0, 328 0.0 124 0.01736 0.0(215 0.0 197 0.01485 0.0
N=20 x 20, Scaled=0.9

5 1 00 1 00 1 0.0 100 1 00 2 00 0 0.0 0 0.0 2 0.0
100 1 0.0 1 0.0 3 0.0 100 1 00 2 00 1 0.0 1 0.0 2 0.0
200 2 00 1 0.0 10 0.0 2 00 1 0.0 10 0.0/ 3 0.0 3 0.0 8 0.0
400 5 0.0 2 0.0 53 0.0 6 00 3 0.0 45 0.0 5 0.0 4 0.0 31 0.0
N=20 x 20, Tiered

5 1 0.0 1 0.0 7 0.0 2 00 2 0.0 10 0.0 2 0.0 2 0.0 10 0.0
100 2 0.0 1 0.0 7 0.0 1 00 1 0.0 7 00 1 0.0 1 0.0 13 0.0
20| 86 0.0 27 0.0 417 0.0, 20 0.0 12 0.0 154 0.0 26 0.0 17 0.0 106 0.0
40[333 0.0 72 0.0 TL 1.1} 372 00 54 0.0 TL 0.1 29 0.0 20 0.0 438 0.0
N=30 x 30, Constant

5116 0.0 24 0.0 59 0.0 33 0.0 203 0.0 74 0.0 62 0.0 TL 3.2 138 0.0
10/663 0.0 TL 8.6 TL 17.0(1492 0.0 TL 33.5 TL 36.1)192 0.0 TL 17.1 857 0.0
200 TL 1.8 TL 11.1 TL 24.2| TL 66.1 TL31.1 TL 462/ TL 0.2 TL 5.1 TL 128
40| TL - TL33.0 TL 482 TL 75.0 TL41.1 TL 60.8 TL 5.4 TL 10.8 TL 20.4
N=30 x 30, Scaled=0.1

5 5 00 8 0.0 10 0.0 7 00 13 0.0 27 00/ 5 0.0 19 0.0 23 0.0
10| 55 0.0 86 0.01778 0.0(1089 0.0 7L 19 TL 6.6648 0.0 TL 6.0 TL 37.2
200 TL 1.9 TL 3.0 TL 158/ TL 66.6 TL34.5 TL 449 TL20.8 TL 25.8 TL 48.0
40| TL - TL29.2 TL 443 TL 748 TL49.7 TL 62.1| TL 64.4 TL28.5 TL 50.4
N=30 x 30, Scaled=0.5

5 4 00 5 00 49 00/ 12 0.0 17 0.0 55 0.0 14 0.0 46 0.0 56 0.0
100 5 00 3 0.0 24 00/ 13 00 6 0.0 42 0.0, 6 0.0 6 0.0 24 0.0
20/381 0.0 36 0.01632 0.0/ 1687 0.0 316 0.0 TL 0.3) TL 0.11209 0.0 TL 0.6
40| TL 0.0270 0.0 7L 5.4 TL 02546 0.0 7L 99 TL 0.0 TL 0.0 TL 04
N=30 x 30, Scaled=0.9

5 1 00 1 00 1 0.0 100 1 00 2 00 1 0.0 1 00 1 0.0
100 5 0.0 5 0.0 70 0.0 9 00 4 0.0 8 00 9 0.0 4 0.0 68 0.0
200 8 0.0 7 0.0 95 0.0 7 00 4 00 9 00 4 00 10 0.0 8 0.0
40/ 69 0.0 53 0.0 7L 0.0, 9 0.0 32 0.0 720 0.0/113 0.0 27 0.0 936 0.0
N=30 x 30, Tiered

5 2 00 1 00 3 00 1 00 1 00 3 00 1 0.0 1 0.0 3 00
10[ 28 0.0 19 0.0 256 0.0 13 0.0 21 0.0 129 0.0, 7 0.0 8 0.0 99 0.0
200 73 0.0 32 0.0 TL 0.5 228 0.0 80 0.0 TL 0.0/ 70 0.0 79 0.01635 0.0
40/378 0.0 65 0.0 TL 8.8 727 0.01034 0.0 7L 23/144 00 62 0.0 TL 1.6



Table 4. Test results on dense graphs.

B=01 B =025 B=05
MCF BF NODE MCF BF NODE MCF BF  NODE
LE1/|V1[(5) 8(%) t(s) 8(%)_t(5) a(%0)] t(5) &%) t(5) 8(%) _t(5) m(%0)] t(5) &(%) t(s) &(%) t(s) &(%)
[V = 1000, |P| = 20, Constant
4255 0.0372 0.01277 0.0/1205 0.0544 0.0 710 0.0 65 0.0 36 0.0 46 0.0
8 TL 1.3537 0.0 366 0.0 173 0.0 444 0.0 112 0.0/ 112 0.01057 0.0 37 0.0
16| TL 0.4855 0.0 307 0.0] 815 0.0 404 0.0 108 0.0f 8 0.0 63 00 12 0.0
32/ 797 0.0811 0.0 42 0.0] 460 0.0 415 0.0 25 0.0/ 118 0.0 87 0.0 12 0.0
V| = 1000, |P| = 20, Scaled=0.1
4/185 0.0 84 0.0 225 0.0/514 0.0 670 0.0 7TL 1.2| 379 0.0 320 0.0 328 0.0
8102 0.0 63 0.0 33 0.0 225 0.0 168 0.0 86 0.0/ 381 0.0 330 0.0 83 0.0
16| 62 0.0 73 0.0 9 0.0/ 101 0.0 103 0.0 11 0.0f 8 0.0 138 0.0 14 0.0
32 51 0.0108 0.0 4 0.0] 123 0.0 104 0.0 8 0.0] 118 0.0 81 0.0 6 0.0
V| = 1000, |P| = 20, Scaled=0.5
4 6 00 2 0.0 10 00 20 00 6 0.0 17 0.0 39 00 13 0.0 18 0.0
8 23 00 8 0.0 10 0.0 22 00 7 0.0 13 0.0, 13 0.0 3 0.0 11 0.0
16| 14 00 6 00 5 0.00 51 00 8 0.0 12 0.0 4 00 9 0.0 16 0.0
32 38 0.0 20 0.0 5 0.0/ 146 0.0 31 0.0 8 0.0] 241 0.0 53 0.0 10 0.0
V| = 1000, | P| = 20, Scaled=0.9
4/ 10 00 2 0.0 13 0.0 11 00 3 0.0 13 0.0 6 0.0 1 0.0 6 0.0
8§ 15 0.0 3 0.0 10 0.0 20 0.0 10 0.0 8 0.00 24 0.0 8 0.0 8 0.0
16/ 21 0.0 3 0.0 5 00/ 25 00 4 0.0 5 00 20 00 4 0.0 4 0.0
320 34 00 8 00 4 0.0 42 00 7 0.0 4 0.0 43 0.0 8 0.0 4 0.0
|[V] = 1000, |P| = 20, Tiered
4/ 23 0.0 11 0.0 40 0.00 63 0.0 21 0.0 31 0.0 26 0.0 27 0.0 20 0.0
8 29 0.0 22 0.0 23 00 39 00 22 0.0 22 0.0 76 00 32 0.0 25 0.0
16/ 13 0.0 9 0.0 6 0.0 38 0.0 10 0.0 6 0.0 17 0.0 7 0.0 5 0.0
320 70 0.0 26 0.0 10 0.0] 53 0.0 29 0.0 6 0.00 71 0.0 8 0.0 4 0.0
|V| = 2000, |P| = 20, Constant
4977 0.0 TL 41 TL 1.8/ TL 60.9 TL16.0 TL 33.7/983 0.01001 0.01466 0.0
8§ TL 79 TL 7.3 TL 5.00 TL 3.6 TL 7.3 TL 26.7| 494 0.0 439 0.0 83 0.0
16| TL -TL17.2 TL 292 TL 645 TL 821792 0.0/ 291 0.0 510 0.0 42 0.0
32| TL - TL 193 776 0.0 TL 56.7 TL 9.4 273 0.0/1486 0.01466 0.0 96 0.0
[V] = 2000, |P| =20, Scaled=0.1
4/ 60 0.0127 0.0 69 0.0/276 0.0 518 0.0 303 0.0 447 0.0 TL 0.2 210 0.0
8 8 0.0139 0.0 30 0.0/ 222 0.0 383 0.0 69 0.0/ 484 0.0 973 0.0 133 0.0
16/ 560 0.0912 0.0 125 0.0| 563 0.0 520 0.0 86 0.0] 380 0.0 542 0.0 38 0.0
32| 98 0.0261 0.0 14 0.0] 385 0.0 403 0.0 31 0.0/ 893 0.01047 0.0 102 0.0
[V| = 2000, |P| = 20, Scaled=0.5
4 12 00 5 0.0 35 0.0 28 00 7 0.0 36 0.0 31 00 13 0.0 47 0.0
8 8 0.0 21 0.0 60 0.0 64 00 30 0.0 67 0.0 72 00 24 0.0 58 0.0
16/ 81 0.0 29 0.0 23 0.00 48 00 20 00 19 0.00 77 00 26 0.0 25 0.0
320 70 0.0 42 0.0 19 0.0] 324 0.0 148 0.0 76 0.0/ 298 0.0 63 0.0 17 0.0
[V| = 2000, |P| = 20, Scaled=0.9
4 24 00 6 0.0 15 0.0 10 00 2 0.0 21 0.0 33 0.0 14 0.0 18 0.0
8 26 00 5 0.0 30 0.0 49 00 12 0.0 21 0.0 24 00 7 0.0 27 0.0
16/ 45 00 7 0.0 15 00/ 21 00 6 0.0 12 0.0/ 53 0.0 11 0.0 22 0.0
320 70 0.0 15 0.0 28 0.0 9% 0.0 16 0.0 13 0.0/ 108 0.0 27 0.0 22 0.0
[V| = 2000, |P| = 20, Tiered
4/ 43 0.0 41 0.0 149 0.0 131 0.0115 0.0 239 0.0 41 0.0 58 0.0 84 0.0
8110 0.0 42 0.0 62 0.0 142 0.0 109 0.0 82 0.0/ 569 0.0 412 0.0 193 0.0
16/ 62 0.0 32 0.0 20 0.00 76 0.0 43 0.0 24 0.0/ 246 0.0 72 00 46 0.0
32 55 0.0 38 0.0 11 0.0} 118 0.0 47 0.0 12 0.0f 63 0.0 37 0.0 7 0.0




The results in Table [3] compare scalability with respect to the number of
paths on grid graphs 20 x 20 and 30 x 30. For 8 = 0.1, the performance of (BF)
is best for delay structures scaled=0.5, scaled=0.9 and tiered, where (MCF)
is outperformed even for small values of |P|. For delay structures scaled=0.1
and constant, the performance is more erratic, and (MCF) frequently achieves
comparable or better performance even for |P| = 40.

For higher budgets, (BF) also tends to perform worse in general. As already
observed by (Dilkina et al., 2011), delay structures constant and scaled=0.1 are
more difficult for (MCF), and this also holds for (BF). The worse performance
of (BF) for the aforementioned configurations can be explained by the fact that
in these cases far more optimality cuts are generated, which in turn slow down
the solution of the master problem. For (NODE), which clearly performs worst
in most observed cases, a similar problem occurs. Here a large number of cuts
is required to enforce connectivity on extremely sparse grid graphs. The high
difficulty of this instance type for algorithms based on branch-and-cut is also
known for similar problems, e.g., the Steiner tree problem, where large-scale
grid graphs remain challenging even for state-of-the-art approaches (see, e.g.,
Polzin|, [2003]).

In Table [4] results on dense graphs with varying values for |E|/|V| are re-
ported. Here (MCF) only manages to outperform other approaches on instances
with constant delay structure which are relatively sparse. For all higher densi-
ties, (MCF) quickly becomes less practical, and is outperformed both by (BF)
and (NODE). Here (NODE) clearly performs best, and is less affected by differ-
ent delay structures and budget slacks. The performance of (BF) is similar to
(NODE) except for delay structures constant and scaled=0.1.

4.2 Multiple Upgrades

In this section the case |L| > 1 is explored. For this purpose grid and dense
graphs with three upgrade levels have been constructed based on the scaled
delay structure, i.e., for each node there exist three possible upgrades using 0.1,
0.5 and 0.9 as scaling factor. Again costs are computed randomly in the range
of [50,1000], but are assigned to upgrades per node such that the upgrade with
the lowest delay is assigned the highest cost.

Table [f| reports results for grid graphs with varying values of | P|. The results
show that on the grid graphs (MCF) performs best for the considered weights.
Only for low budgets and a high number of paths becomes (BF) more compet-
itive. Table [6] reports results for dense graphs with varying values of |E|/|V].
As for |L| = 1, (NODE) performs best on average, only being outperformed by
(MCF) for graphs of lowest density. For higher densities, the root relaxation of
(MCF) cannot be solved within the time limit.



Table 5. Test results on grid graphs with three upgrade types per node.

B=0.1 B =025 B=05
MCF BF NODE MCF BF NODE MCF BF NODE
|P|[t(s) 8(%) t(s) 8(%) t(s) g(%)[t(s) 8(%) t(s) 8(%) t(s) &(%)|t(s) 8(%) t(s) 6(%) t(s) &(%)

N =20, |P| =20, |L| = 3, Scaled={0.1,0.5,0.9}

5[21 0.0237 0.0173 0081 0.0 TL 53804 00] 23 0.0 TL 33 152 0.0
1015 0.0 16 0.0192 00| 78 00 52 0.0 8 00/ 12 0.0 46 00 44 0.0
20| TL 5.2 TL 7.8 TL 16.8 TL 12.2 TL 27.5 TL 44.4[176 0.01035 0.0 TL 0.1
40| TL 54.7 TL 5.9 TL 31.8| TL 9.9 TL 35.6 TL 51.6]397 0.0 540 0.0 TL 0.1
N =30, |P| =20, |L| = 3, Scaled={0.1,0.5,0.9}
5[ 14 0.0 35 0.0197 0.0] 34 0.0 459 0.0496 0.0] 27 0.0 TL 134 201 0.0
10|TL 7.5 TL 17.9 TL 23.8| TL 16.0 TL 49.0 TL 53.4]250 0.0 TL 221365 0.0
20| TL 18.4 TL 14.6 TL 29.6| TL 24.8 TL 40.9 TL 425481 0.0 TL 58 TL 3.0
40| TL - TL 41.0 TL 639| TL - TL53.9 TL 67.5| TL 6.0 TL 13.7 TL 324

Table 6. Test results on dense graphs with three upgrade types per node.

B=0.1 B =025 B=05
MCF BF NODE  MCF BF NODE  MCF BF NODE
[EI/IVI] t(s) 8(%) t(s) (%) t(s) 8(%)] t(s) 8(%) t(s) 8(%) t(s) 8(%)| t(s) 8(%) t(s) a(%) t(s) 8(%)

[V| = 1000, |P| = 20, |L| = 3, Scaled={0.1,0.5,0.9}

4526 0.0 405 0.0 726 0.0] 94 0.0 235 0.0 208 0.0[608 0.0 1100 0.0 1471 0.0

81346 0.0 809 0.0 578 0.0/1359 0.0 920 0.0 805 0.0/212 0.0 94 0.0 38 0.0
16| T, 45 TL 431528 0.0| TL 461558 001275 0.0(279 0.0 159 00 31 0.0
32| TL 23.61369 0.0 290 0.0/ 693 0.0 594 0.0 77 0.0| 95 0.0 120 0.0 21 0.0

[V| = 2000, |P| =20, |L| = 3, Scaled={0.1,0.5,0.9}

41164 0.0 966 0.0 398 0.0] TL 147 TL 13.5 TL 36.4[952 0.01106 0.0 709 0.0

8| TL - TL21.7 TL 231 TL - TL225 TL 40.4/868 0.01648 0.0 510 0.0
17\ TL - TL 4.5 878 0.0/ TL - TL 283 TL26.3] TL 0.31450 0.0 336 0.0
32| TL - TL 731519 0.0, TL - TL 312 TL 9.8/756 0.0 843 0.0 105 0.0

5 Conclusions and Future Work

In this paper, algorithmic expedients along with computational results are pre-
sented for the Upgrading Shortest Path Problem (USP). The USP is a recently
proposed network optimization problem that enables to model a variety of de-
cision making problems where the goal is to optimize the effectiveness of the
sought network while respecting a design budget.

The proposed algorithms show to be effective for quite large instances, being
able to reach rather small optimality gaps, within reasonable computing times,
for instances with medium to large sizes. Moreover, these tailored strategies
outperform the use of a compact formulation even if medium size instances are
considered.
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