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Abstract

Dominating set problems are among the most important class of combinatorial problems in graph
optimization, from a theoretical as well as from a practical point of view. In this paper, we address the
recently introduced (minimum) weighted total domination problem. In this problem, we are given an
undirected graph with a vertex weight function and an edge weight function. The goal is to find a total
dominating set D in this graph with minimal weight. A total dominating set D is a subset of the vertices
such that every vertex in the graph, including vertices in D, is adjacent to a vertex in D. The weight is
measured as the sum of all vertex weights of vertices in D, plus the edge weights in the subgraph induced
by D, plus for each vertex not in D the minimum weight of an edge from it to a vertex in D.

In this paper, we present two new Mixed-Integer Programming models for the problem, and design
solution frameworks based on them. These solution frameworks also include valid inequalities, starting
heuristics and primal heuristics. In addition, we also develop a genetic algorithm, which is based on a
greedy randomized adaptive search procedure version of our starting heuristic.

We carry out a computational study to assess the performance of our approaches when compared to
the previous work for the same problem. The study reveals that our exact solution algorithms are up
to 500 times faster compared to previous exact approaches and instances with up to 125 vertices can be
solved to optimality within a timelimit of 1800 seconds. Moreover, the presented genetic algorithm also
works well and often finds the optimal or a near-optimal solution within a short runtime. Additionally,
we also analyze the influence of instance-characteristics on the performance of our algorithms.

1. Introduction and motivation

Dominating set problems are among the most important class of combinatorial problems in graph optimiza-
tion, from a theoretical as well as from a practical point of view. For a given graph G = G(V,E), a subset
D ⊂ V of vertices is referred to as a dominating set if the remaining vertices, i.e., V \ D, are dominated
by D according to a given topological relation (e.g., they are all adjacent to at least one vertex from D).
Dominating set problems (also often called domination problems in graphs) have attracted the attention of
computer scientists and applied mathematicians since the early 50s, and their close relation to covering and
independent set problems has lead to the development of a whole research area (see, e.g., [25] and [3] for
early references on domination problems).
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There are many applications where set domination and related concepts play a central role, including
school bus routing [32], communication networks [35], radio station location [7], social networks analysis [33],
biological networks analysis [24], and also chess-problems like the five-queens problem [31]; see e.g., the
book [12] for a comprehensive overview of domination problems. Variants of dominating set problems include
e.g., the connected dominating set problem [6], the (weighted) independent dominating set problem [10, 27],
among others (see, e.g., [17] for further variants of the dominating set problems).

In this paper, we address the recently introduced (minimum) weighted total domination problem (WTDP)
which is defined as follows.

Definition 1. Let w : V → R|V |≥0 be a vertex weight function, and let c : E → R|E|≥0 be an edge weight
function. The weighted total domination problem is the problem of finding a set D ⊂ V , such that every
vertex in V (including the vertices from D) has at least one neighbor in D and the function

w(D) =
∑
i∈D

wi +
∑

e∈E(D)

ce +
∑

i∈V \D

min{ce | e : {i, j} ∈ E and j ∈ N(i) ∩D}

is minimized, where E(D) ⊆ E corresponds to the set of edges inside D, and N(i) ⊂ V corresponds to the
set of neighboring vertices of vertex i ∈ V .

For referring to the different components of the objective function, we denote
∑
i∈D wi as the vertex

selection costs,
∑
e∈E(D) ce as the internal edge costs and

∑
i∈V \D min{ce | e : {i, j} ∈ E and j ∈ N(i) ∩D}

as the external edge costs. Figure 1 gives an exemplary instance of the WTDP, together with its optimal
solution.
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Figure 1: Instance I = (G = (V,E, c,w) and optimal solution with weight 14 + 6 + 18 = 38 (vertex selection
costs+internal edge costs+external edge costs). We note that a solution consisting of all the vertices with
weight one would not be feasible, as it is not a total dominating set, but only a dominating set.

We note that in the WTDP, we are not just concerned with the concept of domination, but with the
stronger concept of total domination, which imposes that for each vertex v ∈ D, there is also a neighbor
of v in D (i.e., the vertices of D also need to be dominated by D). The WTDP was introduced in [22]
an is an extension of the (unweighted) total domination problem (TDP), resp., the vertex-weighted total
domination problem. In the TDP, the objective function has wi = 1 for all i ∈ V , and ce = 0 for all e ∈ E.
The optimal solution of the TDP for a given graph is called its total domination number. The TDP was
introduced in the 1980s (see [4]) and is NP-hard in general graphs (see [20], for further details). The TDP
has a rich history of research focusing on theoretical results, e.g., computational complexity and bounds for
the domination number for certain graph classes, we refer the reader to the survey [15] and the book [16]
for more details. Applications of total domination include the design of communication networks and the
forming of committees [12, 14].
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Contribution and Outline The WTDP was recently introduced in [22], where three Mixed-Integer
Programming (MIP) formulations to solve the problem were presented and evaluated in a computational
study. In this paper, we present two new MIP models for the problem, and design solution frameworks
based on them. These solution frameworks also include valid inequalities, starting heuristics and primal
heuristics. A genetic algorithm (GA) is also developed, which is based on a greedy randomized adaptive
search procedure (GRASP) version of our starting heuristic. We carry out a computational study to assess
the performance of our new approaches in comparison to the previous work by [22]. The study reveals that
our algorithms are up to 500 times faster and instances with up to 125 vertices can be solved to optimality
within a timelimit of 1800 seconds. Moreover, the presented heuristics (i.e., the GA, and just using the
GRASP on its own) also work well and often find the optimal, or a near-optimal solution within a short
runtime. Furthermore, we also analyze the influence of instance-characteristics on the performance of our
algorithms.

The paper is organized as follows. In the reminder of this section, we give a short overview of the models
introduced in [22]. In Section 2 we present our two new MIP models, together with valid inequalities. In
Section 3 we discuss implementation details of the branch-and-cut algorithms we designed based on our new
models, including a description of the starting and primal heuristics. In Section 4, we describe our genetic
algorithm. Section 5 contains our computational study, and concluding remarks are provided in Section 6.

1.1 Revisiting the models of [22]

In the following, we give a brief overview of the three formulations for the WTDP presented in [22] (we denote
them as (MA1), (MA2), (MA3)). We re-implemented these models and included them in our computational
study, see Section 5.

Firstly, consider the following set of variables and constraints which are common to all formulations
of [22] and that will also be part of our formulations. Let x ∈ {0, 1}|V | be a vector of binary variables, such
that xi = 1 if vertex i ∈ V is taking as part of the (total) dominating set, and xi = 0 otherwise. Constraints∑

j∈N(i)

xj ≥ 1, ∀i ∈ V, (TDOM)

ensure that the variables with xi = 1 form a total dominating set. We observe that these constraints are
already enough to define the set of feasible solutions. The remaining constraints in the presented models
are used to correctly measure the objective function. Let y ∈ {0, 1}|E| be a vector of binary variables
associated with the edges E. These variables will be used in all formulations except of (MA3), and they
are used differently depending on the considered formulation. In (MA1), (MA2), they are used to measure
the contribution of any edge e = {i, j} on the objective function, for both the internal edge costs and the
external edge costs. In contrast, in the new formulations presented in Section 2, these variables are only
used for the internal edge costs, and the external edge costs are modeled in different ways.

Formulation (MA1) Let z ∈ {0, 1}|E| be a vector of binary variables, such that ze={i,j} = min{xi, xj}
for every edge e : {i, j} ∈ E. For a given vertex i ∈ V , let δ(i) ⊂ E be the set of edges incident to i.
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Formulation (MA1) is given by:

(MA1) w∗ = min
∑
i∈V

wixi +
∑
e∈E

ceye (WTD1.1)

s.t. (TDOM)

xi + xj ≥ ye, ∀e : {i, j} ∈ E (WTD1.3)

xi ≥ ze and xj ≥ ze, ∀e : {i, j} ∈ E (WTD1.4)

ze ≥ xi + xj − 1, ∀e : {i, j} ∈ E (WTD1.5)

ye ≥ ze, ∀e ∈ E (WTD1.6)

xi +
∑
e∈δ(i)

ye ≥ 1, ∀i ∈ V (WTD1.7)

x ∈ {0, 1}|V |, y ∈ {0, 1}|E| and z ∈ {0, 1}E

Formulation (MA2) Let M be a large constant (e.g., the maximum vertex-degree of a given instance).
Compared to formulation (MA1), (MA2) gets rid of the z-variables with the help of big-M-type constraints.
Formulation (MA2) is given by:

(MA2) w∗ = min
∑
i∈D

wixi +
∑

e∈E(D)

ceye

s.t. (TDOM), (WTD1.3) and (WTD1.7) (WTD2.2)

ye ≤ xi + xj − 1, ∀e : {i, j} ∈ E (WTD2.3)∑
e∈δ(i)

ye ≤ 1 +Mxi, ∀i ∈ V (WTD2.4)

x ∈ {0, 1}|V | and y ∈ {0, 1}|E|

Formulation (MA3) Finally, formulation (MA3) also gets rid of the binary y-variables, with the help
of integer variables q ∈ {0, 1, . . . , |V |L}|V |, where L is a large constant, e.g., the maximum edge weight of a
given instance. These variables measure for each i ∈ V twice contribution to the objective of all the edge-
weights of edges adjacent to i (again, for both the internal and external edge costs). Formulation (MA3) is
given by:

(MA3) w∗ =
∑
i∈V

(
wixi +

1

2
· qi
)

(WTD3.1)

s.t. (TDOM)

qi ≥ 2

cexi − Lxi − ∑
e′:{i,j′}∈E|c

e′≤ce

Lxj′

 , ∀e : {i, j} ∈ E, ∀i ∈ V (WTD3.2)

qi ≥
∑

e:{i,j}∈E

ce (xi + xj − 1) , ∀i ∈ V (WTD3.3)

x ∈ {0, 1}|V | and q ∈ {0, 1, . . . , |V |L}|V |

2. Two new Mixed-Integer Programming formulations for the WTDP

In this section we present two alternative formulations that, as we show in Section 5, allow the design of
algorithmic strategies that outperform the results presented in [22].
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2.1 Formulation (F1) and valid inequalities

Let x ∈ {0, 1}|V | be defined as before, and y ∈ {0, 1}|E| be such that ye:{i,j} = 1 if xi = 1 and xj = 1, and
ye:{i,j} = 0, otherwise, for every edge e : {i, j} ∈ E. Let A = {(i, j) ∪ (j, i) | ∀e : {i, j} ∈ E} be the set of
bi-directed arcs associated with E, and let cij = cji = ce for all e ∈ E. In contrast to (MA1), we associate
z with these directed arcs, instead of the undirected edges. Let zij = 1 if vertex j ∈ V is adjacent to the
dominating set vertex i through arc (i, j) ∈ A, and zij = 0 otherwise. These variables are used to measure
the external edge costs. By using such strategy, the resulting formulation resembles to the formulations of
the well-known uncapacitated facility location problem (UFL); we can interpret the set of vertices j ∈ D as
open facilities, we want the vertices i ∈ V \D be assigned to the facility with the cheapest assignment cost
(see, e.g., [8, 19] for recent references on the UFL). Let δ−(i) and δ+(i) correspond to the set of incoming
and outgoing arcs from and to vertex i ∈ V , respectively.

Using this notation, the WTDP can be formulated as follows:

(F1) w∗ = min
∑
i∈V

wixi +
∑
e∈E

ceye +
∑

(i,j)∈A

cijzij

s.t. (TDOM)

xi +
∑

(j,i)∈δ−(i)

zji = 1, ∀i ∈ V (XZLINK1)

zij ≤ xi, ∀(i, j) ∈ A (XZLINK2)

ye ≥ xi + xj − 1, ∀e : {i, j} ∈ E (YZLINK)

x ∈ {0, 1}|V |, y ∈ {0, 1}|E| and z ∈ {0, 1}|A|.

Constraints (XZLINK1) ensure for each i ∈ V , that either i ∈ D, or that it is covered by a j ∈ D.
Constraints (XZLINK2) link the z-variables and x-variables. Together with the

∑
(i,j)∈A cijzij-part of the

objective function, they ensure that the contribution of vertices i ∈ V \D is measured correctly (i.e., these
are the external edge costs). Finally, constraints (YZLINK) and the

∑
e∈E ceye-part in the objective function

make sure that the contribution of edges e : {i, j}, where both i, j ∈ D, is measured correctly (i.e., these are
the internal edge costs). We note that both variable-sets y and z can be relaxed to be continuous, as for
binary x, these variables are automatically binary.

Valid inequalities Next, we present three families of valid inequalities for (F1). Separation of these
inequalities is discussed in Section 3.1.

Theorem 1. Inequalities
ye:{i,j} + zij ≤ xi, ∀(i, j) ∈ A (XZLINK2L)

are valid for (F1).

Proof. These inequalities are a lifted version of inequalities (XZLINK2). Validity follows from the fact, that
in any feasible solution, either the edge e : {i, j} or the arc (i, j) can be contained, and in both cases, this
implies that i ∈ D.

Theorem 2. Inequalities ∑
e∈δ(i)

ye ≥ xi, ∀i ∈ V (TDOMY)

are valid for (F1).

Proof. By definition of total domination, for each i ∈ V , at least one adjacent vertex j ∈ N(i) must be in
D. Thus, if xi = 1, which means i ∈ D, at least one of the ye-variables for e ∈ δ(i) must be one.
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For the next family of valid inequalities, we observe that constraints (YZLINK) together with inequalities
ye:{i,j} ≤ xi (which are valid, but redundant in our case due to the minimization objective) and the binary
constraints on (x,y) give the boolean quadric polytope (BQP) (see, e.g., [26]). Thus all inequalities valid for
the BQP are also valid for our formulation. We note that there are many graph problems which can be
either directly formulated using the BQP, or using the BQP and additional constraints (see, e.g., [1, 2, 23]).
There is a huge number of families of valid inequalities known for the BQP, however, most of them are not
useful within a branch-and-cut algorithm as there are no efficient separation procedures known for them
(see, e.g., [21]). We thus just used the following inequalities known as clique inequalities in our algorithm.

Theorem 3. Let C ⊂ V , such that E(C) ⊂ E form a clique. The clique inequalities∑
e∈E(C)

ye ≥
∑
i∈C

xi − 1 (CLIQUE)

are valid for (F1).

Section 3.1 details how these valid inequalities are incorporated into our solution framework.

2.2 Formulation (F2) and valid inequalities

In formulation (F2), we use continuous variables qi ≥ 0, i ∈ V to measure the external edge costs. This
is done by exploiting a Benders decomposition scheme that allows projecting out the z-variables, similar as
it is done for the UFL (see, e.g., [8]). By doing so, we obtain a polynomial set of optimality cuts, which
are detailed next (note that by adding a ”dummy-arc”-variable zii with weight zero to formulation (F1),
replacing xi in (XZLINK1) with zii and adding a constraint zii ≤ xi the connection to UFL becomes directly
evident; in the following, we also provide a combinatorial argument for their correctness without the need
for Benders decomposition). For ease of exposition, for a given vertex i, let N ′(i) = {j1, . . . , jk, . . . , j|N(i)|}
be the ordered set of adjacent vertices such that cj1i ≤ . . . ≤ cjki ≤ . . . ≤ cj|N(i)|i. Then the cuts for a given
i ∈ V are given by

qi ≥ cki −
k−1∑
k′=1

(cki − ck′i)xk′ − ckixi, ∀k ∈ {1, . . . , |N ′(i)|}. (EXTCOSTS-i)

When xi = 0, i.e., i ∈ V \ D, (EXTCOSTS-i) is similar to the Benders optimality cuts for the UFL and,
therefore, these inequalities measure the external edge cost for vertex i. When xi = 1, i.e., i ∈ D (and thus i
incurs in no external edge cost), the right hand side of the cuts is at most zero, due to −ckixi and, therefore,
they are also correct. By replacing (XZLINK1) and (XZLINK2) with (EXTCOSTS-i), the WTDP can be
formulated as

(F2) w∗ = min
∑
i∈V

(wixi + qi) +
∑
e∈E

ceye

s.t. (TDOM), (EXTCOSTS-i), (YZLINK)

x ∈ {0, 1}|V |, y ∈ {0, 1}|E| and qi ≥ 0,∀i ∈ V.

We note that y-variables could also be projected out, however, the resulting optimality cuts would not
have the same effective structure as (EXTCOSTS-i). Namely, as each ye={i,j} links two vertices i, j ∈ V ,
the corresponding Benders subproblem for a fixed x would not decompose for each vertex.

Valid inequalities Inequalities (EXTCOSTS-i) can be lifted by using the y-variables.

Theorem 4. Let i ∈ V and k ∈ {1, . . . , |N ′(i)|}. Then inequalities

qi ≥ cki −
k−1∑
k′=1

(cki − ck′i)xk′ − ckixi +

k−1∑
k′=1

(cki − ck′i)ye={k′i}, (EXTCOSTS-i-L)

are valid for (F2).
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Proof. When the y-variables are zero, the inequalities are similar to (EXTCOSTS-i) and thus clearly valid.
Now suppose some ye={l,i} for some 1 ≤ l ≤ k−1 is one. By definition of the variables, this means that both xi
and xl are one, and thus on the right-hand-side (rhs) of the cut, we have cki−(cki−cli)−cki = −(cki−cli) < 0.
Thus, (cki − cli) (which is the coefficient of ye) can be added to the rhs, which then will be zero and the
inequality still remains valid. The same reasoning also applies, if more ye-variables are one.

Finally, we observe that inequalities (TDOMY) and (CLIQUE) presented for (F1) are also valid for (F2),
as they are in the (x,y)-space.

3. Implementation details of the branch-and-cut algorithms

In this section, we give implementation details of the branch-and-cut algorithms we designed based on (F1)
and (F2).

3.1 Initialization and separation of cuts

We first describe how the valid inequalities are incorporated in our frameworks. We note that to design
a successful branch-and-cut scheme, it is often crucial to carefully select which cuts to add, e.g., even if
in theory the cuts improve the lower bound, they may lead to slow linear programming (LP)-relaxation
solution times due to their density or numerical stability, which is detrimental to the node-throughput and
thus to the overall performance of the branch-and-cut. We refer to [5, 36, 28] for recent works on theoretical
and computational studies on the challenges of cutting-plane selection. In Section 5.2 we also provide
computational results obtained when just adding individual families of valid inequalities to the formulations.

The lifted inequalities (XZLINK2L) are added at the initialization, by simply replacing their non-lifted
counterpart (XZLINK2). The objective-cuts (EXTCOSTS-i), resp., their lifted version (EXTCOSTS-i-L)
in (F2) are added for the five smallest values of cki for each i ∈ V at initialization, and the remaining ones
are then separated on-the-fly by enumeration. Inequalities (TDOMY) are also separated by enumeration.

Clique inequalities (CLIQUE) are separated heuristically. We observe that inequalities (YZLINK) are
a special case of (CLIQUE) for |C| = 2. For each edge e = {i, j} ∈ E, we try to construct a violated
inequality (CLIQUE) by greedily constructing a clique containing e. Thus, initially, let C = {i, j}. Let
(x̃, ỹ) be the LP-values at the current branch-and-cut node. We sort all vertices k ∈ ∩i∈CN(i) (i.e., all
candidate vertices to grow the clique C) in descending order according to |N(k)| · (x̃k + ε), for ε = 0.0001.
Note that by adding any vertex k to C, the (potential) violation of the constructed clique inequality changes
by x̃k −

∑
i∈C ỹe={i,k}. Thus, we iterate through the sorted list of candidate vertices to increase C, and

whenever this value is greater than ε for a given k, we add it to C, and repeat the procedure for this C.
This is done, until no more vertex can be added to C. We then add the clique inequality for this C if it is
violated. To speed-up separation, if an edge e is already contained in a clique inequality added during the
current round of separation at a branch-and-cut node, we do not consider it in constructing additional clique
inequalities.

In order to avoid overloading the LP-relaxation with cuts and to allow for a fast node-throughput in
the branch-and-cut, we only separate inequalities at the root node and limit separation to ten rounds.
Naturally, to ensure correctness when using (F2) violation of objective-cuts (EXTCOSTS-i), resp., their
lifted version (EXTCOSTS-i-L), is also checked whenever an integer solution is obtained during the branch-
and-cut. As inequalities (TDOMY) and in particular (CLIQUE) can become quite dense, especially if the
instance graph has many edges, we use the option UseCutFilter provided by CPLEX (the chosen MIP-
solver), when adding these cuts. With this option, CPLEX checks the cut with the same criteria (e.g.,
density) as it checks its own general purpose cuts, and adds it only if it determines that it is beneficial.

3.2 Starting and primal heuristic and local search

We implemented both a starting heuristic and a primal heuristic; the former gets called at the initialization
while the latter gets called during the execution of the corresponding branch-and-cut algorithms. Both
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of these heuristics construct feasible solutions, which we then try to improve by applying a local search
procedure The starting heuristic starts out with the solution DH = V consisting of the set of all vertices
(which clearly is a feasible solution). We then greedily remove vertices from DH as long as the solution
remains feasible. Algorithm 1 details our starting heuristic.

At each iteration, we use a score scorei for choosing the vertex to remove; this score gives for each vertex
in DH the improvement in objective solution value it would bring if it is removed. When removing a vertex,
say i, its vertex weight vi and the internal edge costs wij for j ∈ DH are not applicable anymore. On
the other hand, we need to consider the new external edge cost for covering i and, moreover, we have to
consider that all the vertices j′ ∈ V \DH that are covered by i up to that iteration now need to be covered
by another vertex in DH (thus for covering these vertices we will get new, similar or higher, external edge
costs). We note that removing a vertex only causes local changes in the solution structure, thus we do not
need to calculate scorei for each vertex in DH from scratch in every iteration. In particular, when node i gets
removed, the score needs to be re-calculated only for neighboring nodes j ∈ N(i) and for the corresponding
neighbors j′ ∈ N(j) (removing i may change the external edge costs associated with such a j′ as both i and
j′ share j as neighbor). We observe that verifying if DH is still be a total dominating set after removing i
(line 9 of Algorithm 1) can be done efficiently by storing the number NH

j = |N(j) ∩ DH | for each j ∈ V ,

i.e., the number of neighbors of j contained in DH . At the begging of the algorithm execution, it holds
NH
j = |N(j)|, and whenever a vertex i′ gets removed in the course of the algorithm, NH

j gets decreased by

one for each j ∈ N(i). Therefore, DH \ {i} is still a total dominating set, if and only if NH
j > 1 for each

j ∈ N(i).
The primal heuristic is guided by the (x̃)-values of the LP-relaxation at the current branch-and-cut node.

First, we sort the vertices i ∈ V in descending order according to x̃i. Afterwards, ties are broken first by
degree of the vertices (again in descending order), and if there remain ties, they are broken by vertex-index.
Let sorted be the list of sorted vertices, DH = ∅ (the solution to be constructed) and covered = ∅ (the
list of vertices covered by DH). To construct a heuristic solution, we iterate through sorted and whenever
|N(i) ∩ (V \ covered)| > 0 for the currently considered vertex i, i.e., i covers a vertex not yet covered by
the current partial solution DH , we add i to DH and update covered by covered ∪ N(i). We stop when
covered = V , i.e., DH is a total dominating set and thus a feasible solution.

The local search procedure is shown in Algorithm 2. It uses two local search operators, namely adding a
vertex i to the current solution DH and removing a vertex i from the current solution DH . The procedures
testAddVertex(DH,i) and testRemoveVertex(DH,i) revert the change in objective function caused by
adding/removing a vertex i. This can be done efficiently, as the changes caused by these moves are of a
local nature, as described above (e.g., the test for the change caused by removing i is exactly the calculation
of the score-function in Algorithm 1). We first try the add-move, and when this move cannot improve the
current solution anymore, we try the remove-move. If it is successful, we go back to trying the add-move, if
not, the local search terminates. We iterate through the vertices by their indexes, and if a move is possible,
we apply it, and then restart (i.e., we use a first improvement strategy).

3.3 Branching priorities

For both (F1) and (F2), once the x-variables are fixed to binary, the values of all the other variables (i.e.,
(y, z), resp., (y,q)) automatically follow. We thus give branching priorities 100 · |N(i)| to the x-variables in
the MIP-solver, CPLEX in our case (while the branching priorities of the other variables were left at their
default value, i.e., zero).

4. A genetic algorithm

Genetic algorithms (GAs) are among the most prominent metaheuristic approaches for solving (combinato-
rial) optimization problems; we refer the reader to the book [18] for an overview on essential elements of this
class of procedures. GAs have been developed for tackling set dominating problems. For instance, a hybrid
GA has been developed in [13] for the minimum dominating set problem, where the GA methodology is
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input : instance (G = (V,E), (c,w)) of the WTDP
output: total dominating set DH

1 DH ← V
2 scorei ← −∞ // store score function for faster evaluation, −∞ indicates

re-calculation needed

3 improvingMoveExists← false
4 do
5 improvingMoveExists← false
6 vertexToRemove← null
7 bestScore = 0

8 for i ∈ DH do
9 if DH \ {i} is not a total dominating set then

10 continue
11 if scorei = −∞ then // re-calculation of score needed

12 scorei ← wi // vertex costs saved

13 for j ∈ N(i) ∩DH do
14 scorei ← scorei + wij // internal edge costs saved

15 w∗ ← minj∈DH wij // external edge cost for covering i updated

16 scorei ← scorei − w∗
17 for j ∈ N(i) ∩ (V \DH) do // external edge costs for vertices currently

covered by i updated

18 if i ∈ arg minj′∈DH wjj′ then
19 w∗j ← minj∈(DH\{i}) wij // external edge cost for covering j updated

20 scorei ← scorei − w∗j
21 if scorei > bestScore then
22 bestScore = scorei
23 vertexToRemove← i
24 improvingMoveExists← true

25 if improvingMoveExists then
26 DH ← DH \ {vertexToRemove}
27 for ∀j ∈ N(vertexToRemove) do // score for the neigbors of vertexToRemove, and

their neigbors need to be updated

28 for ∀j′ ∈ N(j) do
29 scorej′ ← −∞
30 while improvingMoveExists

Algorithm 1: Starting heuristic

combined with local search and intensification schemes; likewise, in [9] a parallelized GA is presented for the
same problem. Further examples on GA-based approaches for related problems can be found in [34] for the
dominating tree problem, and in [29] for the minimum weight minimum connected dominating set problem.

In their general setting, GAs explore the solution space by keeping a set of feasible solutions, denoted as
population. Starting from an initial population, the algorithm iteratively creates a new population (i.e., new
solutions) by typically using the following three (randomized) bio-inspired operators: selection, mutation
and crossover. The selection operator selects a subset of the current population (according to a fitness value
of each solution), from which (usually) pairs of solutions are taken and a crossover operator is applied to
combine these pairs to create a new solutions. To these new solutions a mutation operator is applied, which
randomly modifies the solution in order to keep the population diverse.

Algorithm 3 gives an outline of the genetic algorithm we developed for the WTDP. The initial popula-
tion is constructed by using a generalized randomized adaptive search procedure (GRASP) version of our
starting heuristic. GRASP is a general technique to generate (diverse) heuristic solutions by randomizing
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input : total dominating set DH

output: total dominating set DH (with potentially better objective function value)
1 improvingMoveExists← false
2 do
3 improvingMoveExists← false

4 for i 6∈ DH do
5 if testAddVertex(DH,i)> 0 then
6 DH = DH ∪ {i}
7 improvingMoveExists← true
8 break

9 if improvingMoveExists == false then
10 for i ∈ DH do
11 if testRemoveVertex(DH,i)> 0 then
12 DH = DH \ {i}
13 improvingMoveExists← true
14 break

15 while improvingMoveExists
Algorithm 2: Local search

the construction phase. For further details on GRASP, the reader is referred to the recent textbook [30]. In
order to turn our starting heuristic into a GRASP, we add randomization to the choosing of the vertex with
the best score (i.e., lines 22-24): If a vertex i has scorei > bestScore, we generate a random integer in [0, 99]
and only apply lines 22-24 if this integer is larger than a given value cutoff .

As crossover operator, we also use modifications of Algorithm 1, resp., the GRASP. In particular, for
crossover between two solution D1, D2, we use the GRASP, and set DH ← D1 ∪ D2 as initial solution in
line 1. For mutation, we generate a random integer m in a given range [ml,mu] and then randomly remove
m vertices from the current solution DH . After removing these vertices, DH may be infeasible, in order
to make it feasible, we apply the same heuristic as our primal heuristic (with just the degree of vertices
as sorting criterion, as of course we have no LP-values). After mutation, we also apply the local search
procedure described in Algorithm 2. The newly obtained solutions are merged with the current population,
and then the populationSize best are selected as the next generation, for a given value of populationSize.
As a fitness value for selection, we use the objective function values of the solutions. In order to keep the
population diverse, we keep at most one solution for each fitness value and size |DH | in the population (this
is done by checking if the current population already contains a solution with the fitness value and size of
the currently created solution, and if yes, the solution is discarded). To create the population, we run the
GRASP initialPopulationSize times, for a given value of parameter initialPopulationSize and then select
the populationSize best solutions.

We used the following parameter values in our implementation, these values were determined using some
preliminary computational experiments: initialPopulationSize = 100, populationSize = 40, cutoff = 30,
[ml,mu] = [1, 4], and nIterations = 20.

5. Computational results

The branch-and-cut framework was implemented in C++ using CPLEX 12.9 as MIP solver and the genetic
algorithm was also implemented in C++. The computational study was carried out on an Intel Xeon E5
v4 CPU with 2.5 GHz and 6GB memory using a single thread. All CPLEX parameters were left at default
values (except branching priorities, see Section 3.3), and we set the timelimit for a run to 1800 seconds
(similar to the timelimit in [22]).
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input : instance I = (G = (V,E), (c,w)) of the WTDP, parameters
initialPopulationSize, populationSize, cutoff, [ml,mu], nIterations

output: total dominating set DH

1 population← ∅
2 for i = 1, . . . , initialPopulationSize do
3 newD ← GRASP(I, cutoff)
4 if there is no solution with the same objective value and size as newD in population then
5 population← population ∪ newD
6 population← select(population, populationSize)
7 for i = 1, . . . , nIterations do
8 for all pairs D1, D2 from population do
9 newD ← crossover(D1, D2, cutoff)

10 newD ← mutation(newD, [ml,mu])
11 newD ← localSearch(newD)
12 if there is no solution with the same objective value and size as newD in population then
13 population← population ∪ newD
14 population← select(population, populationSize)

15 DH ← select(population, 1)
Algorithm 3: Genetic algorithm

5.1 Instance description

Instances similar to the instances of [22] In [22], the authors created instances to test their formula-
tions. Unfortunately, the instances are not available online, thus we generated our own, following the same
procedure as described in [22]. These instances are generated according to the Erdös-Rényi model, where
one fixes the number of nodes, |V | and a probability p ∈ [01] that allows to control the edge density of the
resulting graph. Edge and vertex weights, c and w, respectively, are random integers between one and five.
As in [22], we considered |V | ∈ {20, 50, 100} and p ∈ {0.2, 0.5, 0.8}, which leads to instance ranging from 20
nodes and 31 edges to 100 nodes and 3943 edges. For each pair (n, p) we generated five instances (instead of
one as done in [22]), using the gnp random graph(n,p)-method from the networkx-package [11] to obtain
the Erdös-Rényi graphs. This set has 3 ·3 ·5 = 45 instances. We denote this set of instances as MA, individual
instances are addressed as MA−|V | − p− id, where id ∈ {1, . . . , 5}.

New instances To analyze the influence of different weight structures, we generated an additional set of
instances, denoted as NEW, as in the MA both are in a similar (small) range. We again used the Erdös-Rényi
model, and considered |V | ∈ {75, 100, 125} and p ∈ {0.2, 0.5, 0.8}. We used the following range-combinations
for (c,w): ([1, 50], [1, 10]), ([1, 25], [1, 25]),([1, 10], [1, 50]). For each combination of (|V |, p) and (c,w) we
created five instances. Thus, this set has 3 · 3 · 3 · 5 = 135 instances. The instance set is denoted as NEW,
individual instances are addressed as NEW−|V |−p− cu− id, where id ∈ {1, . . . , 5} and cu is the upper bound
of the considered range for c (i.e., cu ∈ {10, 25, 50}).

Both sets of instances we created are available online at https://msinnl.github.io/pages/

instancescodes.html.

5.2 Assessing the effect of the valid inequalities

We now analyze the effect of the families of valid inequalities presented in Section 2. In order to test this,
we added them individually to the corresponding model of the LP-relaxation of (F1) and (F2), and then
also added all of them together. There is an exponential number of cliques; therefore, in order to get an
impression of the effect of clique inequalities (CLIQUE), we heuristically calculate edge clique covers (i.e.,
set of cliques, such that every edge occurs in one of the cliques) using our separation heuristic described in
Section 3.1 (using the vertex-degree as sorting criteria), and add the corresponding inequalities induced by
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the cliques in this cover.
In figure 2, we give a plot of the obtained LP gaps (over both instance sets), calculated as

100 · (wB − wLP )/wB , where wB is the best solution value we obtained using our approaches, and
wLP is the value of the considered LP relaxation. Note that the figure does not give a plot for
(F1)+(XZLINK2L),(F2),(F2)+(EXTCOSTS-i-L),(F2)+(TDOMY), (F2)+(CLIQUE). This is, because us-
ing the liftings (XZLINK2L), resp., (EXTCOSTS-i-L) on their own had no effect on the value of the LP
relaxation. Moreover, the values obtained by (F2),(F2)+(TDOMY), (F2)+(CLIQUE) are just the same as
their counterpart with (F1), as in (F2), the z-variables are projected out in a Benders way, and (TDOMY)
and (CLIQUE) operate in the (x,y)-space. On the other hand, there is a slight difference between (F1)+all
and (F2)+all, with (F1)+all giving slightly lower gaps. An explanation for this is, that once inequali-
ties (TDOMY) and (CLIQUE) are present in the model, the liftings (XZLINK2L), resp., (EXTCOSTS-i-L)
also start to have an effect on the bounds (as both (TDOMY) and (CLIQUE) ”push” the y-variables, which
are the variables added in the lifting).

Overall, we see that both (TDOMY) and (CLIQUE) on their own result in a considerable improvement
of the LP gap, e.g., without any inequalities only around 20% of the instances have an LP gap of 20% or
less, while adding (TDOMY) or (CLIQUE) increases the number of instances with such a gap to about 30%.
Adding all families together gives again a considerable improvement, now for about 50% of instances, the LP
gap is 20% or less. When adding all inequalities, the largest LP gap is around 50%, while without adding
any inequalities, the largest gap is over 70%.
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Figure 2: LP-gap plot for adding families of valid inequalities to (F1) and (F2).

5.3 Detailed results

In this section, we provide detailed results obtained by the branch-and-cut frameworks based on the formu-
lations (F1) and (F2) described in Section 3, and also the genetic algorithm. A comparison with the models
of [22] is also done.

In Table 1 we report the following results for instance set MA. In columns (F1)+ and (F2)+, we report the
results attained by our branch-and-cut algorithms. In columns (F1) and (F2) we report the results attained
when solving (F1) and (F2) directly with CPLEX, without any of the branch-and-cut ingredients presented
in Section 3 (note that in case of (F2), constraints EXTCOSTS-i are separated as they are needed to ensure
correctness). In columns (MA1), (MA2), and (MA3) we report the results attained when solving directly by
CPLEX the formulations provided in [22]. In this table, we report for each approach the runtime (column
t[s]), the objective value of the best obtained solution (column wB) and the optimality gap (column g[%],
calculated as 100 · (wB − LB)/wB , where LB is the obtained lower bound).

The results reported in Table 1 show, that the approaches proposed in this paper (i.e., (F1), (F2),
(F1)+ and (F2)+), are considerably more effective than those proposed in [22]: All of our approaches, with
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the exception of (F1), managed to solve all the instances within the timelimit, while none of the approaches
(MA1), (MA2), and (MA3) managed to solve the instances with 100 nodes to optimality (and (MA1), (MA2)
also fail for some of the instances with 50 nodes). Moreover, for the instances where our approaches as well
as the approaches of [22] can solve the problem, our approaches are up to 500 times faster; see, e.g, instances
MA-50-0.5-4, where (F2)+ takes 2 seconds, while (MA3) takes 1201 seconds (and (MA1), (MA2) reach the
timelimit). Likewise,the gaps attained by our strategies (when the time limit is reached), are considerable
smaller than those attained by the [22] approaches (for instance, while the maximum gap attained by (F1)
is 9.06%, the maximum gap attained by (MA3) is 72.53%). When comparing among our approaches, we see
that for all but two instances (MA-100-0.8-3 and MA-100-0.8-4), (F2)+ is the fastest, and for these two
instances (F2) is the fastest. Not surprisingly, the instances become harder with larger number of vertices,
and, also higher density (p) seems to make the instances harder.
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Table 1: Comparison with previous approaches (MA1), (MA2), (MA3) from literature on instance set MA

instance (F1) (F1)+ (F2) (F2)+ (MA1) (MA2) (MA3)
|V | p id t[s] w∗ g[%] t[s] w∗ g[%] t[s] w∗ g[%] t[s] w∗ g[%] t[s] w∗ g[%] t[s] w∗ g[%] t[s] w∗ g[%]

20 0.2 1 1 63 0.00 1 63 0.00 1 63 0.00 1 63 0.00 2 63 0.00 3 63 0.00 2 63 0.00
20 0.2 2 1 58 0.00 1 58 0.00 1 58 0.00 1 58 0.00 3 58 0.00 3 58 0.00 1 58 0.00
20 0.2 3 3 58 0.00 1 58 0.00 1 58 0.00 1 58 0.00 3 58 0.00 3 58 0.00 1 58 0.00
20 0.2 4 1 51 0.00 1 51 0.00 1 51 0.00 1 51 0.00 4 51 0.00 3 51 0.00 2 51 0.00
20 0.2 5 1 55 0.00 1 55 0.00 1 55 0.00 1 55 0.00 3 55 0.00 4 55 0.00 1 55 0.00
20 0.5 1 1 44 0.00 1 44 0.00 1 44 0.00 1 44 0.00 5 44 0.00 4 44 0.00 1 44 0.00
20 0.5 2 1 47 0.00 1 47 0.00 1 47 0.00 1 47 0.00 4 47 0.00 5 47 0.00 1 47 0.00
20 0.5 3 1 46 0.00 1 46 0.00 1 46 0.00 1 46 0.00 6 46 0.00 4 46 0.00 1 46 0.00
20 0.5 4 1 40 0.00 1 40 0.00 1 40 0.00 1 40 0.00 4 40 0.00 3 40 0.00 1 40 0.00
20 0.5 5 1 41 0.00 1 41 0.00 1 41 0.00 1 41 0.00 4 41 0.00 3 41 0.00 1 41 0.00
20 0.8 1 1 37 0.00 1 37 0.00 1 37 0.00 1 37 0.00 3 37 0.00 4 37 0.00 2 37 0.00
20 0.8 2 3 35 0.00 1 35 0.00 1 35 0.00 1 35 0.00 4 35 0.00 4 35 0.00 1 35 0.00
20 0.8 3 1 40 0.00 1 40 0.00 1 40 0.00 1 40 0.00 5 40 0.00 4 40 0.00 1 40 0.00
20 0.8 4 1 34 0.00 1 34 0.00 1 34 0.00 1 34 0.00 4 34 0.00 5 34 0.00 1 34 0.00
20 0.8 5 1 34 0.00 1 34 0.00 1 34 0.00 1 34 0.00 5 34 0.00 3 34 0.00 1 34 0.00

50 0.2 1 2 111 0.00 1 111 0.00 4 111 0.00 1 111 0.00 991 111 0.00 216 111 0.00 229 111 0.00
50 0.2 2 3 106 0.00 1 106 0.00 3 106 0.00 1 106 0.00 1380 106 0.00 438 106 0.00 309 106 0.00
50 0.2 3 8 111 0.00 1 111 0.00 4 111 0.00 1 111 0.00 TL 114 10.40 755 111 0.00 552 111 0.00
50 0.2 4 4 101 0.00 1 101 0.00 4 101 0.00 1 101 0.00 796 101 0.00 322 101 0.00 409 101 0.00
50 0.2 5 13 108 0.00 1 108 0.00 6 108 0.00 1 108 0.00 TL 108 12.19 1565 108 0.00 1129 108 0.00
50 0.5 1 4 82 0.00 3 82 0.00 3 82 0.00 2 82 0.00 TL 82 19.75 TL 82 9.11 631 82 0.00
50 0.5 2 5 85 0.00 2 85 0.00 3 85 0.00 2 85 0.00 TL 88 19.39 1579 85 0.00 794 85 0.00
50 0.5 3 22 84 0.00 3 84 0.00 4 84 0.00 2 84 0.00 TL 87 18.31 TL 85 9.37 1082 84 0.00
50 0.5 4 16 82 0.00 3 82 0.00 4 82 0.00 2 82 0.00 TL 82 17.55 TL 82 14.90 1201 82 0.00
50 0.5 5 15 82 0.00 4 82 0.00 4 82 0.00 2 82 0.00 TL 83 20.30 TL 82 12.69 1062 82 0.00
50 0.8 1 6 77 0.00 7 77 0.00 5 77 0.00 4 77 0.00 TL 77 8.39 1063 77 0.00 876 77 0.00
50 0.8 2 3 72 0.00 3 72 0.00 3 72 0.00 2 72 0.00 452 72 0.00 307 72 0.00 299 72 0.00
50 0.8 3 3 74 0.00 3 74 0.00 4 74 0.00 2 74 0.00 1100 74 0.00 587 74 0.00 446 74 0.00
50 0.8 4 6 76 0.00 5 76 0.00 4 76 0.00 3 76 0.00 TL 76 10.23 1242 76 0.00 736 76 0.00
50 0.8 5 13 79 0.00 15 79 0.00 7 79 0.00 7 79 0.00 TL 79 16.13 1720 79 0.00 1310 79 0.00

100 0.2 1 898 175 0.00 92 175 0.00 566 175 0.00 50 175 0.00 TL 183 38.79 TL 178 34.82 TL 175 56.48
100 0.2 2 251 174 0.00 14 174 0.00 276 174 0.00 12 174 0.00 TL 174 34.17 TL 175 34.60 TL 188 61.21
100 0.2 3 TL 178 6.48 239 177 0.00 1434 177 0.00 121 177 0.00 TL 195 43.27 TL 189 41.47 TL 183 60.95
100 0.2 4 TL 169 2.17 81 169 0.00 562 169 0.00 37 169 0.00 TL 172 37.79 TL 175 36.77 TL 172 59.06
100 0.2 5 TL 171 5.39 97 167 0.00 1473 167 0.00 47 167 0.00 TL 170 39.18 TL 172 38.20 TL 173 60.06
100 0.5 1 TL 147 2.69 304 147 0.00 292 147 0.00 108 147 0.00 TL 166 51.92 TL 160 49.55 TL 149 62.37
100 0.5 2 707 144 0.00 158 144 0.00 152 144 0.00 51 144 0.00 TL 154 44.81 TL 148 42.81 TL 150 66.31
100 0.5 3 995 147 0.00 401 147 0.00 186 147 0.00 128 147 0.00 TL 157 48.58 TL 149 43.22 TL 160 62.88
100 0.5 4 TL 149 9.06 725 146 0.00 289 146 0.00 214 146 0.00 TL 156 50.99 TL 150 46.05 TL 160 63.98
100 0.5 5 TL 139 3.18 466 139 0.00 242 139 0.00 155 139 0.00 TL 148 49.27 TL 145 44.48 TL 152 71.38
100 0.8 1 1655 136 0.00 346 136 0.00 172 136 0.00 97 136 0.00 TL 150 55.44 TL 141 51.52 TL 136 62.64
100 0.8 2 759 140 0.00 894 140 0.00 283 140 0.00 249 140 0.00 TL 146 49.55 TL 141 44.35 TL 147 65.31
100 0.8 3 1212 141 0.00 1032 141 0.00 236 141 0.00 325 141 0.00 TL 144 53.13 TL 149 50.87 TL 153 71.51
100 0.8 4 TL 141 7.45 1652 141 0.00 334 141 0.00 495 141 0.00 TL 148 52.31 TL 147 50.83 TL 142 71.17
100 0.8 5 990 134 0.00 509 134 0.00 231 134 0.00 160 134 0.00 TL 152 55.60 TL 148 51.19 TL 156 72.53

In the following, we focus on the instance set NEW and our solution algorithms to get more insights on the
performance of them, in particular, their behavior with respect to different weight structures. In Figure 3,
we present plots of runtimes to optimality, and optimality gaps (for the unsolved instances of the respective
approaches) for (F1) (F2), (F1)+ and (F2)+. Figures 3a and 3b give runtimes optimality gaps, respectively,
for the complete set of instances NEW, while Figures 3c-3g show results for the different weight structure,
i.e., Figures 3c and 3d are for the instances with cu = 10, Figures 3e and 3f are for the instances with
cu = 25 and Figure 3g is for the instances with cu = 50 (since all instances are solved to optimality we do
not provide an optimality gap plot). Note the different scales on the x-axis of Figure 3g compared to the
other runtime-plots.

14



●
●
●●
●●●
●●
●●●
●●●
●●●
●●●

●●●●●
●●●
●●●
●●●

● ●●●● ●●●●●
●● ●●●

● ● ● ● ●● ● ●●●
● ● ● ● ● ● ● ●

0

25

50

75

100

0 300 600 1200 1800
runtime [s]

#
in

st
an

ce
s 

[%
]

Setting
● (F1)

(F1)+
(F2)
(F2)+

(a) Runtime plot for all instances of the set
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(b) Optimality gap plot for all instances of the set
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(c) Runtime plot for instances with cu = 10
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(d) Optimality gap plot for instances with cu = 10
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(e) Runtime plot for instances with cu = 25
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(f) Optimality gap plot for instances with cu = 25
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(g) Runtime plot for instances with cu = 50 (all solved to
optimality with all approaches, but x-axis cut off at 150
seconds for better readability.)

Figure 3: Plots of runtimes and optimality gap of our MIP-approaches on instance set NEW and different
subgroups of these instances

In the plots shown in Figure 3 we see a strong connection between the weight structure and the compu-
tational difficulty of the instances. All instances with cu = 50 can be solved by all approaches within the
timelimit; furthermore, (F2) and (F2)+ only need at most 100 seconds. However, for both cu = 25 and
cu = 10, the situation is strikingly different, in particular, for cu = 10; we can observe that only (F1)+ and
(F2)+ manage to solve over 50% of the instances within the timelimit. This behavior might be explained
by the fact that, for these instances, edges play a more important role (due to their larger weight range),

15



and thus the problem becomes more similar to a BQP problems and, as it has been shown previously in
the literature, problems where a BQP structure plays an important role a often very hard to solve (see,
e.g., [1]). Such hypothesis could be validated by the fact that for these instances, the (F1)+ approach, which
includes the valid inequalities (in particular BQP-like inequalities CLIQUE) is the approach working second
best (not only when looking at the runtime, but also when looking at the optimality gap for the unsolved
instances). Moreover, for instances with cu = 50 (where edge weights are less influential), the second best
approach is (F2), which does not contain any valid inequalities. Despite these differences, when considering
at all instances, we see that (F2)+ works best, managing to solve around 80% of the instances within the
timelimit, followed by (F2) and (F1)+, which both manage to solve around 75% of the instances.

The results reported in Figure 3 are complemented by Tables 2-4, where we give detailed results of
our approaches, including the genetic algorithm (indicated by GA). Moreover, we also report the results
obtained when running only the GRAP-part of the GA (i.e., lines 1-5 in Algorithm 3). There is one table
for each value of |V | in order to allow an analysis from another point of view. In these tables, we present the
runtime (column t[s]; TL indicates timelimit reached, and ML memorylimit), and the objective value of the
best obtained solution (column wB); for the MIP-approaches also the optimality gap (column g[%]), and the
number of branch-and-cut nodes (column #nBN); and for the GA and GRASP also the primal gap compared
to the best solution found by the MIP-approaches (column pg[%], calculated as 100 · (wH − wMIP )/wMIP ,
where wMIP is the value of the best solution found by the MIP-approaches and wH the value of the best
solution found by the GRASP, resp., GA).

In the tables, we can see that all our approaches manage to solve all instances with |V | = 75 to optimality.
For instances with |V | = 100, (F2)+ solves all but two instances, and for instances with |V | = 125, (F2)+
solves 24 out of 45 instances to optimality within the timelimit. In general, for nearly all instances (F2)+
works best, i.e., either it has the smallest runtime, or, for unsolved instances, it has the smallest optimality
gap. For the instances, where (F2)+ is not the best performing approach, (F2) gives the best results.
With respect to this, we can see that (F2) only performs better for instances with p = 0.8 (i.e., denser
instances). A possible explanation for this could be, that for denser instances, the LPs with added valid
inequalities becomes denser, in particular the clique inequalities, as there will also be a lot more cliques for
denser graphs. Thus, while adding the valid inequalities improves the bound, the drawback of longer LP
solution times and thus the slower node-throughput in the branch-and-cut becomes burdensome. This is also
reflected in the number of branch-and-cut nodes enumerated, (F2) often enumerates around ten times as
much nodes as (F2)+, while the runtime of both approaches is quite similar (and over all instances, adding
the valid inequalities pays off, as only for the dense instances with p = 0.8 the described drawback is having
an effect). With respect to (F1) and (F1)+, the situation is similar, i.e., (F1) has a considerably higher
node-throughput, but in general (F1)+ performs better. Moreover, when comparing (F1)+ and (F2)+, it
can be seen that (F1)+ usually needs less branch-and-cut nodes to prove optimality (when it manages to do
so), but is slower than (F2)+, as the ”slimmer” formulation of (F2)+ allows for a faster node-throughput
(while still being ”strong enough” for proving optimality). The largest optimality gap is 25.59% and is
obtained for instance 125-0.8-10-2.

From the results reported in the tables, we can also conclude that both heuristics perform quite well.
The GRASP takes at most nine seconds (for some of the instances with |V | = 125), and the largest primal
gap around 20.21% (instance NEW-125-0.2-10-3), while most of the primal gaps are smaller than 10% and
for slightly less than half of the instances, it is zero. The largest primal gaps are obtained for instances with
p = 0.2. Likewise, the GA takes at most 86 seconds (for instance NEW-125-0.8-50-5) and only for 30 out of
135 instances, there is a positive primal gap (the largest is 5.26% for instance NEW-75-0.2-10-4, and for most
instances with positive primal gap, the gap is under 1%). Interestingly, for none of the unsolved instances,
the GA could find an improved solution compared to the best solution found by the MIP approaches.
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Table 2: Comparison of our approaches on instance set NEW with |V |=75.

instance (F1) (F1)+ (F2) (F2)+ GRASP GA
p cu id t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB pg[%] t[s] wB pg[%]

0.2 10 1 576 686 0.00 105831 32 686 0.00 1832 251 686 0.00 123502 15 686 0.00 1921 1 769 12.10 5 686 0.00
0.2 10 2 617 770 0.00 135320 25 770 0.00 1167 224 770 0.00 121349 8 770 0.00 1147 1 871 13.12 6 794 3.12
0.2 10 3 319 661 0.00 48274 23 661 0.00 665 85 661 0.00 46205 8 661 0.00 796 1 765 15.73 6 661 0.00
0.2 10 4 595 703 0.00 105611 42 703 0.00 2456 443 703 0.00 216827 26 703 0.00 2938 1 762 8.39 7 740 5.26
0.2 10 5 168 758 0.00 23620 24 758 0.00 1092 160 758 0.00 82778 11 758 0.00 1340 1 857 13.06 6 779 2.77
0.2 25 1 51 498 0.00 6617 16 498 0.00 263 37 498 0.00 14486 3 498 0.00 285 1 556 11.65 6 504 1.20
0.2 25 2 49 546 0.00 8616 16 546 0.00 170 37 546 0.00 18598 3 546 0.00 179 1 607 11.17 6 546 0.00
0.2 25 3 40 518 0.00 6505 15 518 0.00 157 27 518 0.00 10784 4 518 0.00 224 1 603 16.41 5 518 0.00
0.2 25 4 649 498 0.00 115335 36 498 0.00 3276 226 498 0.00 116161 19 498 0.00 3772 1 521 4.62 6 498 0.00
0.2 25 5 97 513 0.00 15696 15 513 0.00 245 54 513 0.00 23682 4 513 0.00 288 1 526 2.53 6 513 0.00
0.2 50 1 2 339 0.00 124 10 339 0.00 21 2 339 0.00 162 1 339 0.00 28 1 340 0.29 6 339 0.00
0.2 50 2 2 382 0.00 133 13 382 0.00 43 2 382 0.00 237 1 382 0.00 40 1 414 8.38 5 382 0.00
0.2 50 3 1 335 0.00 64 14 335 0.00 6 1 335 0.00 54 1 335 0.00 10 1 341 1.79 5 341 1.79
0.2 50 4 3 333 0.00 317 14 333 0.00 59 3 333 0.00 400 2 333 0.00 59 1 338 1.50 6 333 0.00
0.2 50 5 3 347 0.00 374 15 347 0.00 82 3 347 0.00 423 2 347 0.00 94 1 353 1.73 6 347 0.00
0.5 10 1 1297 581 0.00 99392 159 581 0.00 4820 213 581 0.00 62202 109 581 0.00 8222 1 590 1.55 13 581 0.00
0.5 10 2 299 602 0.00 30769 134 602 0.00 3840 152 602 0.00 41014 84 602 0.00 6719 1 641 6.48 11 602 0.00
0.5 10 3 226 545 0.00 19174 100 545 0.00 2739 141 545 0.00 35146 61 545 0.00 4960 1 545 0.00 10 545 0.00
0.5 10 4 264 540 0.00 25262 84 540 0.00 1960 109 540 0.00 28090 55 540 0.00 3797 1 580 7.41 10 540 0.00
0.5 10 5 165 519 0.00 13004 85 519 0.00 1803 119 519 0.00 28200 52 519 0.00 3291 1 551 6.17 10 519 0.00
0.5 25 1 106 387 0.00 7161 52 387 0.00 1269 31 387 0.00 7626 23 387 0.00 1598 1 402 3.88 10 387 0.00
0.5 25 2 71 384 0.00 5083 44 384 0.00 1194 24 384 0.00 5674 20 384 0.00 1458 1 413 7.55 10 384 0.00
0.5 25 3 83 362 0.00 4769 26 362 0.00 343 31 362 0.00 5898 13 362 0.00 442 1 380 4.97 10 362 0.00
0.5 25 4 100 366 0.00 7073 63 366 0.00 1833 52 366 0.00 14482 31 366 0.00 2551 1 371 1.37 9 371 1.37
0.5 25 5 84 331 0.00 4938 31 331 0.00 389 24 331 0.00 4688 14 331 0.00 470 1 331 0.00 10 331 0.00
0.5 50 1 5 240 0.00 348 16 240 0.00 77 4 240 0.00 424 3 240 0.00 97 1 244 1.67 9 240 0.00
0.5 50 2 2 238 0.00 43 11 238 0.00 28 2 238 0.00 68 2 238 0.00 30 1 245 2.94 9 238 0.00
0.5 50 3 2 215 0.00 0 8 215 0.00 0 2 215 0.00 47 1 215 0.00 0 1 215 0.00 9 215 0.00
0.5 50 4 8 235 0.00 553 14 235 0.00 141 5 235 0.00 703 4 235 0.00 134 1 235 0.00 9 235 0.00
0.5 50 5 4 206 0.00 198 11 206 0.00 47 3 206 0.00 198 2 206 0.00 47 1 206 0.00 8 206 0.00
0.8 10 1 343 571 0.00 24196 241 571 0.00 3009 137 571 0.00 23527 137 571 0.00 4798 2 613 7.36 16 571 0.00
0.8 10 2 208 520 0.00 12433 144 520 0.00 1481 86 520 0.00 14721 102 520 0.00 2583 2 520 0.00 15 520 0.00
0.8 10 3 245 543 0.00 13720 165 543 0.00 2105 122 543 0.00 19460 92 543 0.00 3475 2 543 0.00 15 543 0.00
0.8 10 4 308 571 0.00 17925 208 571 0.00 2722 142 571 0.00 27914 113 571 0.00 4340 2 571 0.00 15 571 0.00
0.8 10 5 225 509 0.00 10311 137 509 0.00 1374 94 509 0.00 15107 77 509 0.00 2412 2 509 0.00 17 509 0.00
0.8 25 1 196 357 0.00 6516 119 357 0.00 1527 53 357 0.00 7532 51 357 0.00 1957 2 360 0.84 15 357 0.00
0.8 25 2 151 338 0.00 4736 89 338 0.00 1119 34 338 0.00 4454 34 338 0.00 1201 2 356 5.33 15 338 0.00
0.8 25 3 28 323 0.00 1495 44 323 0.00 439 15 323 0.00 1568 22 323 0.00 549 2 323 0.00 13 323 0.00
0.8 25 4 113 345 0.00 4240 73 345 0.00 670 47 345 0.00 6870 37 345 0.00 947 2 345 0.00 13 345 0.00
0.8 25 5 112 311 0.00 3977 53 311 0.00 570 32 311 0.00 3900 25 311 0.00 747 2 311 0.00 15 311 0.00
0.8 50 1 2 182 0.00 29 8 182 0.00 13 4 182 0.00 136 2 182 0.00 16 2 182 0.00 14 182 0.00
0.8 50 2 3 188 0.00 61 9 188 0.00 33 3 188 0.00 86 2 188 0.00 30 2 188 0.00 11 188 0.00
0.8 50 3 3 191 0.00 64 9 191 0.00 16 2 191 0.00 35 2 191 0.00 19 2 191 0.00 11 191 0.00
0.8 50 4 5 196 0.00 127 13 196 0.00 67 4 196 0.00 222 4 196 0.00 62 2 196 0.00 12 196 0.00
0.8 50 5 5 192 0.00 176 15 192 0.00 81 6 192 0.00 402 7 192 0.00 77 2 192 0.00 15 192 0.00
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Table 3: Comparison of our approaches on instance set NEW with |V |=100.

instance (F1) (F1)+ (F2) (F2)+ GRASP GA
p cu id t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB pg[%] t[s] wB pg[%]

0.2 10 1 TL 931 23.09 150968 373 873 0.00 17695 TL 914 16.03 488396 319 873 0.00 28266 1 930 6.53 12 873 0.00
0.2 10 2 TL 991 20.67 195361 348 944 0.00 16097 TL 966 13.96 537600 261 944 0.00 21216 1 983 4.13 13 944 0.00
0.2 10 3 TL 933 21.97 175869 509 878 0.00 24488 TL 937 17.98 488300 389 878 0.00 32623 1 905 3.08 11 878 0.00
0.2 10 4 TL 837 19.00 160900 775 837 0.00 36727 TL 850 14.18 533800 546 837 0.00 44398 1 879 5.02 11 837 0.00
0.2 10 5 TL 913 23.99 166974 412 840 0.00 19910 TL 847 12.08 455300 332 840 0.00 31130 1 907 7.98 12 870 3.57
0.2 25 1 660 591 0.00 52158 82 591 0.00 3688 401 591 0.00 97432 55 591 0.00 5421 1 591 0.00 12 591 0.00
0.2 25 2 TL 655 3.93 154809 94 653 0.00 4420 1126 653 0.00 279737 67 653 0.00 7342 1 687 5.21 11 655 0.31
0.2 25 3 769 612 0.00 64664 61 612 0.00 2355 251 612 0.00 56158 34 612 0.00 3142 1 648 5.88 12 616 0.65
0.2 25 4 TL 558 2.87 122658 38 552 0.00 917 224 552 0.00 53608 22 552 0.00 1716 1 602 9.06 11 552 0.00
0.2 25 5 TL 606 6.27 172508 506 606 0.00 31561 TL 609 4.40 401219 345 606 0.00 40428 1 646 6.60 12 607 0.17
0.2 50 1 11 418 0.00 929 19 418 0.00 193 8 418 0.00 1247 5 418 0.00 249 1 422 0.96 12 420 0.48
0.2 50 2 9 447 0.00 774 18 447 0.00 177 8 447 0.00 1154 7 447 0.00 261 1 472 5.59 11 456 2.01
0.2 50 3 5 419 0.00 339 17 419 0.00 106 6 419 0.00 590 4 419 0.00 124 1 427 1.91 11 419 0.00
0.2 50 4 74 403 0.00 4679 21 403 0.00 329 19 403 0.00 3709 10 403 0.00 395 1 418 3.72 12 410 1.74
0.2 50 5 12 375 0.00 800 20 375 0.00 290 10 375 0.00 1663 5 375 0.00 328 1 379 1.07 13 379 1.07
0.5 10 1 TL 763 18.61 104422 TL 743 7.09 26400 TL 743 7.32 240277 1421 743 0.00 61206 2 749 0.81 26 749 0.81
0.5 10 2 TL 708 28.16 112961 1207 698 0.00 15696 1357 698 0.00 226826 670 698 0.00 25318 3 705 1.00 25 700 0.29
0.5 10 3 TL 728 16.48 103135 1323 699 0.00 19211 TL 699 3.00 291119 742 699 0.00 29592 3 730 4.43 24 718 2.72
0.5 10 4 TL 726 13.57 107121 1088 726 0.00 13761 1324 726 0.00 218790 609 726 0.00 22324 2 775 6.75 26 726 0.00
0.5 10 5 TL 761 24.11 124466 TL 702 1.37 24691 TL 744 17.25 240100 1275 702 0.00 51404 2 743 5.84 25 702 0.00
0.5 25 1 670 461 0.00 18182 235 461 0.00 2640 182 461 0.00 22792 99 461 0.00 3913 3 461 0.00 25 461 0.00
0.5 25 2 230 437 0.00 6776 178 437 0.00 2454 115 437 0.00 12140 76 437 0.00 3372 2 448 2.52 19 437 0.00
0.5 25 3 404 434 0.00 10685 263 434 0.00 3821 155 434 0.00 16969 111 434 0.00 4425 3 443 2.07 22 434 0.00
0.5 25 4 TL 494 8.20 63896 921 482 0.00 16949 621 482 0.00 90411 533 482 0.00 22037 2 489 1.45 25 482 0.00
0.5 25 5 1395 456 0.00 40173 829 456 0.00 12615 430 456 0.00 59506 358 456 0.00 16885 3 470 3.07 23 457 0.22
0.5 50 1 4 260 0.00 27 17 260 0.00 5 5 260 0.00 131 3 260 0.00 5 2 260 0.00 22 260 0.00
0.5 50 2 3 271 0.00 27 17 271 0.00 15 3 271 0.00 55 2 271 0.00 14 2 271 0.00 21 271 0.00
0.5 50 3 9 283 0.00 282 21 283 0.00 119 7 283 0.00 404 4 283 0.00 135 3 283 0.00 21 283 0.00
0.5 50 4 27 291 0.00 914 39 291 0.00 353 11 291 0.00 1070 10 291 0.00 355 2 296 1.72 22 291 0.00
0.5 50 5 12 269 0.00 347 29 269 0.00 228 14 269 0.00 1254 9 269 0.00 251 2 269 0.00 21 269 0.00
0.8 10 1 TL 730 20.71 55600 TL 730 15.57 11878 TL 730 3.22 176962 TL 730 8.77 30496 4 730 0.00 39 730 0.00
0.8 10 2 TL 697 15.18 40114 TL 683 11.61 5773 1064 683 0.00 103180 1025 683 0.00 17483 4 688 0.73 37 683 0.00
0.8 10 3 TL 721 19.24 47870 TL 718 11.53 10506 1636 718 0.00 154346 1769 718 0.00 31269 4 718 0.00 37 718 0.00
0.8 10 4 TL 726 36.02 52165 TL 709 8.75 9566 TL 712 6.60 153824 1452 709 0.00 28487 4 709 0.00 41 709 0.00
0.8 10 5 TL 703 18.92 43898 TL 700 18.08 7205 1221 700 0.00 118429 TL 700 3.55 28770 4 710 1.43 39 704 0.57
0.8 25 1 1138 442 0.00 15789 1125 442 0.00 7017 396 442 0.00 34791 459 442 0.00 9633 5 452 2.26 40 442 0.00
0.8 25 2 1068 430 0.00 15155 693 430 0.00 4218 277 430 0.00 27907 285 430 0.00 5284 4 430 0.00 32 430 0.00
0.8 25 3 984 426 0.00 15999 669 426 0.00 4180 251 426 0.00 19709 269 426 0.00 5152 4 426 0.00 36 426 0.00
0.8 25 4 1045 428 0.00 17287 891 428 0.00 5285 277 428 0.00 27607 390 428 0.00 7049 4 428 0.00 35 428 0.00
0.8 25 5 TL 447 9.51 26364 1375 432 0.00 8047 520 432 0.00 51363 578 432 0.00 10357 4 432 0.00 42 432 0.00
0.8 50 1 33 259 0.00 993 75 259 0.00 396 16 259 0.00 1415 21 259 0.00 427 4 259 0.00 32 259 0.00
0.8 50 2 6 246 0.00 41 25 246 0.00 33 5 246 0.00 96 6 246 0.00 44 4 246 0.00 9 246 0.00
0.8 50 3 9 238 0.00 106 26 238 0.00 31 5 238 0.00 154 5 238 0.00 39 4 238 0.00 34 238 0.00
0.8 50 4 28 253 0.00 673 56 253 0.00 210 14 253 0.00 757 16 253 0.00 232 4 258 1.98 34 253 0.00
0.8 50 5 39 248 0.00 1042 81 248 0.00 414 18 248 0.00 1428 25 248 0.00 451 5 250 0.81 31 248 0.00
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Table 4: Comparison of our approaches on instance set NEW with |V |=125.

instance (F1) (F1)+ (F2) (F2)+ GRASP GA
p cu id t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB g[%] #nN t[s] wB pg[%] t[s] wB pg[%]

0.2 10 1 TL 1031 29.33 111233 TL 1031 13.08 38900 TL 1122 33.07 289800 TL 1026 11.31 66500 2 1112 8.38 24 1026 0.00
0.2 10 2 TL 1038 25.41 103199 TL 1038 5.43 39364 TL 1136 29.30 323400 TL 1038 4.11 70700 2 1069 2.99 22 1038 0.00
0.2 10 3 TL 935 21.55 112721 1065 935 0.00 18545 TL 1006 23.01 307900 610 935 0.00 23794 2 1124 20.21 23 947 1.28
0.2 10 4 TL 1087 32.38 162826 TL 1050 11.10 35800 TL 1102 30.22 307500 TL 1052 10.55 65400 2 1121 6.76 21 1051 0.10
0.2 10 5 TL 1067 38.06 98022 TL 978 12.12 46300 TL 1069 32.41 293644 TL 974 10.88 72100 2 1112 14.17 25 975 0.10
0.2 25 1 TL 752 14.43 79324 727 720 0.00 20101 TL 777 15.13 249000 484 720 0.00 30681 2 803 11.53 26 720 0.00
0.2 25 2 TL 748 9.42 115536 1690 746 0.00 49679 TL 755 9.34 250400 1038 746 0.00 66326 2 768 2.95 24 748 0.27
0.2 25 3 TL 758 17.24 76593 1308 715 0.00 32387 TL 756 13.82 262200 802 715 0.00 58391 2 752 5.17 21 717 0.28
0.2 25 4 TL 725 13.52 125557 TL 701 1.13 45548 TL 726 11.79 277800 1195 701 0.00 68666 2 726 3.57 22 705 0.57
0.2 25 5 TL 690 12.15 125451 TL 684 3.49 48278 TL 714 14.62 284000 1548 684 0.00 94996 2 747 9.21 23 697 1.90
0.2 50 1 22 455 0.00 914 19 455 0.00 94 14 455 0.00 1809 3 455 0.00 112 2 457 0.44 21 455 0.00
0.2 50 2 15 477 0.00 552 22 477 0.00 163 11 477 0.00 1216 4 477 0.00 153 2 493 3.35 23 477 0.00
0.2 50 3 150 490 0.00 5438 33 490 0.00 379 32 490 0.00 4963 9 490 0.00 446 2 501 2.24 21 490 0.00
0.2 50 4 307 467 0.00 10476 36 467 0.00 678 63 467 0.00 11763 14 467 0.00 903 2 504 7.92 23 467 0.00
0.2 50 5 680 457 0.00 27859 71 457 0.00 1974 74 457 0.00 12890 29 457 0.00 2719 2 468 2.41 24 459 0.44
0.5 10 1 TL 888 35.77 74241 TL 817 19.35 11969 TL 920 32.99 189400 TL 817 15.90 32310 4 817 0.00 41 817 0.00
0.5 10 2 TL 838 27.80 71722 TL 815 18.60 11600 TL 902 35.97 165500 TL 815 14.33 28242 5 827 1.47 45 815 0.00
0.5 10 3 TL 931 48.44 71111 TL 836 21.04 12000 TL 915 32.01 183200 TL 836 18.68 31000 4 880 5.26 45 872 4.31
0.5 10 4 TL 912 36.32 81756 TL 867 23.60 12100 ML 947 34.16 194451 TL 867 20.84 28328 4 914 5.42 55 867 0.00
0.5 10 5 TL 949 39.97 76935 TL 867 25.04 12998 TL 995 41.73 188520 TL 867 22.20 30407 5 906 4.50 55 867 0.00
0.5 25 1 TL 613 21.13 37273 TL 566 9.75 13891 TL 566 4.27 160389 TL 566 4.91 37868 5 566 0.00 48 566 0.00
0.5 25 2 TL 542 9.87 30162 TL 533 2.02 14217 915 533 0.00 78306 900 533 0.00 24650 5 561 5.25 48 533 0.00
0.5 25 3 TL 563 13.77 30148 TL 538 2.16 12186 1417 538 0.00 111362 835 538 0.00 19259 5 567 5.39 49 538 0.00
0.5 25 4 TL 567 18.54 37033 TL 552 16.40 10610 TL 576 15.71 149600 TL 552 10.66 37400 4 565 2.36 53 552 0.00
0.5 25 5 TL 572 19.52 38695 TL 545 12.36 15193 TL 552 8.51 148100 TL 545 8.67 40091 5 548 0.55 48 548 0.55
0.5 50 1 40 334 0.00 785 64 334 0.00 473 19 334 0.00 1495 16 334 0.00 481 4 336 0.60 40 334 0.00
0.5 50 2 19 330 0.00 500 41 330 0.00 251 13 330 0.00 631 12 330 0.00 255 4 330 0.00 38 330 0.00
0.5 50 3 20 315 0.00 247 39 315 0.00 80 9 315 0.00 219 7 315 0.00 77 5 315 0.00 49 315 0.00
0.5 50 4 57 316 0.00 834 88 316 0.00 488 33 316 0.00 2657 21 316 0.00 504 5 316 0.00 51 316 0.00
0.5 50 5 104 311 0.00 2479 113 311 0.00 1099 33 311 0.00 3111 32 311 0.00 1107 4 311 0.00 40 311 0.00
0.8 10 1 TL 855 53.04 33869 TL 793 18.91 4892 TL 855 32.69 123500 TL 793 17.38 15086 9 793 0.00 78 793 0.00
0.8 10 2 TL 913 44.80 35253 TL 853 26.18 6445 TL 899 36.83 117000 TL 845 25.59 17975 8 854 1.07 72 845 0.00
0.8 10 3 TL 885 42.29 34230 TL 787 18.71 4916 TL 841 26.83 107600 TL 787 17.29 16300 9 829 5.34 74 787 0.00
0.8 10 4 TL 853 55.10 34257 TL 777 17.46 4700 TL 830 31.51 109100 TL 777 16.52 15100 9 829 6.69 83 777 0.00
0.8 10 5 TL 865 58.98 34289 TL 820 23.57 5188 TL 904 39.57 114502 TL 813 23.00 16200 8 827 1.72 77 813 0.00
0.8 25 1 TL 514 18.09 18822 TL 508 12.79 6100 1555 508 0.00 100191 TL 508 7.23 16220 9 521 2.56 69 510 0.39
0.8 25 2 TL 504 17.32 13406 TL 498 10.76 6000 1158 498 0.00 75456 1656 498 0.00 16200 9 499 0.20 65 498 0.00
0.8 25 3 TL 533 20.87 17604 TL 513 12.87 5558 TL 550 15.73 107800 TL 513 5.83 16743 9 523 1.95 77 513 0.00
0.8 25 4 TL 505 17.77 19977 TL 493 11.21 5241 1424 493 0.00 92315 TL 493 0.39 17238 8 506 2.64 75 493 0.00
0.8 25 5 TL 515 22.38 16373 TL 504 16.65 7000 TL 528 18.21 114500 TL 504 14.02 19469 8 519 2.98 76 504 0.00
0.8 50 1 511 307 0.00 4416 355 307 0.00 1499 49 307 0.00 2868 92 307 0.00 1568 8 307 0.00 64 307 0.00
0.8 50 2 58 296 0.00 897 130 296 0.00 360 24 296 0.00 1484 32 296 0.00 397 8 296 0.00 57 296 0.00
0.8 50 3 125 294 0.00 1888 141 294 0.00 316 30 294 0.00 1655 33 294 0.00 351 8 294 0.00 71 294 0.00
0.8 50 4 82 270 0.00 974 72 270 0.00 105 35 270 0.00 1747 15 270 0.00 116 9 270 0.00 86 270 0.00
0.8 50 5 89 278 0.00 1326 206 278 0.00 659 46 278 0.00 2611 58 278 0.00 744 9 278 0.00 77 278 0.00
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6. Conclusions and future work

In this paper, we presented exact and heuristic solution algorithms for the recently introduced (minimum)
weighted total domination problem (WTDP) (see [22]). The WTDP is a problem from the family of domi-
nation problems, which are among the most basic combinatinatorial problems in graph optimization. In the
WTDP we are not just concerned with the concept of domination (i.e., finding a vertex-set D ⊂ V for a
given graph G = (V,E), such that each vertex is either in D or adjacent to it), but with the stronger concept
of total domination, which imposes that for each vertex v ∈ D, there is also a neighbor of v in D (i.e., the
vertices of D also need to be dominated by D). In the WTDP, we have a weight function associated with
the vertices and edges of the graph. The goal is to find a total dominating set D with minimal weight. The
weight counted in the objective is the weight of the vertices selected for D, the weight of the edges between
vertices in D, and for each vertex in V \D, the smallest weight of an edge between it and a vertex in D.

We introduced two new Mixed-Integer Programming models for the problem, and designed solution
frameworks based on them. These solution frameworks include valid inequalities, starting heuristics and
primal heuristics. In addition, we also developed a genetic algorithm (GA), which is based on a greedy
randomized adaptive search procedure (GRASP) version of our starting heuristic.

In a computational study, we compared our new exact approaches to the previous MIP approached
presented in [22] and also analyzed the performance of the GRASP and GA. The study revealed that our
exact solution algorithms are up to 500 times faster compared to the exact approaches of [22] and instances
with up to 125 vertices can be solved to optimality within a timelimit of 1800 seconds. Moreover, the GRASP
and GA also works well and often find the optimal or a near-optimal solution within a short runtime. In
the study, we also investigated the influence of different instance-characteristics, e.g., density and weight-
structure on the performance of our approaches. Instances, where the edge weights are in a larger range
compared to the vertex weights turned out to be the most difficult for our algorithms, while high density
also plays a role in making instances difficult.

The attained results confirm that domination problems are computationally challenging and, therefore,
require the combined effort of MIP-based and heuristic approaches in order to tackle more difficult instances.
Therefore, we believe that the development of further modeling and algorithmic advances for domination
problem variants is an interesting venue for future work as these problems are relevant both from the
methodological and practical point of view.
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