
A dynamic reformulation heuristic

for Generalized Interdiction Problems

Matteo Fischetti ∗1, Michele Monaci †2, and Markus Sinnl‡3

1DEI, University of Padua, Italy.
2DEI, University of Bologna, Italy.

3ISOR, University of Vienna, Vienna, Austria.

Abstract

We consider a subfamily of mixed-integer linear bilevel problems that we call Generalized Interdiction
Problems. This class of problems includes, among others, the widely-studied interdiction problems, i.e.,
zero-sum Stackelberg games where two players (called the leader and the follower) share a set of items,
and the leader can interdict the usage of certain items by the follower. Problems of this type can be
modeled as Mixed-Integer Nonlinear Programming problems, whose exact solution can be very hard.
In this paper we propose a new heuristic scheme based on a single-level and compact mixed-integer
linear programming reformulation of the problem obtained by relaxing the integrality of the follower
variables. A distinguished feature of our method is that general-purpose mixed-integer cutting planes for
the follower problem are exploited, on the fly, to dynamically improve the reformulation. The resulting
heuristic algorithm proved very effective on a large number of test instances, often providing an (almost)
optimal solution within very short computing times.

1 Introduction

A general bilevel optimization problem is defined as

min
x∈Rn1 ,y∈Rn2

F (x, y) (1)

G(x, y) ≤ 0 (2)

y ∈ arg max
y′∈Rn2

{f(x, y′) : g(x, y′) ≤ 0 }, (3)

where F, f : Rn1+n2 → R, G : Rn1+n2 → Rm1 , and g : Rn1+n2 → Rm2 . Let n = n1 + n2 denote the total
number of decision variables.

We will refer to x and y as the leader and follower decision variable vectors, respectively. Accordingly,
F (x, y) and G(x, y) ≤ 0 denote the leader objective function and constraints, while (3) defines the follower
subproblem. In case the follower subproblem has multiple optimal solutions, we assume that one with
minimum leader cost among those with G(x, y) ≤ 0 is chosen, i.e., we consider the optimistic version of
bilevel optimization [1].

By defining the follower value function for a given leader vector x ∈ Rn1 as

Φ(x) = max
y′∈Rn2

{f(x, y′) : g(x, y′) ≤ 0 }, (4)

∗matteo.fischetti@unipd.it
†michele.monaci@unibo.it
‡markus.sinnl@univie.ac.at

1

one can restate the bilevel optimization problem through the so-called value-function reformulation [2] below:

minF (x, y) (5)

G(x, y) ≤ 0 (6)

g(x, y) ≤ 0 (7)

(x, y) ∈ Rn (8)

f(x, y) ≥ Φ(x). (9)

Problem (5)-(8) is usually called the High-Point Relaxation (HPR), which is used in many solution approaches
to bilevel programming, including [3, 4].

A Mixed-Integer Bilevel Linear Problem (MIBLP) is a bilevel problem in which both objective functions
F (x, y) and f(x, y) are linear (or affine), and each constraint in G(x, y) ≤ 0 and in g(x, y) ≤ 0 is either a
linear inequality, or stipulates the integrality of a certain component of (x, y).

Relevant special cases of MIBLPs are known as interdiction problems (or interdiction games). They can
be seen as two-player zero-sum Stackelberg games [5] where the leader and follower share a set of items, and
the leader can select some items and interdict their usage to the follower. The two problems optimize over
the same objective function, but in the opposite direction. Connection between the leader and the follower
optimization problems is established through binary “interdiction variables” that are controlled by the leader,
a leader solution x being sometimes called interdiction policy in this context. Interdiction problems model
important applications including marketing [3], defense of critical infrastructures [6, 7], and fighting of drug
smuggling [8] and illegal nuclear projects [9, 10].

In this paper we consider a generalization of interdiction problems, to be formally described in Section 3,
and propose a heuristic solution scheme. In our algorithm, we first relax integrality of the follower variables,
obtaining a bilevel problem that can be reformulated into a standard (i.e., single-level and compact) Mixed-
Integer Linear Program (MILP). Then we solve the reformulated problem through a black-box MILP solver,
and find an optimal solution, say (x̄, ȳ). As the latter solution is typically not feasible for the original
interdiction problem, we solve the original problem after fixing x = x̄ (this restricted problem being a MILP
itself) to get a hopefully good feasible solution (x̄, ŷ).

Three variants of our basic heuristic are presented and computationally analyzed on a very large test set
with 1200+ instances both from the literature and randomly generated. Although quite simple, even the
most basic variant proved successful for a large number of instances, often providing an optimal solution
within negligible computing time. For the hardest instances, however, our most sophisticated version based
on a dynamic reformulation gives a significant performance improvement.

Our main contributions can be summarized as follows:

• We introduce a generalization of the interdiction problems typically addressed in the literature, obtained
by removing the assumption that the leader and follower linear objective functions are one the opposite
of the other. Generalized interdiction problems cannot be casted as min-max or max-min problems, so
many classical results that hold for standard interdiction problems need to be generalized to the new
setting.

• For such generalized interdiction problems, we present a new MILP reformulation of the problem
obtained by relaxing integrality conditions of the follower variables. Similar reformulations have been
addressed in the literature for standard interdiction problems both with a MILP follower (e.g., in
[11, 12, 13]) and with an LP follower (in this latter case, the reformulation is equivalent to the original
problem; see, e.g., [14, 15, 16]). Moreover, for another class of min-max problems, namely the min-max
regret robust problems, a related relax-dualise-reformulate idea has been used to devise heuristics (e.g.,
in [17, 18]). As far as we know, however, the min-max reformulations from the literature were never
extended to the generalized interdiction setting we consider in the present paper.

• We describe two basic interdiction heuristics in the spirit of [11, 13], and propose an improved version
based on a dynamic reformulation. This latter algorithm iteratively generates, on the fly, valid cutting

2

planes based on the integrality of the follower variables, thus producing improved reformulations and
better solutions. The resulting approach can be viewed as a (row and) column generation method
applied to the reformulation, whose effectiveness has been confirmed by extensive computational tests.
To the best of our knowledge, a similar mechanism was never used in the context of general-purpose
interdiction or min-max heuristics.

• Our heuristic solution scheme can easily be adapted to more general min-max problems, and also to
the setting addressed in [14] where interdiction penalties (as opposed to constraints) are considered.

• We report very extensive computational tests on more than 1200 instances both from the literature
and randomly generated. This is, by far, the most extensive study on general-purpose interdiction
heuristics reported in the literature.

The paper is organized as follows. Previous work on interdiction problems and heuristic methods for
bilevel (integer) linear programming problems is briefly surveyed in Section 2. The generalized interdiction
problem we address in our work is mathematically stated in Section 3, while a single-level compact reformu-
lation of the problem without integrality requirement on the y variables is introduced in Section 4. Section 5
describes our basic heuristic along with two extensions intended to produce improved solutions. Extensive
computational results on various classes of test instances are reported in Section 6, while Section 7 draws
some conclusions and addresses future directions of work.

2 Previous work

We next focus on previous work regarding interdiction problems and heuristic approaches for bilevel (integer)
linear programming; for previous contributions on exact approaches for MIBLP we refer the reader to, e.g.,
[4].

Exact Solvers for Interdiction Problems When the follower problem in an interdiction problem can
be formulated as linear program, duality-based reformulations give exact algorithms. This idea has been
used, e.g., in [16] for the maximum flow problem, in [15] for multi-commodity flow problems, and in [19] for
the spanning tree problems. The shortest-path variant for a problem where interdiction does not forbid the
use of an item but causes a penalty in the follower objective is studied in [14], where a duality-based exact
algorithm is given. Finally, for another variant where interdiction is not a discrete decision, but continuously
increases a follower penalty in the objective, duality has also been used in the design of algorithms, see, e.g.,
[20].

A basic interdiction problem with discrete follower is the Knapsack Interdiction Problem (KIP) studied
in [3, 13, 21]. The problem consists of a Stackelberg game where both the leader and the follower players
fill their private knapsacks by choosing items from a common set N . In the first stage, the leader chooses
her items subject to her own knapsack capacity (called interdiction budget). In the second step, the follower
solves a 0/1 knapsack problem and selects some of the items that are not taken by the leader, with the aim of
maximizing the profit of the collected items. The goal of the leader is to obtain the worst possible outcome
for the follower. A typical application of this problem arises in marketing, when a company dominates the
market and another company wishes to design a marketing campaign, while choosing the specific geographic
regions to target subject to the available budget.

KIP is exactly reformulated in [3] as a single-level MILP with an exponential number of constraints, to
be separated on the fly by using disjunctive cut-generating LPs. In [13], an iterative MILP-based procedure
is presented, where lower and upper bounds are sequentially improved until a provably optimal solution
is reached. In this latter approach, upper bounds are computed by solving a heuristic single-level MILP
reformulation akin to the one we use in the present paper, but specialized for KIPs.

In a more general setting, interdiction problems play a very important role in the applications arising
in the so-called attacker-defender games, where two players have conflicting objectives and share a set of
resources. In particular, interdiction problems on networks have beed widely studied in the recent literature;

3

see, e.g., the shortest-path interdiction problem given in [14], and the survey on network interdiction given
in [22]. Complexity results for some special cases of these problems are given in [23].

Three ideas for deriving a generic solver for interdiction games have been proposed in [21]. Very recently,
an exact branch-and-cut solution scheme for interdiction problems with monotonicity assumptions on the
follower problem has been proposed in [24], which is based on a Benders-like reformulation that is enhanced
by additional classes of cuts.

Heuristics for Interdiction Problems Problem-specific heuristic approaches have been proposed in
the literature, e.g., [25] presents heuristics for multi-stage interdiction of stochastic networks, while [11]
describes a reformulation heuristic for an interdiction problem arising in the design of a new branching
strategy for MILP solvers. However, to the best of our knowledge, the only generic heuristic algorithm for
interdiction problems is the greedy heuristic proposed in [3]. In this algorithm, an interdiction policy is
greedily constructed by iteratively picking items with the largest follower coefficient in the objective, while
satisfying the interdiction budget. A drawback of this approach is that it is “blind” with respect to the
structure of the follower problem.

Heuristics for Bilevel Problems For bilevel (integer) linear programming problems, some heuristic
schemes exist, depending on varying assumptions on the problem structure.

The thesis [3] presents four heuristic approaches (in addition to the above-mentioned greedy approach for
interdiction problems). Observe that, in the setting studied in [3], the leader constraints are only of the form
G(x) ≤ 0, i.e., no y-variable appears in the leader constraints. Let (x̂, ŷ) be a bilevel feasible solution. The
first heuristics consists of adding the cut f(x, y) ≤ φ(x̂) to the HPR, and solving the resulting model. The
rationale is that there may be multiple optimal follower solutions for the given x̂, and adding the constraint
above to HPR may produce a solution with a better leader objective. Of course, the produced solution
may change the value of the x variables, in which case an additional check for bilevel feasibility is needed.
The second heuristic optimizes the follower objective function over the HPR feasible set. This produces
a solution that is guaranteed to be bilevel feasible, though likely of bad quality, since the leader objective
is ignored. Thus, a cut-off constraint for the leader objective based on the value of incumbent solution is
added to the formulation. The addition of this cut may lead to bilevel infeasible solutions, thus in this case
too a feasibility check must be executed. The third heuristic is based on multi-objective programming and
computes, by using a weighted-sum method, Pareto optimal solutions for the bi-objective problem with both
leader and follower objective functions as objectives. These solutions are then checked for bilevel feasibility
and the best feasible one is taken. Finally, the last heuristic is a ping-pong scheme that iteratively fixes the
variables in one of the two problems, and solves the other, until a bilevel feasible solution is found.

We observe that Bilevel Linear Programming (BLP) can be reformulated as a nonlinear single-level
problem using KKT-conditions. Based on this reformulation, [26] proposed a hybrid tabu-ascent algorithm
that works in three phases. First an initial solution is produced, then a local ascent phase is executed, and
finally, a tabu search phase is applied to improve the current solution. Note that this reformulation has also
been used in exact approaches for BLP, see, e.g., [27].

As to metaheuristics for BLP, we mention the tabu search proposed in [28] that can be used for bilevel
linear problems in which the leader is mixed-integer, and the genetic algorithm in [29]. We refer the reader
to the book [30] for further details on metaheuristics for BLPs.

3 The problem

As already mentioned, in the present paper we focus on a special case of MIBLP that we call Generalized
Interdiction Problem (GIP), whose value-function reformulation reads:

4

(GIP) min cTx x+ cTy y (10)

Gxx+Gyy ≤ G0 (11)

By ≤ b and y ≥ 0 (12)

yj ≤ UBj (1− xj), ∀j ∈ N (13)

dT y ≥ Φ(x) (14)

xj ∈ {0, 1}, ∀j ∈ N (15)

xj integer, ∀j ∈ Jx (16)

yj integer, ∀j ∈ Jy. (17)

In the above model, the variable set is partitioned into sets Nx and Ny that contain the leader and follower
variables, respectively, while sets Jx ⊆ Nx and Jy ⊆ Ny identify the indices of the integer-constrained leader
and follower variables, respectively. Finally, cx, cy, Gx, Gy, G0, B, b, UB and d denote given rational
matrices/vectors of appropriate size.

Set N ⊆ Nx∩Ny identifies the items that can be “interdicted” by the leader: according to the interdiction
constraints (13), this happens when the leader chooses xj = 1, which forces the follower to choose yj = 0,
whereas in case xj = 0 the follower is free to choose yj ∈ [0, UBj].

To simplify notation, we assume that constant upper bounds on the y variables (including yj ≤ UBj for
all j ∈ N) are stated explicitly and belong to system By ≤ b.

The value function Φ(x) in (14) is computed, for a given x, by solving the follower MILP :

Φ(x) := max dT y (18)

By ≤ b and y ≥ 0 (19)

yj ≤ UBj (1− xj), ∀j ∈ N (20)

yj integer, ∀j ∈ Jy. (21)

Thus, unlike general MIBLPs, in the GIP framework the only allowed follower constraints depending on x
are of the form (20).

As customary, we assume that the follower MILP is bounded and feasible for any given x of interest.
In what follows we will rephrase the interdiction constraints (20) in the follower problem through the

bilinear conditions xj yj = 0 for all j ∈ N . As xj and yj are both nonnegative, we can relax these latter
equations in a Lagrangian way through very large positive multipliers Mj (say), and obtain the penalized
objective function

dT y −
∑
j∈N

Mjxjyj .

This leads to the following exact reformulation for the follower MILP (18)–(21), that we will use throughout:

Φ(x) := max d(x)T y (22)

By ≤ b and y ≥ 0 (23)

yj integer, ∀j ∈ Jy (24)

where

dj(x) :=

{
dj −Mjxj , if j ∈ N
dj , otherwise

∀j ∈ Ny (25)

As already mentioned, a relevant GIP special case is the widely-studied Standard Interdiction Problem
(SIP), arising when Gy = 0, cx = 0, and cy = d. In this case, the leader and follower subproblems optimize

5

the same objective function, but in opposite directions, the follower variables are not present in the leader
constraints, while the leader variables appear only in the interdiction constraints (20) in the follower. This
lead to the following min-max formulation:

(SIP) min
x

max
y

d(x)T y (26)

Gxx ≤ G0 (27)

By ≤ b and y ≥ 0 (28)

xj ∈ {0, 1}, ∀j ∈ N (29)

xj integer, ∀j ∈ Jx (30)

yj integer, ∀j ∈ Jy. (31)

4 Single-level MILP reformulation

As already stated, the first step of our heuristic consists in relaxing the integrality condition on the y variables
everywhere, namely removing constraints (17) and (24) from (10)-(17) and (22)-(24), respectively. Let GIP
denote the resulting problem, and let SIP be obtained in a similar way from the SIP model (26)-(31) by
dropping (31).

Note that GIP is not a relaxation nor a restriction of the original GIP problem, in that the integrality
condition on the y variables is relaxed in both the leader and in the follower problems. Indeed, while relaxing
the integrality requirements (17) alone would obviously produce a relaxation, the removal of the follower
integrality constraints (24) produces an upper bound Φ(x) on Φ(x) and then makes constraint (14) more
restrictive. This means that the optimal value of GIP can be strictly larger or strictly smaller than the
optimal value of GIP. As a matter of fact, GIP turns out to be a restriction of GIP in case the integrality
requirements (17) in the leader are redundant—as it happens, in particular, for the standard interdiction
case SIP. It is instead a relaxation of GIP in case the integrality condition (24) is redundant for the follower.
If both cases arise, GIP is just equivalent to the original problem GIP; this happens, in particular, when
Jy = ∅.

We next show how Linear Programming (LP) duality can be used to restate GIP and SIP as single-level
MILPs. To this end, for a fixed x, let

Φ(x) := max{d(x)T y : By ≤ b, y ≥ 0} (32)

denote the optimal value of the LP relaxation of the follower problem (that we assume be feasible and
bounded), with Φ(x) ≥ Φ(x). By using standard LP duality, we get

Φ(x) = min{uT b : uTB ≥ d(x)T , u ≥ 0}. (33)

We address SIP first, for which the reformulation is in fact quite natural and can be found, e.g., in
[14, 22, 11, 13].

Theorem 4.1. Model SIP can be restated as

(SIP) minuT b (34)

Gxx ≤ G0 (35)

xj ∈ {0, 1}, ∀j ∈ N (36)

xj integer, ∀j ∈ Jx (37)

uTB ≥ d(x)T and u ≥ 0. (38)

Proof. Just observe that (34)-(38) can be obtained from (26)-(31) by applying standard LP duality to the
LP relaxation of the inner maximization problem, thus removing the y variables from the model.

6

As to GIP , y variables cannot be projected away due to the presence of the leader constraints (11), so
the model involves explicit LP optimality conditions.

Theorem 4.2. Model GIP can be restated as

(GIP) min cTx x+ cTy y (39)

Gxx+Gyy ≤ G0 (40)

By ≤ b and y ≥ 0 (41)

yj ≤ UBj (1− xj), ∀j ∈ N (42)

xj ∈ {0, 1}, ∀j ∈ N (43)

xj integer, ∀j ∈ Jx (44)

uTB ≥ d(x)T and u ≥ 0 (45)

dT y ≥ uT b. (46)

Proof. For any given x, primal feasibility of y for the follower LP relaxation (32) comes from (41), while
(45) expresses feasibility of u for its dual (33). According to the strong duality theorem, the pair (y, u)
is then optimal if and only if d(x)T y = uT b, where = can be replaced by ≥ because of weak duality. In
addition, (42)-(43) ensure that d(x)T y = dT y, hence in (46) one is allowed to replace the bilinear condition
d(x)T y ≥ uT b by the equivalent linear constraint dT y ≥ uT b. Finally, observe that the presence of d(x) is
instead not problematic in (45) as it does not affect its linearity. The claim follows.

It is worth noting that each constraint in (45) associated with an item j ∈ N has the form

dj − uTBj ≤Mjxj ,

hence it involves a big-M coefficient that can create troubles to the MILP solver. By exploiting the fact that
xj is a binary variable, however, in the relevant case Bj ≥ 0 one has uTBj ≥ 0 and coefficient Mj can safely
be replaced by dj . These (and similar) coefficient strengthenings are automatically applied by modern MILP
solvers and typically produce preprocessed MILP models that, according to our computational experience,
are not too hard to solve.

5 Heuristics

We next describe three heuristics based on the solution of the single-level MILP reformulation (GIP) or
(SIP) described in the previous section.

Our first heuristic, ONE-SHOT, is straightforward to implement, and proved very fast and effective for
many cases in our testbed. For the hardest cases, improved solutions can be obtained by implementing a
more advanced solution scheme. We describe two such schemes.

The first scheme (ITERATE) is also quite easy to implement, and just iterates the application of the
ONE-SHOT heuristic so as to produce diversified solutions.

The second scheme (DYN-REF) requires a more advanced implementation, as valid cuts exploiting the
integrality of the y’s in the follower MILP are dynamically generated and added to the reformulation solved
by ITERATE.

The first two heuristics (ONE-SHOT and ITERATE) can be viewed as a generalization of the solution scheme
described in [11] for KIPs, whereas the third one (DYN-REF) is a new dynamic reformulation heuristic that
makes use, for the first time, of the general-purpose mixed-integer cuts that are automatically generated by
a modern branch-and-cut solver when solving the follower MILP.

7

Algorithm 1: The refining procedure REFINE(x̄)

Input : A leader solution x̄;
Output: A heuristic GIP solution (x̄, ȳ);

1 Solve the follower MILP (22)-(24) for x = x̄ to compute ϕ̄ := Φ(x̄);
2 Restrict the GIP model (10)-(17) by fixing x = x̄ and by replacing the nonlinear inequality (14) with

the linear constraint dT y ≥ ϕ̄;
3 Solve the resulting MILP, and let (x̄, ȳ) be the optimal solution found;
4 return (x̄, ȳ);

5.1 The ONE-SHOT heuristic

Our basic heuristic scheme is described in Algorithms 1 and 2.
Algorithm 1 describes the refining procedure given, e.g., in [31], that computes a complete feasible GIP

solution (x̄, ȳ) starting from a leader vector x̄. It requires the solution of two single-level MILPs: the follower
MILP for x = x̄ at Step 1 to compute Φ(x̄), and a linearization of the GIP model (10)-(17) based on the fact
that Φ(x) becomes a constant when x is fixed (Steps 2–3). Algorithm 1 typically requires short computing
time, as both MILPs are much easier than the original nonlinear GIP model. Note that leader variables xj
not appearing in the follower MILP (22)-(24) (if any), do not affect the value ϕ̄ = Φ(x̄) computed at Step 1,
hence they need not to be fixed at Step 2.

Algorithm 1 can be simplified for standard interdiction problems. Indeed, in that case Step 3 can be
omitted, as the optimal follower solution ȳ computed at Step 1 can directly be appended to the input vector
x̄ to obtain the final solution (x̄, ȳ) to be returned.

It is worth noting that, for GIPs, the solution (x̄, ȳ) returned by REFINE, besides being feasible, can have
an improved cost with respect to the (partial) solution provided on input, hence the name of procedure.

Algorithm 2 is used to find a reasonable leader vector, say x̄, to feed Algorithm 1. This is obtained by
relaxing the integrality of the y variables to be able to apply the single-level MILP reformulation described in
the previous section. The reformulated MILP is typically not too hard to solve, but for very large instances
its exact solution can be too demanding, thus a time limit can be imposed.

Algorithm 2: Our basic ONE-SHOT heuristic scheme

Input : The GIP model (10)-(17);
Output: A heuristic GIP solution (x̄, ȳ);

1 Relax the integrality of the y variables, namely constraints (17) and (24);

2 Restate the resulting problem as (GIP);
3 Solve the resulting single-level MILP (possibly with a time limit), and let (x̄, ·) be the optimal (or

best) solution found;
4 (x̄, ȳ) := REFINE(x̄);
5 return (x̄, ȳ);

Needless to say, if the input problem is a SIP, the associated reformulation defined at Step 2 is (SIP).
In addition, if at any step of both algorithms the MILP at hand has no feasible solution (or no one could be
found in the given time limit), a void solution (x̄, ȳ) of cost +∞ is returned.

5.2 The ITERATE heuristic

Our ITERATE heuristic is described in Algorithm 3. At Step 2, a single-level MILP reformulation is defined;
this is either (GIP) or (SIP), depending on the input model (10)-(17). At each iteration, the single level
reformulation is solved with a time limit, to collect a number of almost-optimal solutions (Step 5). These

8

solutions coincide, e.g., with the various incumbents by the MILP solver. The refining procedure REFINE is
then applied to each such solution (Step 7). Each time a new heuristic GIP solution (xk, yk) is available, at
Step 9 we possibly update the incumbent (x∗, y∗). When all the available solutions have been refined, the
whole procedure is repeated after adding to the GIP model (10)-(17) a no-good constraint∑

j∈N :xk
j=0

xj +
∑

j∈N :xk
j=1

(1− xj) ≥ 1 (47)

for each generated leader solution xk, thus preventing these solutions to be considered again in subsequent
iterations.

As to the iterated call to procedure REFINE at Step 7, each execution typically requires very short
computing time. Moreover, for SIP one can abort the whole refining procedure for a given xk as soon as a
follower solution of value greater than or equal to z∗ = dT y∗ is encountered. Indeed, for the follower MILP
being a maximization problem, the subsequent part of the REFINE run can only increase the incumbent cost
of the follower, whose best solution, say yk, will produce a heuristic solution (xk, yk) of cost dT yk ≥ z∗,
meaning that the internal incumbent solution (x∗, y∗) will not be updated.

Algorithm 3: The ITERATE heuristic

Input : The GIP model (10)-(17) and a time limit TL;
Output: A heuristic GIP solution (x∗, y∗);

1 Initialize (x∗, y∗) with a dummy solution of cost z∗ := +∞;

2 Build the single-level MILP reformulation (GIP);
3 while time limit TL is not exceeded do
4 Let rt be the time remaining to reach the time limit;
5 Solve the current single-level MILP reformulation with a time limit of 0.95 rt, and let

(x1, ·), . . . , (xK , ·) be the collection of solutions found;
6 for k = 1, . . . ,K do
7 (xk, yk) := REFINE(xk);

8 if cTx x
k + cTy y

k < z∗ then
9 set z∗ := cTx x

k + cTy y
k and (x∗, y∗) := (xk, yk);

10 end

11 Add a no-good constraint (47) for xk to the current single-level MILP reformulation;

12 end

13 end
14 return (x∗, y∗);

We finally observe that, if a sufficiently large time limit is allowed, the ITERATE heuristic turns out to be
an exact approach for GIP. In this respect, the approach is similar to the one proposed in [13] for IKP, where
specific cuts exploiting the structure of the problem are used instead of the fully general no-good constraints
(47).

5.3 The DYN-REF heuristic

DYN-REF is our new dynamic reformulation heuristic. It is based on the observation that the smaller the
follower integrality gap, the better the single-level MILP reformulation (GIP) or (SIP) approximates the
original model (GIP) or (SIP), respectively. Our new algorithm then implements an advanced version
of ITERATE in which the follower MILP formulation (22)-(24) is iteratively strengthened by adding valid
inequalities that exploit the integrality of the y variables in the follower problem.

To this end, observe that the constraints in our follower MILP formulation (22)-(24) do not depend on x.
Therefore, after each execution of Step 1 within the refining Algorithm 1, one can just collect the root-node

9

cuts generated by the MILP solver, and add them to the follower system By ≤ b. The resulting single-level
MILP reformulation solved at Step 5 of Algorithm 3 is thus dynamically updated, and new dual variables
are generated for the newly added rows of (B, b).

Note that, for SIP, the resulting scheme can be interpreted as a dynamic column-generation method where
new columns of BT are added to the SIP reformulation in (38) (to be re-written as BTu ≥ d(x)), while for
GIP we have a row-and-column generation scheme as new rows are also added in (41). A peculiarity of our
scheme is that the generation of the new columns of BT does not require an ad-hoc pricing algorithm, in the
sense that we just re-use the cutting planes generated by the MILP solver invoked with function REFINE.

The generated cuts, besides speeding-up the solution of the next follower MILPs, are very important in
that they hopefully reduce the follower integrality gap and produce a tighter GIP/SIP approximation. In
a sense, our approach is gathering local information obtained by solving the follower MILPs for different
objective functions d(x1)T y, · · · , d(xK)T y within function REFINE, and iteratively incorporates this informa-
tion in the current reformulation to let the heuristic better cope with the consequences of y-integrality at
the follower level.

In this way, we expect a better approximation (hence, hopefully better solutions) at each execution of
the while-loop of Algorithm 3, in particular in the hard cases where the follower formulation has a large
integrality gap. This behavior is in fact confirmed by the computational results reported in the next section.

6 Computational results

In this section we report the outcome of the extensive computational analysis that we performed on a very
large testbed with 1286 instances. Computing times refer to four-thread runs on a quad-core Intel Xeon
E3-1220V2 @3.1 GHz computer with 12GB of RAM.

6.1 Implementation

Our heuristics have been implemented in C, using the commercial solver IBM ILOG CPLEX 12.6.3 as
underlying branch-and-cut framework.

To enhance the performance of Cplex as a heuristic when solving the GIP or SIP reformulation, in our
implementation we switch to the POLISHING [32] heuristic mode after 50% of the imposed time limit. As to
the ITERATE heuristic and its improved version DYN-REF, the collection of K feasible solutions for the current
GIP (or SIP) reformulation used at Step 5 of Algorithm 3 corresponds to the solutions that are present
in the solution pool of our MILP solver, which contains the various incumbents found during enumeration.
In some versions of our codes, we use the POPULATE feature of Cplex to increase the number of feasible
solutions of the reformulation without a very significant increase of the required computing time. To avoid
overtuning, all the other CPLEX parameters (including those related to cut generation) are left at their
default values.

The detailed configurations of the proposed heuristics tested in the computational study are as follows;
the “+” sign in the name of a solver means that the POPULATE feature is active.

• ONE-SHOT (OS): a straightforward implementation of Algorithm 2;

• ONE-SHOT+ (OS+): same as ONE-SHOT, but several solutions of the reformulation are generated by using
POPULATE (and then refined);

• ITERATE (I): a straightforward implementation of Algorithm 3;

• ITERATE+ (I+): same as ITERATE, but several solutions of the reformulation are generated through
POPULATE (and then refined) at each iteration of the while loop;

• DYN-REF+ (DR+): our dynamic reformulation algorithm. This heuristic has the same setting as
ITERATE+, but the Cplex’s root cuts generated during the REFINE procedure are collected and added
to the follower model (and hence to the reformulation through additional dual variables); to avoid

10

overloading the model, cuts are collected only when the best solution of the current reformulation, say
(x1, ·), is refined.

We also implemented the only general-purpose interdiction heuristic that we could find in the literature,
namely, the greedy algorithm GREEDY (GD) proposed in [3]. This algorithm was designed for standard inter-
diction instances and consists of greedily building an interdiction policy by sorting the items according to
nonincreasing dj ’s (recall that the follower is a maximization problem), and iteratively picking them provided
that the leader constraint Gxx ≤ G0 is fulfilled. For a more fair comparison, we also implemented a simple
4-thread randomized variant GRASP (GR) where alternative interdiction policies are repeatedly created by
following the recipe of GREEDY, but the item which is going to be selected at each iteration is skipped with
a probability of 20%, until the given time limit is reached. In the first iteration of GRASP, we do not do any
skipping, i.e., the solutions of GRASP are always at least as good as those of GREEDY.

6.2 Testbed

In our testbed, we included both standard interdiction problems and generalized interdiction problems. As
to the former, we considered instances from literature, as well as larger versions of some of those instances,
randomly generated following the procedures described in the literature. In particular, the interdiction
problems considered are presented in Section 6.2.1, and consist of the Knapsack Interdiction Problem (KIP),
Multidimensional Knapsack Interdiction Problem (MKIP), Clique Interdiction Problem (CIP) and the Fire-
fighter Problem (FFP). Our testbed does not include instead any instance coming, e.g., from network-flow
or shortest-path interdiction problems, as those problems have a continuous follower problem that would
make the MILP reformulation (and hence our heuristic) exact.

Table 1: Our testbed. Column #inst reports the total number of instances in each class. All instances not
of type GIP are standard interdiction instances (Gy = 0, cx = 0, and cy = d). For instances of type KIP
and MKIP, there is a one-to-one correspondence between leader and follower variables, while for the other
problems, there are also additional variables in the follower.

Class Source Type #inst |Nx| |Ny| |N |

CCLW [13] KIP 50 35-55 35-55 35-55
TRSK [21] KIP 150 20-30 20-30 20-30
D [3], [33] KIP 160 10-50 10-50 10-50
LKIP this paper KIP 400 100-500 100-500 100-500
SAC [24] MKIP 144 10-105 10-105 10-105
TRSC [21] CIP 80 19-94 27-109 19-94
TRSC+ this paper CIP 80 19-94 27-109 19-94
LCIP this paper CIP 60 546-1593 586-1653 546-1593
FIRE [34] FFP 72 25-80 50-160 25-80
GEN this paper GIP 90 20-30 20-30 10-30

To the best of our knowledge, there is no previous computational work for generalized interdiction prob-
lems, so we randomly generated a set of GIP instances (denoted by GEN) by using the procedure described
in Section 6.2.2.

Table 1 gives an overview of the instances in our testbed and reports, for each class, the source in the
literature, the associated type of problem, the number of instances and their size. All instances are available
online at
http://homepage.univie.ac.at/markus.sinnl/program-codes/bilevel/.

6.2.1 Standard Interdiction Instances

Knapsack and Multidimensional Knapsack Interdiction Problem The knapsack interdiction prob-
lem is defined as follows

min
x∈{0,1}|N|

max
y∈{0,1}|N|

{
dT y : aTx ≤ a0, qT y ≤ q0, xj + yj ≤ 1,∀j ∈ N

}
,

11

http://homepage.univie.ac.at/markus.sinnl/program-codes/bilevel/

where N denotes the set of items.
There are three sets of KIP instances in literature: instance set CCLW from [13], instance set TRSK from

[21], and instance set D from [3] (the latter being derived from multi-objective knapsack instances).
Computational experiments in [24] showed that set CCLW contains the most difficult instances; thus, we

used the same random procedure to create larger random KIP instances denoted by LKIP. The follower data
has been created by using the knapsack instance generator of [35], which allows for generation of the profit
dj and weight qj of each item j ∈ N in the following nine ways, where u.r. stands for uniformly random:

1. Uncorrelated: qj u.r. in [1, R], dj u.r. in [1, R].

2. Weakly correlated: qj u.r. in [1, R], dj u.r. in [qj −R/10, qj +R/10] so that dj ≥ 1.

3. Strongly correlated: qj u.r. in [1, R], dj = qj +R/10.

4. Inverse strongly correlated: dj u.r. in [1, R], qj = dj +R/10.

5. Almost strongly correlated: qj u.r. in [1, R], dj u.r. in [qj+R/10−R/500, qj+R/10+R/500].

6. Subset-sum: qj u.r. in [1, R], dj = qj .

7. Even-odd subset-sum: qj even value u.r. in [1, R], dj = qj .

8. Even-odd strongly correlated: qj even value u.r. in [1, R], dj = qj +R/10.

9. Uncorrelated with similar weights: qj u.r. in [100R, 100R+R/10], dj u.r. in [1, R].

In [13], the authors used R = 100 and generated instances of type 1 only. The follower budget is set to
q0 = d INS11

∑
j∈N qje, where INS is the number of the instance, with 1 ≤ INS ≤ 10. The leader coefficients

ai are integers chosen u.r. in [0, R], while the leader budget a0 is taken from [q0 − 10, q0 + 10]. All instances
from [13] include at most 55 items. Using the same instance generator, we created larger instances with
|N | ∈ {100, 200, 300, 400, 500}. For each type of instances and number of items, we randomly generated
10 instances. However, instances of type 9 turned out to be trivial as the leader budget allows for the
interdiction of all items, so they have been omitted. Thus, our LKIP testbed includes 400 instances.

MKIP is a generalization of KIP in which the leader and/or the follower have several knapsack con-
straints. For MKIP, a benchmark of 144 instances (set SAC) has been proposed in [24], starting from the 0/1
multidimensional knapsack instances included in the SAC-94 library [36]. In particular, the MKIP instances
were obtained by (i) taking the first constraint as leader constraint, and the remaining ones as follower
constraints; or (ii) considering first half of the constraints as leader constraints, and the remaining ones as
follower constraints; or (iii) considering all but the last constraint as leader constraint.

Clique Interdiction Problem Let G = (V,E) be an undirected graph. In CIP, the follower solves a
maximum clique problem, and the leader interdicts edges to minimize the size of the maximum clique. Let
x be the leader interdiction variables associated with the edges, and yV and yE denote the follower binary
variables associated with the nodes and the edges, respectively. The clique interdiction problem can defined
using the following extended formulation [21]:

min
x∈{0,1}|E|

max
y∈{0,1}|V |+|E|

∑
i∈V

yVi (48)∑
(i,j)∈E

xij ≤ k, (49)

yVi + yVj ≤ 1, ∀(i, j) 6∈ E (50)

yVi + yVj − yEij ≤ 1, ∀(i, j) ∈ E (51)

xij + yEij ≤ 1, ∀(i, j) ∈ E (52)

12

Set TRSC has been introduced in [21] and is generated in the following way. Graphs are constructed
for graph densities d ∈ {0.7, 0.9} which yields |E| = bd |V | (|V | − 1)/2c. Each potential edge has equal
probability of being created. The interdiction budget k (i.e., the number of edges that can be interdicted)
is chosen as d|E|/4e. Ten instances for each d and |V | ∈ {8, 10, 12, 15} have been created, leading to 80
instances.

To study the influence of the problem formulation on the performance of our heuristics, we also generated
a new set of instances, denoted by TRSC+, that is obtained from TRSC by adding the following redundant
constraints to (48)-(52):

yVi + yVj + yVk − yEij ≤ 1, ∀i, j, k : {i, j} ∈ E, {i, k} 6∈ E, {j, k} 6∈ E. (53)

These constraints are {0, 1/2}-Chvátal-Gomory cuts [37] obtained by combining inequalities (50)-(51), and
are used to strengthen the LP relaxation of the follower formulation which is known to be quite poor.

Moreover, an additional set of larger CIP instances, named LCIP, was generated by using the same
procedure as in TRSK (without the redundant constraints (53)) with |V | ∈ {40, 50, 60}, thus producing 60
new instances.

Firefighter Problem These instances derive from a trilevel version (following the defender-attacker-
defender scheme of [7]) of the critical node problem recently introduced in [34]. An application of this
problem is, e.g., to stop the spread of wildfire in a forest as well as to limit the effect of malicious viral
attacks on a network. In both cases, given a defender policy, the resulting optimization problem is a bilevel
program in which the leader and the follower operate on a given undirected graph G = (V,E): the leader
represents the malicious player who wants to infect the maximum number of nodes in the network, while the
follower tries to minimize this figure. Both the leader and the follower can select nodes according to some
given budget. In particular, the leader can infect some nodes, from which infection propagates through the
edges of the graph, until it reaches a node that has been protected by the follower. Random instances with
number of nodes |V | ∈ {25, 50, 80} and budget for the leader b up to 5 were generated in [34].

6.2.2 Generalized Interdiction Instances

In this section we describe the procedure we used to randomly generate GIP instances. Observe that, when
no specific structure of the bilevel problem is imposed, one can easily end up with an infeasible or unbounded
instance. Additionally, one may encounter instances for which the optimal solution is unattainable; see, e.g.,
[38, 39] for a discussion of this behavior. A main issue is that, for any given feasible x̄ of the leader, the
follower may be infeasible, resulting in an infeasible problem. Additionally, it may happen that for a given x̄,
an associated optimal follower solution, say ȳ, is such that (x̄, ȳ) is not feasible due to the leader constraints
(11).

To avoid the pathological cases above, we generated a class GEN of random GIP problems using the
following approach. Instances are constructed by specifying five parameters: number of leader variables
|Nx|, number of follower variables |Ny|, number of interdiction variables |N |, number of leader constraints
|CL| (all in ≤ form), and number of follower constraints |CF | (all in ≤ form). All variables are binary, and
coefficients for the objectives and the constraints are taken uniformly random as integers in [−50, 50]. The
right-hand side of each constraint is taken as b α100 · Σc, where α is an integer taken uniformly random from
[25, 75], and Σ is either the sum of all positive or negative coefficients of the currently considered row (both
with 50% probability). Each leader constraint has an additional binary slack x-variable, with coefficient
−100, 000 in the constraint and penalty 100, 000 in the leader objective. Similarly, each follower constraint
has a continuous slack y-variable with coefficient −1 in the constraint, and penalty −100, 000 in the follower
objective. We disregarded all instances for which the HPR did not admit a feasible solution without leader
slack-variables. We created ten instances for each allowed combination in |Nx| ∈ {20, 30}, |Ny| ∈ {20, 30},
|N | ∈ {10, 20, 30}, and |CL| = |CF | = 20. This resulted in 90 instances (note that the interdiction variables
need to be a subset of the leader/follower variables).

13

6.3 Results on instances from literature

We first evaluated the performance of our proposed heuristics on the instances from the literature. For all
those instances, the optimal solution value was computed in [4], thus allowing us to evaluate the quality of
the heuristic solutions. Note that, in some cases, the exact method proposed in [4] required one or more
hours of computing time to find a provably optimal solution.

We ran each heuristic algorithm with a very short time limit of just 10 seconds. Table 2 gives the
number of instances for which each algorithm returned an optimal solution (without proving its optimality
of course), as well as the average percentage gap between the heuristic and the optimal solution values. For
each instance, the optimality gap is computed as 100 · |zheu − zopt|/(|zopt| + 10−10), where zheu and zopt

denote the heuristic and optimal solution values, respectively.

Table 2: Results of the heuristics on the instances from the literature, with a time limit of 10 sec.s. Column
#opt gives the number of times a heuristic found the optimal value zopt, and %gap gives the average primal
gap, computed as 100 · |zheu − zopt|/(|zopt|+ 10−10). (∗)Global statistics do not include class TRSC+.

GD OS OS+ GR I I+ DR+
set #inst #opt %gap #opt %gap #opt %gap #opt %gap #opt %gap #opt %gap #opt %gap

CCLW 50 5 17.56 44 0.12 49 0.00 10 6.93 50 0.00 50 0.00 50 0.00
TRSK 150 37 11.79 93 2.00 140 0.35 79 3.82 150 0.00 150 0.00 149 0.08
D 160 58 14.24 154 0.16 160 0.00 115 1.89 160 0.00 160 0.00 160 0.00
SAC 144 7 19.68 121 0.14 136 0.07 30 8.75 142 0.04 141 0.05 143 0.00
TRSC 80 1 98.96 5 73.96 14 44.17 5 70.62 22 37.92 26 29.79 52 14.17
TRSC+ 80 1 98.96 23 36.25 30 26.87 6 69.58 42 20.62 50 14.58 53 12.08
FIRE 72 5 30.43 15 29.69 52 5.68 20 13.27 53 5.67 56 4.24 55 4.58

sum(∗) 656 113 432 551 259 577 583 609

average(∗) 32.11 17.68 8.38 17.55 7.27 5.68 3.14

The leftmost part of Table 2 refers to the three algorithms (GD, OS, and OS+) that can terminate before the
imposed time limit; as a matter of fact, they were very fast in this test and often required one second or less.
The results in the table show that algorithm OS performs much better than GD: while OS is able to compute
an optimal solution in 65% of the instances and has an average percentage gap of about 17%, GD optimally
solves only 17% of the instances and has an average gap of about 32%. As expected, OS+ has an even (much)
better performance, in that it is able to compute an optimal solution in 83% of the instances and has an
average gap of about 8%. The rightmost part of the table considers more sophisticated heuristics that run
until the time limit is hit. The randomized version of the greedy (algorithm GR) is clearly the worst method
in this class (only 39% optimal solutions found with an average gap of about 17%), while the other methods
are able to produce an optimal solution for more than 87% of the instances, with an average gap below 7%.
Algorithm DR+ is the clear winner (92% of the instances solved to optimality, with an average error of about
3%), though very good results can be obtained also by using algorithm I+ (88% of the instances solved to
optimality, average error of about 5%).

Observe that the global results in Table 2 (lines “sum” and “average”) do not include instances in class
TRSC+, though the table reports the results for both classes TRSC and TRSC+ to stress the importance of having
a follower formulation with a small integrality gap. As expected, all our heuristics perform significantly better
when the improved formulation is considered, with the only exception of DR+ whose performance is already
quite good even without the additional inequalities (53)—recall that DR+ is able to automatically improve
the follower formulation by generating valid cuts on the fly.

It is worth noting that all our heuristics have an extremely good performance on the first four problem
classes, and a very good one on the last class. For the clique-based instances TRSC, instead, even our best
method (DR+) has an average error of more than 10%. This is partly explained by the fact that the optimal
solution value for these instances typically is a very small integer (less than 5 in most cases), so an error of
just one unit translates into a very large percentage error of 20% or more. A similar consideration applies
(to a lesser extent) to FIRE as well, where the optimal values are small integers in range 2 to 63.

Figure 1 plots the performance profile [40] of the percentage gap of the seven heuristics on the same

14

instances of Table 2, and confirms the relative ranking among the compared heuristics.

Figure 1: Performance profile plot of the percentage gap w.r.t. the optimal solution zopt, computed as
100 · |zheu − zopt|/(|zopt|+ 10−10), on the instances from the literature, with a time limit of 10 sec.s.

●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●
●●●●●
●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●●

●●●●●●●●●
●●●

●
●●● ●●●●●●● ● ●

●●● ● ● ● ● ● ● ●

●●●

70

80

90

100

0 25 50 75 100
Primal gap not larger than x%

#
in

st
an

ce
s

[%
]

Setting
● GD

GR
OS
OS+
I
I+
DR+

6.4 Results on new instances

In this section we address the newly proposed SIP instances, namely those in sets LKIP and LCIP, as well as
the GIP instances (set GEN). As for these instances the optimal solution value is not known, we evaluated
solution quality by comparison with the value, say zbest, of the best solution found by the heuristics under
comparison. For these instances, all algorithms were executed with a time limit of 60 seconds.

Table 3 reports the outcome of the new experiments. In particular, column “%gap” reports the average
percentage gap with respect to zbest, while column “#bst”gives the number of instances for which the
algorithm produced the best solution. The upper part of the table gives results for SIP instances, whereas
the last line refers to the GIP instances of class GEN. As the benchmark algorithms GD and GR are not designed
for GIP instances, we do not report the associated results in this case. In addition, we do not report the
percentage gap for these instances, as this figure can be extremely large due to the very large objective
coefficient of the slack variables.

Table 3: Results of the heuristics on the new instances, with a time limit of 60 sec.s. Column #bst gives the
number of times a heuristic found the best value zbest, and %gap gives the average primal gap, computed
as 100 · |zheu − zbest|/(|zbest|+ 10−10) for each instance. For instance set GEN the average primal gap is not
reported, as it may be very large due to slack variable coefficients in the objective function.

GD OS OS+ GR I I+ DR+
set #inst #bst %gap #bst %gap #bst %gap #bst %gap #bst %gap #bst %gap #bst %gap

LKIP 400 59 20.31 393 0.00 400 0.00 60 19.14 400 0.00 400 0.00 400 0.00
LCIP 60 0 63.93 0 53.75 34 17.91 0 57.21 1 34.14 40 7.05 58 0.32

sum 460 59 393 434 60 401 440 458
average 42.12 26.87 8.96 38.17 17.07 3.53 0.16

GEN 90 - - 24 - 44 - - - 49 - 49 - 90 -

Figures 2 and 3 plot the performance profile of the percentage gaps computed with respect to zbest for
newly proposed SIP and GIP instances, respectively.

15

Figure 2: Performance profile plot of the percentage gap w.r.t. the best heuristic solution zbest, computed
as 100 · |zheu − zbest|/(|zbest|+ 10−10), on the instances LCIP and LKIP with a time limit of 60 sec.s.

●●
●●
●●
●●
●●
●●
●●
●●
●

●●
●●
●●

●● ●
● ●●

● ●●
● ● ●●

●
● ● ●

●
●●

●●

85

90

95

100

0 25 50 75 100
Primal gap not larger than x%

#
in

st
an

ce
s

[%
]

Setting
● GD

GR
OS
OS+
I
I+
DR+

Figure 3: Performance profile plot of the percentage gap w.r.t. the best heuristic solution zbest, computed as
100 · |zheu − zbest|/(|zbest|+ 10−10), on the instance set GEN with a time limit of 60 sec.s. Our DR+ heuristic
found the best solution in 100% of the instences.

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
● ●●

●●
●●
●●

●●
●●
●●
●●
●●
● ● ●●

●●
●●
●●

40

60

80

100

0 25 50 75 100
Primal gap not larger than x%

#
in

st
an

ce
s

[%
] Setting

● OS
OS+
I
I+
DR+

The results show that all our heuristics perform equally well on LKIP, while for LCIP and GEN our more
advanced version (DR+) has much better performance than all the competing methods. For all instances in
this benchmark too, the greedy algorithm is clearly outperformed by the other heuristics, including the basic
version described in Section 5.1. Finally, observe that algorithm DR+ is consistently the best approach for
GEN instances.

16

7 Conclusions and directions of future work

In this paper we have considered Generalized Interdiction Problems (GIPs), a special case of Mixed-Integer
Bilevel Linear Programs (MIBLP) that has important practical applications. Generalized interdiction can
be seen as Stackelberg game where two players (called the leader and the follower) share a set of items,
and the leader can interdict the usage of certain items by the follower. These problems can be modeled as
Mixed-Integer Nonlinear Programming problems, whose exact solution can be very challenging.

We have proposed a single-level (compact) Mixed-Integer Linear Programming (MILP) reformulation of
the problem obtained from GIP by relaxing the integrality of the follower variables, to be used within a
heuristic solution approach. Three different heuristics of increasing sophistication level have been described
and computationally analyzed on a large set of instances taken from the literature or generated in a random
way. In particular, our new dynamic reformulation heuristic uses a mathematically-sound way to bring
integrality information (in the form of valid cuts) from the follower to the global level. The outcome of
our experiments is that even the simplest reformulation heuristic works well on a large number of the
tested instances, often providing an optimal solution within negligible computing time. For the hardest
cases, however, our new dynamic reformulation heuristic produces significantly improved results and clearly
outperforms all compared methods.

Future research should address the application of our dynamic reformulation heuristic scheme to other
min-max problems such as those arising in min-max regret robustness, as well as to problems where inter-
diction penalties are considered as, e.g., in [14]. Another interesting line of research is the application of
similar heuristic schemes to general MIBLPs. Also in this context, dropping the integrality requirement on
the follower variables leads to a single-level MILP reformulation, so our heuristic approach can be applied
with only minor adaptations. In the general bilevel case, however, the single-level reformulation is based on
KKT conditions, hence it implies hard disjunctive constraints that can make its resolution quite problematic
in practice. As a matter of fact, preliminary computational results show that the bilevel heuristic performs
well for some instances, but additional research effort is needed to reduce the solution time of the single-level
MILP reformulation.

Acknowledgments

This research was funded by the Vienna Science and Technology Fund (WWTF) through project ICT15-014.
The work of the first two authors was also supported MiUR, Italy (PRIN project), while that of the last
author was also supported by the Austrian Research Fund (FWF, Project P 26755-N19).

References

[1] P. Loridan, J. Morgan, Weak via strong Stackelberg problem: new results, Journal of Global Optimiza-
tion 8 (1996) 263–297.

[2] J. Outrata, On the numerical solution of a class of Stackelberg problems, ZOR - Methods and Models
of Operations Research 34 (1990) 255–277.

[3] S. DeNegre, Interdiction and discrete bilevel linear programming, Ph.D. thesis, Lehigh University (2011).

[4] M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, An improved branch-and-cut algorithm for mixed-integer
bilevel linear programs, Technical Report, DEI, University of Padova (2016).

[5] H. Von Stackelberg, The theory of the market economy, Oxford University Press, 1952.

[6] G. Brown, M. Carlyle, J. Salmeron, K. Wood, Analyzing the vulnerability of critical infrastructure
to attack and planning defenses, Tutorials in Operations Research: Emerging Theory, Methods, and
Applications (2005) 102–123.

17

[7] G. Brown, M. Carlyle, J. Salmeron, K. Wood, Defending critical infrastructure, Interfaces 36 (6) (2006)
530–544.

[8] A. Washburn, K. Wood, Two-person zero-sum games for network interdiction, Operations Research
43 (2) (1995) 243–251.

[9] G. Brown, M. Carlyle, R. Harney, E. Skroch, K. Wood, Interdicting a nuclear-weapons project, Opera-
tions Research 57 (4) (2009) 866–877.

[10] D. P. Morton, F. Pan, K. J. Saeger, Models for nuclear smuggling interdiction, IIE Transactions 39 (1)
(2007) 3–14.

[11] A. Lodi, T. Ralphs, F. Rossi, S. Smriglio, Interdiction branching, Technical Report, COR@L Laboratory,
Lehigh University (2011).

[12] A. Lodi, T. K. Ralphs, G. J. Woeginger, Bilevel programming and the separation problem, Math.
Program. 146 (1-2) (2014) 437–458.

[13] A. Caprara, M. Carvalho, A. Lodi, G. Woeginger, Bilevel knapsack with interdiction constraints, IN-
FORMS Journal on Computing 28 (2) (2016) 319–333.

[14] E. Israeli, R. Wood, Shortest-path network interdiction, Networks 40 (2) (2002) 97–111.

[15] C. Lim, J. C. Smith, Algorithms for discrete and continuous multicommodity flow network interdiction
problems, IIE Transactions 39 (1) (2007) 15–26.

[16] R. K. Wood, Deterministic network interdiction, Mathematical and Computer Modelling 17 (2) (1993)
1–18.

[17] F. Furini, M. Iori, S. Martello, M. Yagiura, Heuristic and exact algorithms for the interval min–max
regret knapsack problem, INFORMS Journal on Computing 27 (2) (2015) 392–405.

[18] L. Assunção, T. F. Noronha, A. C. Santos, R. Andrade, A linear programming based heuristic framework
for min-max regret combinatorial optimization problems with interval costs, Computers & Operations
Research 81 (2017) 51–66.

[19] C. Bazgan, S. Toubaline, D. Vanderpooten, Efficient determination of the k most vital edges for the
minimum spanning tree problem, Computers & Operations Research 39 (11) (2012) 2888–2898.

[20] D. R. Fulkerson, G. C. Harding, Maximizing the minimum source-sink path subject to a budget con-
straint, Mathematical Programming 13 (1) (1977) 116–118.

[21] Y. Tang, J.-P. Richard, J. Smith, A class of algorithms for mixed-integer bilevel min–max optimization,
Journal of Global Optimization (2015) 1–38.

[22] R. Wood, Bilevel Network Interdiction Models: Formulations and Solutions, John Wiley & Sons, Inc.,
2010.

[23] C. Bazgan, S. Toubaline, Z. Tuza, The most vital nodes with respect to independent set and vertex
cover, Discrete Applied Mathematics 159 (17) (2011) 1933 – 1946.

[24] M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, Interdiction games and monotonicity, Technical Report,
DEI, University of Padova (2016).

[25] H. Held, D. L. Woodruff, Heuristics for multi-stage interdiction of stochastic networks, Journal of
Heuristics 11 483–500.

[26] M. Gendreau, P. Marcotte, G. Savard, A hybrid tabu-ascent algorithm for the linear bilevel programming
problem, Journal of Global Optimization 8 (3) 217–233.

18

[27] C. Audet, J. Haddad, G. Savard, Disjunctive cuts for continuous linear bilevel programming, Optimiza-
tion Letters 1 (3) (2007) 259–267.

[28] U. P. Wen, A. D. Huang, A simple tabu search method to solve the mixed-integer linear bilevel pro-
gramming problem, European Journal of Operational Research 88 (3) 563–571.

[29] H. I. Calvete, C. Gal, P. M. Mateo, A new approach for solving linear bilevel problems using genetic
algorithms, European Journal of Operational Research 188 (1) 14–28.

[30] E.-G. Talbi, Metaheuristics for bi-level optimization, Vol. 482, Springer, 2013.

[31] M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, Intersection cuts for bilevel optimization, in: Q. Lou-
veaux, M. Skutella (Eds.), Integer Programming and Combinatorial Optimization: 18th International
Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings, Springer International Publish-
ing, Extended version submitted for publication, 2016, pp. 77–88.
URL http://www.dei.unipd.it/~fisch/papers/intersection_cuts_for_bilevel_optimization.

pdf

[32] E. Rothberg, An evolutionary algorithm for polishing mixed integer programming solutions, INFORMS
Journal on Computing 19 (4) (2007) 534–541.

[33] T. K. Ralphs, E. Adams, Bilevel instance library, http://coral.ise.lehigh.edu/data-sets/

bilevel-instances/ (2016).

[34] A. Baggio, M. Carvalho, A. Lodi, A. Tramontani, Multilevel approaches for the critical node problem,
working paper, École Polytechnique de Montréal (2016).

[35] S. Martello, D. Pisinger, P. Toth, Dynamic programming and strong bounds for the 0-1 knapsack
problem, Management Science 45 (3) (1999) 414–424.

[36] S. Khuri, T. Baeck, J. Heitkoetter, SAC94 Suite: Collection of Multiple Knapsack Problems, http:
//www.cs.cmu.edu/Groups/AI/areas/genetic/ga/test/sac/0.html (1994).

[37] A. Caprara, M. Fischetti, {0, 1/2}-Chvátal-Gomory cuts, Mathematical Programming 74 (3) (1996)
221–235.

[38] J. Moore, J. Bard, The mixed integer linear bilevel programming problem, Operations Research 38 (5)
(1990) 911–921.

[39] M. Köppe, M. Queyranne, C. T. Ryan, Parametric integer programming algorithm for bilevel mixed
integer programs, Journal of Optimization Theory and Applications 146 (1) (2010) 137–150.

[40] E. D. Dolan, J. Moré, Benchmarking optimization software with performance profiles, Mathematical
programming 91 (2) (2002) 201–213.

19

http://www.dei.unipd.it/~fisch/papers/intersection_cuts_for_bilevel_optimization.pdf
http://www.dei.unipd.it/~fisch/papers/intersection_cuts_for_bilevel_optimization.pdf
http://www.dei.unipd.it/~fisch/papers/intersection_cuts_for_bilevel_optimization.pdf
http://coral.ise.lehigh.edu/data-sets/bilevel-instances/
http://coral.ise.lehigh.edu/data-sets/bilevel-instances/
http://www.cs.cmu.edu/Groups/AI/areas/genetic/ga/test/sac/0.html
http://www.cs.cmu.edu/Groups/AI/areas/genetic/ga/test/sac/0.html

	Introduction
	Previous work
	The problem
	Single-level MILP reformulation
	Heuristics
	The ONE-SHOT heuristic
	The ITERATE heuristic
	The DYN-REF heuristic

	Computational results
	Implementation
	Testbed
	Standard Interdiction Instances
	Generalized Interdiction Instances

	Results on instances from literature
	Results on new instances

	Conclusions and directions of future work

