A new exact method and matheuristics for bi-objective 0/1 ILPs: Application to FTTx-network design

Markus Leitner^{*1}, Ivana Ljubić^{†1}, Markus Sinnl^{‡1}, and Axel Werner^{§2}

¹Department of Statistics and Operations Research, Faculty of Business, Economics and Statistics, University of Vienna, Austria ²Zuse Institute Berlin, Berlin, Germany

Abstract

Heuristics and metaheuristics are inevitable ingredients of most of the general purpose MIP solvers today, because of their contribution to the significant boost of the performance of exact methods. In the field of bi/multi-objective optimization, the interaction between the exact and metaheuristic communities is still fairly low. This article is one of the first steps towards reducing this gap and bringing the attention of both communities to still unexplored possibilities for performance improvements of exact and heuristic multi-objective optimization algorithms.

We focus on bi-objective optimization problems whose feasible solutions can be described as 0/1 integer linear programs and propose a new exact method called *adaptive search in objective space* (ASOS). ASOS combines features of the ϵ -constraint method with the binary search in the objective space. In addition, two matheuristics, *boundary induced neighborhood search* (BINS) and *directional local branching* are proposed. Their main idea is to combine the features and explore the neighborhoods of solutions that are relatively close in the objective space. Finally, a *two-phase ILP-based heuristic framework* relying on BINS and directional local branching is proposed.

Our new methods are computationally evaluated on two problems of particular relevance for the design of FTTx-networks. Comparison with other known exact methods (relying on the exploration of the objective space) is conducted on a set of realistic benchmark instances representing telecommunication access networks from Germany.

1 Introduction

Recent advances in the development of general purpose mixed integer programming (MIP) solvers have led to an increased popularity of exact MIP-based approaches for bi/multi-objective optimization. Two main research directions can be observed: branch-and-bound based algorithms (performing the search in the decision space, see, e.g., (1; 2; 3; 4)), and iterative exact methods (performing the search in the objective space, see, e.g., (5; 6; 7)). A large body of work is available in the field of meta-heuristics as well (see, e.g., (8; 9)). Not much has been done, however, in the development of *matheuristics* for bi-objective optimization. After many decades of independent research in mixed integer programming and metaheuristics for singleobjective (combinatorial) optimization, researchers came upon realization that significant advantages can be drawn from synergetic effects of their hybridization. Nowadays, most of the general purpose MIP solvers contain (meta)heuristics as their inevitable features that also significantly contribute to the boost of their

^{*}markus.leitner@univie.ac.at

[†]ivana.ljubic@univie.ac.at

[‡]markus.sinnl@univie.ac.at

[§]werner@zib.de

performance (see, e.g., (10; 11; 12)). In the field of bi/multi-objective optimization, this is still not the case, and the interaction between the communities is still fairly low. This article is one of the first steps towards reducing this gap and bringing the attention of both communities to still unexplored possibilities for performance improvements of exact and heuristic multi-objective optimization methods.

In this article we consider bi-objective combinatorial optimization problems that can be modeled as bi-objective 0/1 integer linear programs (ILPs). Our contribution is twofold:

- 1. We propose a new exact ILP-based method, adaptive search in objective space (ASOS) that explores the objective space in order to establish the complete Pareto front. This exact solution framework is based on combining the binary search in objective space (BSOS) (7; 13)) and the ϵ -constraint method (5; 14). Our framework is guided by (the absence of) heuristic solutions with the main goal to benefit from the advantages of the two methods while avoiding their individual drawbacks.
- 2. We propose two matheuristics for bi-objective 0/1 ILPs: boundary induced neighborhood search (BINS) and directional local branching, that are bi-objective counterparts of two efficient matheuristics for single-objective optimization, relaxation induced neighborhood search (RINS) (10) and local branching (11), respectively. The two matheuristics are then embedded into an two-phase ILP-based heuristic that is used to approximate the Pareto front for large instances.

The development of these new methods is motivated by our computational experience with certain biobjective problems arising in the design of FTTx-networks, showing that established iterative exact methods are not able to discover the complete Pareto front for most of the instances relevant for these practical applications.

Planning of Telecommunication Access Networks One main step in cost-efficient planning of telecommunication access networks is to find an (optimal) assignment of potential customers to different available *technologies* (*architectures*), i.e., a *deployment strategy*. Commonly used architectures include fiber-to-the-air (FTTA), fiber-to-the-curb (FTTC), fiber-to-the-building (FTTB), and fiber-to-the-home (FTTH). Network providers are faced with a natural question: which customers to serve with which technology so as to minimize the total investment costs while maximizing the quality of service. It is immediate that optimal deployment decisions are naturally subject to multiple objectives. Designing optimal FTTH networks is typically modeled as a variant of the *Steiner tree problem* (*STP*) in graphs (see, e.g., (15; 16)) while variants of the *Connected Facility Location Problem* (*ConFL*) have been used for planning FTTC networks, cf. (17; 18). We introduce the *multi-objective k-architecture connected facility location problem* (MOkA-ConFL), generalizing connected facility location to more than two architectures and to multiple-objectives. The computational success of our new approaches is demonstrated on bi-objective problems, that arise as special cases of MOkAConFL with practical applications. These problems are the *bi-objective connected facility location problem* (BOTAConFL).

Outline of the Article Required concepts from bi-objective optimization and necessary notation are summarized in the remainder of this section. Based on a short review of the BSOS and the ϵ -constraint method, we detail our new method, adaptive search in objective space, in Section 2. Section 3 introduces our general-purpose ILP-heuristics for the bi-objective case and discusses the new heuristic framework while Section 4 introduces MOkAConFL, its bi-objective variants that will be used in our computational study, and details necessary for adaptating our frameworks to these particular problems. Further implementation details and the results of our computational study on the considered benchmark problems are summarized in Section 5. Finally, in Section 6, conclusions and possible directions for future research are provided.

Basic Definitions and Notation Next, we introduce necessary notation and recall some basic terminology for bi-objective optimization, see, e.g., (19) for a more detailed overview. Throughout this article, we will only consider problems in minimization form and will assume that all input data is integral. For a bi-objective optimization problem $\min_{\sigma \in \mathcal{P}}(z_1(\sigma), z_2(\sigma))$, its feasible region \mathcal{P} is called *decision space* and $Z = \{(z_1(\sigma), z_2(\sigma)) : \sigma \in \mathcal{P}\}$ is the set of images of the points in \mathcal{P} in the *objective space* \mathbb{R}^2 .

For ease of notation, for $\sigma^i \in \mathcal{P}$, let $z_1^i = z_1(\sigma^i), z_2^i = z_2(\sigma^i)$ and $z^i = (z_1^i, z_2^i)$. Moreover, we will also sometimes slightly abuse notation, and use z^i (i.e., a point in the objective space) to also refer to a solution σ^i (i.e., a point in the decision space) with $z_1(\sigma^i) = z_1^i, z_2(\sigma^i) = z_2^i$. This is only done when it is clear from the context, that such a solution exists.

A solution $\sigma^* \in \mathcal{P}$ is called *Pareto optimal (efficient)*, if and only if there is no solution $\sigma' \in \mathcal{P}$ such that $z_i(\sigma') \leq z_i(\sigma^*)$, i = 1, 2, with at least one strict inequality. The objective point $z^* = (z_1(\sigma^*), z_2(\sigma^*))$ corresponding to an efficient solution σ^* is called *non-dominated*. The set of all Pareto optimal solutions is denoted by P_E and the set of all non-dominated points, also called *Pareto front* or non-dominated frontier, by \mathcal{Z} . An objective point $z(\bar{\sigma})$ corresponding to a solution $\bar{\sigma}$ is called *weakly dominated* if there exists another solution $\hat{\sigma}$ with $z_i(\hat{\sigma}) \leq z_i(\bar{\sigma})$, i = 1, 2 and $z_i(\hat{\sigma}) = z_i(\bar{\sigma})$ for either i = 1 or i = 2.

The set of efficient solutions can be partitioned into two subsets, those whose objective vectors lie on the convex hull of the Pareto front, which are usually called *supported* efficient solutions, and the remaining, so-called *non-supported* efficient solutions; the points in the objective space are called analogously. The boundary points (z_1^I, z_2^N) and (z_1^N, z_2^I) of the Pareto front that are defined by the *ideal point* $z_i^I = \min\{z_i(\sigma) : \sigma \in \mathcal{P}\}$ and the *nadir point* $z_i^N = \min\{z_i(\sigma) : \sigma \in \mathcal{P}, z_j(\sigma) \leq z_j^I, j \neq i\}, i = 1, 2$, play an important role in most iterative solution methods. Given the objective vectors of two solutions σ^a and σ^b with $z_2(\sigma^a) > z_2(\sigma^b)$, we will denote by $[z^a, z^b]$ the *rectangle* $\{(z_1, z_2) \mid z_1^a \leq z_1 \leq z_1^b, z_2^b \leq z_2 \leq z_2^a\}$ in the objective space defined by these two solutions.

When using heuristic methods, or when an exact method cannot terminate due to given memory- or timelimits, one usually ends up with an approximate Pareto front. The quality of such an approximation can be assessed by the hypervolume indicator, see, e.g., (20) for an overview on performance assessment methods of multi-objective optimization algorithms. Given a set of solutions $\hat{P}_E = \{\sigma^1, \ldots, \sigma^n\}$, in biobjective minimization, the hypervolume indicator $H(\hat{P}_E)$ is defined as the area dominated by the solutions in \hat{P}_E , i.e., the area covered by $\bigcup_{i=1}^{n} [(z_i^i, z_2^n), (z_1^n, z_2^i)]$. The hypervolume indicator attains a maximum for the complete Pareto front P_E , and it generally provides a lower bound for the area dominated by P_E . A higher value of the hypervolume indicator usually indicates a better approximation of the non-dominated frontier. For exact methods, in this article we introduce the relaxed hypervolume indicator rH, which is based on calculating the upper bound of the hypervolume, and in addition to this we also define a hypervolume gap indicator (note that a concept of this name is mentioned in (6) without explicit definition) which is calculated using H and rH. Details are given in Section 5.2.

2 New Exact Solution Framework

As mentioned in the introduction, ILP-based exact methods for multi-objective optimization typically follow one of the two patterns: they either rely on the search of the decision space, or they establish the complete Pareto front by exploring the objective space. The methods studied in this article fall into the latter category, and we will refer to them as *iterative methods*. Typically, an iterative scheme is defined, in which specifically constrained ILPs are solved, and the objective space is further explored based on the obtained optimal solutions.

Before introducing the new exact framework in Subsection 2.3, we detail the two iterative approaches it is mainly composed of. Given weights ω_1, ω_2 and bounds ϵ_1, ϵ_2 , we will denote by *iteration* the process of solving ILP $P(\omega_1, \omega_2, \epsilon_1, \epsilon_2) = \min\{\omega_1 z_1(\sigma) + \omega_2 z_2(\sigma) : \sigma \in \mathcal{P}, z_1(\sigma) \leq \epsilon_1, z_2(\sigma) \leq \epsilon_2\}$, assuming that " $\sigma \in \mathcal{P}$ " symbolically stands for a 0/1 ILP description of the set of feasible solutions. The optimal solution of such an iteration will be denoted by σ^* while δ_1 and δ_2 will denote the greatest common divider (gcd) of all coefficients in $z_1(\sigma)$ and $z_2(\sigma)$, respectively. List *Sol* is the *solution pool*. It stores the current approximation of the Pareto front. *Sol* is initialized with the boundary points (z_1^I, z_2^N) and (z_1^N, z_2^I) of the non-dominated frontier. This process is denoted as *initBP*() in the following. Solutions generated by some heuristic procedure that are Pareto optimal with respect to the current approximation of the Pareto front are called *candidate solutions* or *potentially* Pareto optimal solutions. Note that such solutions will also be stored in Sol. Sol is used to initialize the ILP of an iteration with a starting solution and also to guide our exact framework. More details are given in Subsection 2.3.

2.1 Binary Search in Objective-Space (BSOS)

The binary search in objective-space (BSOS) (7; 13) which is summarized in Algorithm 1 is a variant of the weighted-sum approach. In contrast to the standard weighted-sum method for bi-objective optimization (see, e.g., (21)), BSOS is able to discover non-supported efficient solutions as well. To this end, the corner points z^a and z^b defining the rectangle $[z^a, z^b]$ of a current iteration are cut off with additional constraints $z_1(\sigma) \leq z_1^b - \delta_1$ and $z_2(\sigma) \leq z_2^a - \delta_2$, which are added to the weighted-sum optimization problem, i.e., $P(\omega_1, \omega_2, z_1^b - \delta_1, z_2^a - \delta_2)$ is solved, see Figure 1 for an illustration.

Algorithm 1 Binary Search in Objective Space

$$\begin{split} &Sol \leftarrow initBP()\\ &I \leftarrow \{[(z_1^I, z_2^N), (z_1^N, z_2^I)]\}\\ &\text{while } I \neq \emptyset \text{ do}\\ &\text{select a rectangle } [z^a, z^b] \in I \text{ and remove it from } I\\ &\sigma^* \leftarrow \operatorname{argmin} P(\omega_1, \omega_2, z_1^b - \delta_1, z_2^a - \delta_2)\\ &\text{if } \sigma^* \neq \emptyset \text{ then}\\ &Sol \leftarrow Sol \cup \{z(\sigma^*)\}\\ &\text{if } z_2^a - z_2(\sigma^*) \geq 2\delta_2 \text{ then}\\ &I \leftarrow I \cup \{[z^a, z(\sigma^*)]\}\\ &\text{if } z_1^b - z_1(\sigma^*) \geq 2\delta_1 \text{ then}\\ &I \leftarrow I \cup \{[z(\sigma^*), z^b]\} \end{split}$$

(a) z^1, z^2 are not yet discovered Pareto optimal solutions. The bold lines give the constraints on $z_1(\sigma)$ and $z_2(\sigma)$.

(b) Dashed lines are level lines of the objective function. Non-dominated point z^2 is discovered.

Figure 1: Iteration in the binary search in objective space. Rectangle $[z^a, z^b]$ is explored.

We observe that up to $2|\mathcal{Z}| + 3$ ILPs have to be solved to determine a Pareto front consisting of $|\mathcal{Z}|$ points using the BSOS. Besides the four initial ones to obtain the two boundary points and $|\mathcal{Z}| - 2$ to obtain all remaining points, we also need to solve at most $|\mathcal{Z}| + 1$ additional ILPs, one for each empty interval between two Pareto optimal solutions. The latter fact resembles the main weakness of this methods, since the chosen ILP solver has to prove infeasibility for each of these problems, a process that typically takes significantly longer than solving an ILP with at least one feasible solution. The order in which rectangles (stored in the queue I in the pseudo-code given in Algorithm 1) are proceeded, may significantly influence the performance of this approach. In our implementation, we choose rectangles according to their contribution to the relaxed hypervolume rH (see Section 5.2 for further details).

While usually weights $\omega_1 = z_2^a - z_2^b$ and $\omega_2 = z_1^b - z_1^a$ that yield an objective function parallel to the line through $[z^a, z^b]$ are chosen, the method works in principle for any selection of $\omega_1, \omega_2 > 0$. Next, we propose an approach that can possibly prove Pareto optimality of multiple, already known feasible solutions (such solutions could have been found, for example, by heuristics) in a single iteration. Let \mathcal{P}^C be the set of all candidate solutions with images lying in the currently considered rectangle $[z^a, z^b]$, and Z^C be the set of corresponding images. The approach exploits the result of the following Lemma, see Figure 2 for an illustration.

Lemma 1. Consider a facet \mathcal{F} of the polygon $\operatorname{conv}(z^a, z^b, Z^C, (z_1^b, z_2^a))$, defined by two points $z^i = z(\sigma^i)$ and $z^j = z(\sigma^j)$ with $\sigma^i, \sigma^j \in \mathcal{P}^C$ and $z_2^i > z_2^j$ such that $z^a, z^b \notin \mathcal{F}$ and let $\omega_1 := z_2^i - z_2^j, \omega_2 := z_1^j - z_1^i$, and $z^\omega := \omega_1 z_1^i + \omega_2 z_2^i$. Furthermore, let \mathcal{P}^ω be the set of all candidate solutions $\sigma \in \mathcal{P}^C$ such that $z(\sigma) \in \mathcal{F}$. If the optimal solution value of $P(\omega_1, \omega_2, z_1^b - \delta_1, z_2^a - \delta_2)$ is equal to z^ω , then all solutions in \mathcal{P}^ω are Pareto optimal.

Proof. The obtained solution (with objective value z^{ω}) is Pareto optimal by the validity of the BSOS method (since $\omega_1, \omega_2 > 0$). Since all solutions in P^{ω} have objective points on \mathcal{F} with the same objective value (by the choice of ω_1, ω_2), they are all Pareto optimal.

Figure 2b illustrates the result of Lemma 1 and also shows that more than two new rectangles may be obtained when using this approach.

Figure 2: $Z^C = \{z^1, z^2, z^3, z^4\}$. The weights are chosen based on z^2 and z^3 and the dashed lines are level lines of the resulting objective function. The non-dominated point z^* allows us to conclude that z^2 and z^3 are also non-dominated. The new rectangles are $[z^a, z^2]$, $[z^2, z^3]$, $[z^3, z^*]$ and $[z^*, z^b]$.

2.2 ϵ -Constraint Method

In the ϵ -constraint method, which is one of the most popular methods for solving bi-objective combinatorial optimization problems (see, e.g., (5) for a recent application), one of the two objectives, say z_2 , is transformed

into a constraint, i.e., problem $P(1, 0, \infty, \epsilon)$ is considered. By systematically decreasing parameter ϵ from z_2^N to z_2^I the Pareto front is determined.

In this basic version, weakly dominated points may be found. These points can simply be removed in a post-processing phase. Moreover, this problem can also be resolved by using lexicographic minimization, i.e., by either solving $P(1, \gamma, \infty, \epsilon)$ for an appropriately small value of γ or by solving a second ILP min $\{z_2(\sigma) : \sigma \in \mathcal{P}, z_1(\sigma) = z_1(\sigma^*)\}$, in each iteration. According to our computational experience it is much faster to simply remove weakly dominated points in the end, rather than using lexicographic minimization. A drawback of the method arises from the fact that it does not generate a good approximation of the Pareto front early (since it searches the objective space from top left to bottom right). Consequently, the hypervolume typically increases only slowly during the solution process.

2.3 Adaptive Search in Objective Space (ASOS)

The motivation of our new exact solution framework, adaptive search in objective space (ASOS) (see Algorithm 2) is to combine the ϵ -constraint method and BSOS in such a way that we benefit from their advantages and do not face their drawbacks. The default method is BSOS, since it quickly computes an approximation of the Pareto frontier and does not return weakly Pareto optimal solutions. To avoid proving infeasibility of ILPs associated to some rectangle $[z^a, z^b]$, we aim to efficiently guess when such a case might occur and call the ϵ -constraint method with $P(1, 0, \infty, z_2^a - \delta_2)$ instead. If our prediction was correct the ϵ -constrained method will return a solution z^c with $z_2^c = z_2^b$ and doing so is typically much faster than proving emptiness of the interval by BSOS. If, on the contrary, a new solution is found by the ϵ -constraint method, a new Pareto optimal solution σ^* is derived using its lexicographic variant. Subsequently, the rectangle $[z(\sigma^*), z^b]$ is added to the queue of unprocessed rectangles. Note that, in that case, the ϵ -constraint method implicitly proves that the rectangle $[z_a, z(\sigma^*)]$ does not contain further non-dominated points.

ASOS uses the set of so-far discovered and not yet dominated solutions (the solution pool *Sol*) to decide which solution method to apply for a given rectangle $[z^a, z^b]$ as follows: If *Sol* does not contain any solution lying in the rectangle $[z^a, z^b]$, we conclude that it is likely that no such solution exists and apply the ϵ constraint method (with σ^b as starting solution). On the contrary, if at least one solution in $[z^a, z^b]$ has been found previously, BSOS is applied. We use the most promising solution (i.e., the one with minimum objective value) from the solution pool as starting solution. The process of passing this starting solution as initial incumbent to the ILP solver is denoted by *setStartingSolution* in Algorithm 2.

Clearly, our framework relies on the effective population of the solution pool. Besides adding all incumbent solutions found throughout previous iterations (which might turn out to be Pareto optimal in subsequent iterations), we propose to use the general purpose ILP-based heuristic, *boundary induced neighborhood search* (BINS), see next section. Observe that in the first ten iterations of ASOS we run binary search to collect diverse solutions for *Sol*.

Our Algorithm uses further also generic acceleration methods denoted with $updateBranchingPriorities(\sigma^*)$ and updateConstraintPool(), which are discussed below. Necessarv adaptations of these generic ideas to the considered problems are described in Section 5.1. These acceleration methods and the solution pool are used in all methods considered in our computational study. We also experimented with visit and cover inequalities, cf. (22), but they did not give promising results in preliminary tests.

Constraint Pool Many combinatorial optimization problems can be modeled as ILPs with a huge (potentially exponential) number of constraints that are dynamically added using branch-and-cut. To this end, an appropriate oracle (separation method) is called which identifies and adds (separates) violated constraints. In iterative solution methods some of these inequalities will likely be added in several iterations. Thus, a constraint pool (see, (7; 22)) stores them and is checked for violated constraints before calling the computationally more expensive separation routine. In our default setting, the pool is re-initialized with each new iteration, and only constraints violated in the previous iteration are kept in the pool.

Algorithm 2 Adaptive Search in Objective Space (ASOS)

```
Sol \leftarrow initBP()
iterations \leftarrow 0
I \leftarrow \{[(z_1^I, z_2^N), (z_1^N, z_2^I)]\}
while I \neq \emptyset do
   iterations \leftarrow iterations + 1
   select a rectangle [z^a, z^b] \in I and remove it from I
   if \exists \sigma \in Sol : z(\sigma) \in [z^a, z^b] \lor iterations \leq 10 then
       setStartingSolution(\sigma^a, \sigma^b)
       \sigma^* \leftarrow \operatorname{argmin} P(\omega_1, \omega_2, z_1^a - \delta_1, z_2^b - \delta_2)
       if \sigma^* \neq \emptyset then
           updateBranchingPriorities(\sigma^*), updateConstraintPool()
           Sol \leftarrow Sol \cup \{z(\sigma^*)\}
          if z_2^a - z_2(\sigma^*) \ge 2\delta_2 then
              I \leftarrow I \cup \{[z^a, z(\sigma^*)]\}
              Sol \leftarrow Sol \cup BINS(z^a, z(\sigma^*))
          if z_1^b - z_1(\sigma^*) \ge 2\delta_1 then
              I \leftarrow I \cup \{[z(\sigma^*), z^b]\}
              Sol \leftarrow Sol \cup BINS(z(\sigma^*), z^b)
   else
       setStartingSolution(\sigma^b)
       \sigma^* \leftarrow \operatorname{argmin} P(1, 0, \infty, z_2^a - \delta)
       if z_2(\sigma^*) \neq z_2^b then
           updateBranchingPriorities(\sigma^*), updateConstraintPool()
           \sigma^* \leftarrow \operatorname{argmin} \{ z_1(\sigma) : \sigma \in \mathcal{P}, z_2(\sigma) = z_2(\sigma^*) \}
           updateBranchingPriorities(\sigma^*), updateConstraintPool()
           Sol \leftarrow Sol \cup \{z(\sigma^*)\}
          if z_2(\sigma^*) - z_2^b \ge 2\delta_2 then
              I \leftarrow I \cup \{[z(\sigma^*), z^b]\}
              Sol \leftarrow Sol \cup BINS(z(\sigma^*), z^b)
```

Adaptive Branching Iterative solution frameworks for bi-objective problems allow to better guide the branching decisions of the current ILP iteration by exploiting knowledge gained during previous iterations (22). One natural way that we make use of, is to increase the branching priority of a binary variable each time the corresponding object is included in a Pareto optimal solution. We refer to this branching strategy as *adaptive branching*.

3 ILP-Based Heuristics for Bi-objective Integer Programming

In this section, we propose a new, generic two-phase heuristic framework based on black-box ILP procedures that aims to overcome the following two severe drawbacks of iterative ILP-based exact methods: a single ILP iteration may (i) require too much time or (ii) run out of memory. In both cases, only a very small part of the Pareto front may be discovered and iterative methods may not be able to continue in a reasonable way since they usually rely on the identification of Pareto optimal solutions of previous iterations. Our framework, which will be detailed in Section 3.3, is based on *boundary solution induced neighborhood search* (BINS) and *directional local branching*, cf. Sections 3.1 and 3.2. The latter two are new multi-objective generalizations of well-established single-objective black-box ILP heuristics, namely RINS (10) and *local branching* (11), respectively. In the following, we describe our methods for 0/1 ILPs, but we also point out that our methods can be easily adapted to general ILPs.

3.1 Boundary Solution Induced Neighborhood Search (BINS)

When LP-relaxations are solved within a branch-and-bound procedure for ILPs, some of the integer decision variables may be (almost) integer in an optimal LP-solution, while others are not. To produce high-quality feasible solutions, variable fixing heuristics try to fix decision variables in an intelligent way by using information gained during the solution process. In case of the relaxation induced neighborhood search (RINS) (10), the value of the LP-relaxation is used to fix the decision variables. Inspired by these ideas, BINS aims to exploit the fact that Pareto optimal solutions corresponding to non-dominated points in some rectangle $[z^a, z^b]$ often share solution characteristics with the boundary solutions σ^a and σ^b . Let Σ be the set of indices of variables of the considered problem, $F_0 = \{i \in \Sigma : \sigma_i^a = \sigma_i^b = 0\}$ and $F_1 = \{i \in \Sigma : \sigma_i^a = \sigma_i^b = 1\}$ be the sets of variables that are equal to zero and one, respectively, in both solutions. We fix (some of) the variables whose values are identical in these boundary solutions in order to find a new potentially Pareto optimal solution by solving $P(\omega_1, \omega_2, z_1^a - \delta_1, z_2^b - \delta_2)$ extended by constraints $\sigma_i = 0$, for all $i \in F_0$ and $\sigma_i = 1$, for all $i \in F_1$. Since in that case we are solving a restricted variant of a BSOS iteration with a potentially large number of variables fixed to zero or one, one can expect to find feasible solutions extremely fast. As in RINS, one may fix only variables from F_0 (F_1) to zero (one) or impose both constraints. Note that the efficiency of BINS clearly depends on the size of the rectangle, the number of feasible solutions inside, and typically benefits from increasing sizes of sets F_0 and F_1 .

3.2 Directional Local Branching

Local branching (11) is a generic ILP-based method to effectively search a neighborhood of a feasible reference solution $\bar{\sigma}$. Given parameter $n \in \mathbb{N}$ and the set of indices $S^1 = \{i \in \Sigma : \bar{\sigma}_i = 1\}$ of variables whose values are equal to one in $\bar{\sigma}$, a neighborhood $N(n, \bar{\sigma})$ of size n for this reference solution $\bar{\sigma}$ is constructed by adding the following local branching constraint to the problem formulation.

$$\sum_{i \in S^1} (1 - \sigma_i) + \sum_{i \in \Sigma \setminus S^1} \sigma_i \le n.$$
(1)

Constraint (1) ensures that at most n variables of a feasible solution attain values different to the value of the reference solution $\bar{\sigma}$. Since the associated feasible set is typically small, solving an ILP with the local branching constraint (and using the reference solution as initial solution) often allows to derive an improved solution extremely fast.

Directional local branching generalizes local branching to bi-objective problems as follows: Given a (potentially Pareto optimal) solution σ^P we aim to identify yet unknown (potentially Pareto optimal) solutions close to σ^P . To this end we minimize one of the objective functions (i.e., z_i , i = 1, 2) while restricting the feasible space to a neighborhood of σ^P . More precisely, we add a local branching constraint for σ^P , minimize in z_i -direction and additionally add an ϵ -constraint on objective z_j , $j \neq i$, to avoid computing a solution with the ideal-point value for objective i. For example, for i = 1, j = 2, we solve the problem $P(1, 0, \infty, \epsilon)$ with an additional constraint as defined in equation (1). Two variants for choosing the right-hand-side of this ϵ -constraint can be considered: (i) z_j^P or (ii) $z_j^P - \delta_j$, $j \neq i$. The latter variant explicitly ensures that a solution different to σ^P is produced (if a suitable one exists in the given neighborhood).

Observe that our new approach offers a generic way to perform *multi-directional local search* (23). By letting the ILP-solver explore the neighborhood, our approach avoids the implementation of (possibly complicated) problem-dependent local-search procedures whose execution may also be time-consuming. The idea of the directional local branching can be straight-forwardly adapted to more than two objectives: one objective is part of the minimization function, the remaining objectives are bounded from above, and the neighborhood constraint is added.

3.3 The Two-Phase ILP-based Heuristic Framework

In this section we describe a new ILP-based heuristic framework whose main ingredients are BINS and directional branching described above. Inspired by the two-phase methods (TPM) for bi-objective combinatorial optimization problems (see, e.g., (21) or (24)) our ILP-based heuristic framework consists of two phases. Using a weighted-sum approach, the first phase aims to discover the set of all supported non-dominated points, which likely provides a good approximation of the Pareto front. A timelimit t_{FP} is applied in each iteration, to avoid potentially arising excessive runtimes of single iterations. In addition, we apply BINS to each rectangle $[z^a, z^b]$ identified in this first phase in order to find further (potentially Pareto optimal) solutions and populate the solution pool *Sol*.

Starting off with the set of solutions found in the first phase, the second phase iteratively refines the approximate Pareto front by applying directional local branching as long as improved (i.e., non-dominated) solutions can be found. The framework is summarized in Algorithm 3. As above, *Sol* contains the set of currently non-dominated points. The set *newSol* used in the second phase initially contains all points discovered in the first phase. The neighborhood of each single point in *newSol* is explored and the newly discovered non-dominated points, which are temporary stored in the set *neighbors*, are passed over to the next iteration i.e., *newSol* is reset to non-dominated solutions from *neighbors*.

Algorithm 3 Two-Phase ILP-based Heuristic Framework

```
Sol \leftarrow initBP()
I \leftarrow \{[(z_1^I, z_2^N), (z_1^N, z_2^I)]\}
while I \neq \emptyset do
   select a rectangle [z^a, z^b] \in I and remove it from I
   setStartingSolution(\sigma^a, \sigma^b)
   \sigma^* \leftarrow \operatorname{argmin} P(\omega_1, \omega_2, \infty, \infty)
   if \sigma^* \neq \emptyset \land z_1(\sigma^*) \neq z_1^a \land z_1(\sigma^*) \neq z_1^b then
       updateBranchingPriorities(\sigma^*), updateConstraintPool()
       Sol \leftarrow Sol \cup \{z(\sigma^*)\}
      if z_2^a - z_2(\sigma^*) \geq 2\delta_2 then
          I \leftarrow I \cup \{[z^a, z(\sigma^*)]\}
          Sol \leftarrow Sol \cup BINS(z^a, z(\sigma^*))
       if z_1^b - z_1(\sigma^*) \geq 2\delta_1 then
          I \leftarrow I \cup \{[z(\sigma^*), z^b]\}
          Sol \leftarrow Sol \cup BINS(z(\sigma^*), z^b)
newSol \leftarrow Sol
while newSol \neq \emptyset do
   neighbors \leftarrow \emptyset
   while newSol \neq \emptyset do
       z^a \leftarrow \text{pop a solution from } newSol
       neighbors \leftarrow neighbors \cup directionalLocBra(z^a)
   Sol \leftarrow non-dominated solutions from Sol \cup neighbors
   newSol \leftarrow non-dominated solutions from neighbors
```

We have also tested a variant of this framework in which local branching (using the incumbent solution σ^* as initial solution) is performed whenever an ILP terminates due to the timelimit t_{FP} in the first phase. Thereby, local branching is iteratively applied until a solution is provably optimal for the considered neighborhood size or until a predefined number of maximum iterations is reached. The main idea behind it is to avoid a creation of new intervals based on a rather bad solution σ^* .

It is worth mentioning that we also investigated a heuristic variant of the ϵ -constraint method in which a timelimit is applied to each iteration. If no solution has been identified in the current iteration, a natural idea is to simply decrease ϵ and proceed. Using this strategy may, however, result in an approximate front for which large areas in the objective space remain empty. If on the contrary at least one candidate solution has been found for the current value of ϵ (which may or may not be optimal given a termination due to the timelimit), it is not clear how to set parameter ϵ in the next iteration. Our preliminary experiments with such an ϵ -constraint based heuristics exhibited a rather bad performance (even when combined with local

Figure 3: Schematic view of an access network using different technologies (fiber, copper, and wireless); cf. (25)

branching) so that we did not try to exploit this idea any further.

4 Bi-objective FTTx Network Design

Our methods are tested on benchmark problems arising in the design of fiber-optic access networks with different potential *technologies* (also called *architectures*), see Figure 3. Despite the fact that a large body of work has been devoted to this topic (see (25) for a recent survey), so-called *mixed deployment strategies* have been considered only recently in (26). In (26), the *two-architecture connected facility location problem* (2AConFL) is introduced, which models the problem of supplying customers of a given deployment area with two potential technologies. *Minimum-coverage rates* are used to specify the fraction of the customers to be supplied by the better and by any of the two technologies, respectively.

A main drawback of modeling the deployment using the 2AConFL is that minimum-coverage rates need to be specified in advance and potentially existing, significantly cheaper solutions slightly violating coverage constraints will never be considered. Since the latter solutions represent attractive options for decision makers, it is desirable to study problem variants in which coverage rates are considered as additional objectives. In order to better capture the trade-off between these two conflicting goals, namely investment costs and achieved coverage rates, we introduce the *multi-objective k-architecture connected facility location problem* (MOkAConFL), generalizing 2AConFL to more than two architectures and to multiple-objectives. After describing the used ILP formulation for MOkAConFL we discuss practically relevant special cases with two objectives including those that will be considered in our computational study.

In an instance of the MOkAConFL we are given a core graph G = (V, E) whose node set V is the union of potential central offices (COs) Q with opening costs $c_q \ge 0$, $\forall q \in Q$, potential facility locations $I = \bigcup_{l=1}^{k} I^l$ per technology l with associated opening costs $c_i^l \ge 0$, $\forall i \in I^l$, $1 \le l \le k$, and potential Steiner nodes S. Facilities in this context are multiplexors or switches, and Steiner nodes are, e.g., street-junctions. Edges $e = \{u, v\} \in E$ model potential connections between core nodes u and v and are associated with trenching

Figure 4: a) An instance of MOkAConFL for k = 2 with $Q = \{q_1, q_2\}$, $I^1 = \{f_1, f_2\}$, $I^2 = \{g_1, g_2\}$, and $J = \{c_1, \ldots, c_5\}$. b) An exemplary solution to this instance where each customer is supplied by some architecture and customers c_1 and c_3 are served by the better architecture. The assignment to the artificial root node r determines which COs are opened; cf. (26).

costs $c_e \geq 0$. We are further given a set of potential customers J with demands $d_j \in \mathbb{N}$, $\forall j \in J$, and a bipartite digraph $(I \cup J, \bigcup_{l=1}^{k} A^l)$, $A^l \subseteq I^l \times J$, $1 \leq l \leq k$, modeling potential assignments between facilities and customers using technology l. Thus, each facility in I^l represents a location from which (after the installation of appropriate equipment) some customers can be supplied using architecture l. Note that the sets I^l need not be disjoint.

A facility must be opened if at least one customer is assigned to it and every customer can be assigned to at most one facility. Furthermore, each open facility must be connected to an open central office by a path in the core graph. CO nodes and potential facility locations can be used as Steiner nodes, in which case no opening costs are paid for passing through them. Besides minimizing the overall costs of the network, MOkAConFL aims to maximize the demand served with technology l or better, for $1 \le l \le k$ (equivalently, to minimize the demand that is not served with technology l or better). A technology i is considered better as technology j, if its index is smaller, i.e., i < j.

The problem is modeled on a digraph $(V \cup J \cup \{r\}, A_r \cup A_c \cup \bigcup_{l=1}^k A^l)$. Thereby, r is an artificial root node $r \notin V$ connected to each potential central office $q \in Q$ via arcs $A_r = \{(r,q) \mid q \in Q\}$ that incorporate the corresponding opening costs, i.e., $c_{rq} = c_q, \forall q \in Q$. Obviously, if |Q| = 1 the creation of the artificial root node and its associated arcs can be skipped and the CO itself can act as the root. The arc set $A_c = \{(u, v) \mid \{u, v\} \in E\}$ is obtained by bi-directing the core edges and we assume that $c_{uv} = c_{vu} = c_e$, $\forall e \in E$. For ease of notation, we use abbreviations $A_{rc} = A_r \cup A_c$, $A_a = \bigcup_{l=1}^k A^l$ and $A = A_{rc} \cup A_a$. Figure 4 shows an exemplary instance and a feasible solution.

Our generic ILP model for MOkAConFL, which will be specialized later on, is given by (2)–(11). Thereby, core arc variables $x_{ij} \in \{0,1\}, \forall (i,j) \in A_{rc}$, indicate membership of core and artificial root arcs to the solution while core node variables $y_i \in \{0,1\}, \forall i \in V$, denote if a node *i* is in the solution. Assignment arc variables $x_{ij}^l \in \{0,1\}, \forall (i,j) \in A^l, 1 \leq l \leq k$, indicate if customer *j* is supplied by facility *i* using architecture *l*, facility variables $f_i^l \in \{0,1\}, \forall i \in I^l, 1 \leq l \leq k$, whether or not facility *i* is open providing connections using architecture *l*, and customer variables $r_j^l \in \{0,1\}, \forall j \in J, 1 \leq l \leq k$, if customer *j* is supplied by architecture *l*.

Let $D = \sum_{j \in J} d_j$, and let $I_j^l = \{i \in I^l \mid (i, j) \in A^l\}$ be the set of eligible facilities for a customer $j \in J$ and architecture $l, 1 \leq l \leq k$. For a node set $W \subset V \cup J$, let $\delta^-(W) = \{(i, j) \in A \cup A_r \mid i \notin W, j \in W\}$ and $\delta^+(W) = \{(i, j) \in A \cup A_r \mid i \in W, j \notin W\}$ be the set of incoming and outgoing arcs, respectively. Finally, for arc set $\hat{A} \subset A_{rc}$ let $x(\hat{A}) = \sum_{(i,j) \in \hat{A}} x_{ij}$.

$$\min \sum_{(i,j)\in A_{rc}} c_{ij} x_{ij} + \sum_{l=1}^{k} \left(\sum_{(i,j)\in A^l} c_{ij}^l x_{ij}^l + \sum_{i\in I^l} c_i^l f_i^l \right)$$
(2)

$$\min D - \sum_{m=1}^{l} \sum_{j \in J} d_j r_j^m \qquad 1 \le l \le k \tag{3}$$

s.t.
$$\sum_{l=1}^{k} r_j^l \le 1 \qquad \qquad \forall j \in J \qquad (4)$$

$$\sum_{i \in I_j^l} x_{ij}^l = r_j^l \qquad \qquad \forall j \in J, \ 1 \le l \le k \tag{5}$$

$$\begin{aligned} x_{ij}^{\iota} &\leq f_i^{\iota} & \forall j \in J, \ i \in I_j^{\iota}, \ 1 \leq l \leq k \\ x(\delta^-(\{i\})) &= y_i & \forall i \in V \end{aligned} \tag{6}$$

$$f_i^l \le y_i \qquad \qquad \forall \ i \in I_j^l, \ 1 \le l \le k \tag{8}$$
$$r(\delta^-(W)) \ge u, \qquad \qquad \forall W \subseteq V, \ i \in I \cap W \tag{9}$$

$$(x^{l}, f^{l}, r^{l}) \in \{0, 1\}^{|A^{l}| + |I^{l}| + |J^{l}|}$$

$$(y) \quad (y) \quad (y)$$

$$(x,y) \in \{0,1\}^{|A_{rc}|+|V|} \tag{11}$$

While (2) minimizes the total construction costs of the network, the objectives (3) minimize the demand not served with technology l or better, for $1 \leq l \leq k$. Constraints (4) and (5) ensure that a unique architecture and assignment arc is used for each connected customer. Inequalities (6) force a facility to be opened whenever an assignment arc issuing from it is chosen. Connectivity constraints (9) (y-cuts) ensure, together with constraints (7),(8), that each opened facility is connected to the artificial root node via opened core arcs. Since the root node is adjacent only to the CO nodes it follows that at least one CO node is contained in the solution.

Coverage constraints (12) specifying the minimum fraction p_l , $0 \le p_l \le 1$, of demand to be covered by technology l or better will be added in one of the special cases of MOkAConFL discussed below.

$$\sum_{m=1}^{l} \sum_{j \in J} d_j r_j^m \ge \lceil p_l D \rceil \qquad 1 \le l \le k \tag{12}$$

If $p_l > 0$ for some l, at least one facility of type l or better must be opened and hence connectivity constraints (9) are strengthened to

$$x(\delta^{-}(W)) \ge 1, \quad \forall W \subseteq V : \bigcup_{m=1}^{l} I^{l} \subseteq W$$
 (13)

if W contains all potential facilities of type l or better.

Furthermore, whenever all customers must be supplied, inequality (4) is replaced by an equation, which implies that objective (3) is always 0 for l = k.

Bi-objective FTTH-Network Design The design of FTTH networks in which customers shall be connected to a central office by fiber-optic cables can be modeled as a bi-objective prize-collecting Steiner tree problem (BOPCSTP), see (22). The goal is to find a solution that minimizes installation costs and at the same time maximizes the percentage of served customers. A transformation to MOkAConFL is obtained by considering only a single architecture (k = 1) and no coverage constraints. Facility locations are identical to customer locations in this case.

Bi-objective FTTC-Network Design In FTTC network design, multiplexors that need to be connected to a central office by fiber-optics are installed at certain locations, each potentially serving a set of customers close to it by existing copper cables. Minimizing the network construction costs while minimizing the

uncovered customer demand one obtains a bi-objective variant of the connected facility location problem (see, e.g., (17; 18; 26)) which is a special case of MOkAConFL for k = 1 and without imposing coverage constraints. We denote this problem as BOConFL.

Bi-objective Two-Architecture Network Design Being concerned with the deployment of two different architectures (e.g., FTTA and FTTC, or FTTC and FTTH) while assuming that one of them is better than the other, the goal is to minimize the resulting network's cost while at the same time minimizing the demand covered with the worse technology. This problem variant, which we denote as BOTAConFL, corresponds to MOkAConFL with k = 2 and a given coverage rate p_2 (for technology two or better) suitably chosen in advance by a decision maker.

5 Computational Study

We conduct our computational study on a set of real-world instances representing deployment areas for telecommunication access networks in Germany (with perturbed costs and demands, to ensure data privacy). The main goal of our study is to asses the computational performance of the two new methods, ASOS and the ILP-based heuristic, on a set of realistic instances, and to compare their performance with some of the well-established and well-performing exact methods (according to our recent study in (22)). In addition, we have also implemented a recently proposed rectangular splitting method (6) and included it in our computational study.

Each experiment of our computational study has been performed on a single core of an Intel E5-2670v2 with 2.5 GHz and 64 GB RAM using CPLEX 12.6 for solving (integer) linear programs. A timelimit of 3600 seconds and a memorylimit of 2 GB each (by setting the workmem and treelim parameter) has been applied. Furthermore, a timelimit of 60 seconds has been used for BINS, directional local branching and each iteration in the first phase of the heuristic, while the maximum number of local branching iterations in the first phase is set to 5. A total coverage rate of $p_2 = 1$ (i.e., all customers must be connected) has been used for BOTAConFL.

5.1 Branch-and-Cut Configuration

Initialization Since the core-network part of our model (i.e., constraints (7) and (9)) correspond to the well-known cut-formulation of the prize-collecting Steiner tree problem (see, e.g., (27)) we initialize the model by flow-conservation constraints (14) which are known to be strengthening. Additionally, constraints (15) and (16) which cut off the empty solution and forbid cycles of length 2, respectively, are initially included.

$$x(\delta^{-}(\{i\})) \le x(\delta^{+}(\{i\})) \qquad \forall i \in V \setminus I \qquad (14)$$

$$x(\delta^+(\{r\})) \ge 1 \tag{15}$$

$$x_{ij} + x_{ji} \le y_i \qquad \qquad i \in V \tag{16}$$

Separation of Connectivity Constraints For each LP-solution, we first check the constraint pool (see Section 2.3) for violated cuts. In case no cuts are added from the pool, we either search for violated connectivity constraints (9) by computing the connected components of the support graph (if all variable values (x^*, y^*) of the current LP-solution are integral) or by using a maximum-flow algorithm (28) (if some variable values are fractional). In the latter case, backcuts, nested cuts and minimum cardinality cuts as suggested in (16; 27) are used and inequalities are only added if they are violated by at least 0.5. We also avoid to compute the maximum flow to facility nodes that are reachable from r in the subgraph defined by all nodes and arcs whose corresponding variable values are equal to one. Those facilities are identified by a breadth-first search. **Dominated Customer Inequalities** We also consider dominated customer inequalities

$$x_{ij}^{l} \leq \sum_{m=1}^{l} r_{j'}^{m}, \quad \forall j, j' \in J, i \in I_{j}^{l} \cap I_{j'}^{l} : c_{ij}^{l} \geq c_{ij'}^{l} \wedge d_{j}^{l} < d_{j'}^{l}$$
(17)

for technology l, which are separated (by enumeration) for integer solutions only. Their validity follows from the fact that customer j (which is dominated by customer j' with respect to facility i and technology l) may only be connected to facility i in an optimal solution, if customer j' is connected using technology l or better.

Branching-Priorities An adaptive branching strategy (cf. Section 2.3) has been used in which priority is given to node and facility opening variables. Their branching priorities are increased by 1 whenever the associated object is contained in a Pareto optimal solution (branching priorities of arc variables are always equal to 0). Initially, we set the branching priorities to 25 (y-variables of nodes that are potential facilities), 20 (facility variables), 15 (y-variables of non-facility nodes), and 5 (customer variables).

Adaptation of the ILP-Heuristics Although our ILP-heuristics BINS and directional local branching described in Section 3 are directly applicable, we slightly adapt them to make use of problem specific knowledge. Notice that once the core nodes, open facilities, and customers are fixed, the considered problems reduce to finding a spanning tree in the core network and an assignment problem in the assignment graph. Thus, only variables associated with the nodes in the core network or with the customers are considered. In the following, we will describe our adaptations for using only node variables of the core network, the adaptations for using only the customer variables work analogously. Let $V(\sigma^i) \subseteq V$ be the core nodes that are selected in solution σ^i . For BINS and given solutions σ^a, σ^b , we fix all variables y_i with $i \in V(\sigma^a) \cap V(\sigma^b)$ to 1 and optionally also fix all variables y_i with $i \in \{V \setminus V(\sigma^a)\} \cap \{V \setminus V(\sigma^b)\}$ to 0. For (directional) local branching and a given solution σ^a , we used asymmetric local branching constraints

$$\sum_{j \in V(\sigma^a)} y_j \ge |V(\sigma^a)| - n, \tag{18}$$

that ensure the selection of at least $|V(\sigma^a)| - n$ core nodes of solution σ^a for a given parameter $n \in \mathbb{N}$.

5.2 Hypervolume Gap Indicator

To better estimate the quality of approximate Pareto frontiers, Boland et al. (6) proposed to compute an upper bound on the area dominated by the optimal frontier which they call *adjusted hypervolume indicator*. Given a set of rectangles $[z^a, z^b]$, where further non-dominated points may lie, their indicator can be computed by adding the area of each such rectangle to the value of the hypervolume indicator.

We now propose a tighter upper bound to which we refer to as relaxed hypervolume indicator that also takes into account additional knowledge gained during the course of the current algorithm. Recall that some of our methods allow to conclude that certain areas of a rectangle $[z^a, z^b]$ cannot contain efficient solutions (cf. Section 2.1) or that the rectangle is empty (the latter information is also used in the adjusted hypervolume indicator). Consequently, the area of such a rectangle gives only partial or zero contribution to the relaxed hypervolume indicator.

Definition 1 (Relaxed Hypervolume Indicator, rH). Let M_i indicate a given solution method M in iteration i and let $\hat{P}_E(M_i)$ be its set of non-dominated points found so far. The relaxed hypervolume indicator, denoted by $rH(M_i)$, is given by the hypervolume $H(\hat{P}_E(M_i))$ plus the area which may still contain non-dominated points according to the information gained by M up to its current iteration i.

The relaxed hypervolume indicator is illustrated in Figure 5. Clearly, $H(P_E(M_i)) \leq H(P_E) = rH(M_T) \leq rH(M_i)$ holds for any iteration *i* smaller than or equal to the final iteration *T* in which *M* terminates (assuming that *M* discovers the complete Pareto front). Thus, we introduce the hypervolume gap indicator as follows.

Definition 2 (Hypervolume Gap Indicator, gH). Let $\hat{P}_E(M_i)$ be the set of non-dominated points found up to iteration *i*, using method *M*. The hypervolume gap indicator for *M* in iteration *i* is

$$gH(M_i) = \frac{rH(M_i)}{H(\hat{P}_E(M_i))} - 1.$$

By definition we have $gH(M_i) \ge 0$ and $gH(M_i) = 0$ iff i = T, i.e., when M has identified the provably optimal Pareto front. Note that the adjusted hypervolume indicator (6) coincides with rH for the rectangle-splitting method proposed in (6). On the other hand, as it will be described below, rH provides tighter bounds for ASOS and BSOS.

Figure 5: A set of discovered Pareto optimal solutions $\hat{P}_E = \{z^1, \ldots, z^6\}$ in the current iteration *i*. The lightly shaded area defines the hypervolume $H(\hat{P}_E)$ and the union of both shaded areas defines the relaxed hypervolume $rH(M_i)$. It is assumed that M_i implies that the rectangle $[z^4, z^5]$ does not contain non-dominated solutions and that only a partial area of the rectangles $[z^1, z^2]$ and $[z^2, z^3]$ may contain further non-dominated solutions. Observe that, e.g., BSOS or ASOS can derive both conclusions.

Shrinking of Rectangles and Computation of rH for ASOS/BSOS Consider a rectangle $[z^a, z^b]$ and a new solution z^* found inside the rectangle. As observed in (22, Prop. 1), the two new rectangles $[z^a, z^*]$ and $[z^*, z^b]$, can be shrinked, depending on the weights ω_1, ω_2 used to determine z^* . Let $z^{\omega} = \omega_1 z_1^* + \omega_2 z_2^*$. The shrinking depends on the position of the line $\{z \in [z^a, z^b] \mid \omega_1 z_1 + \omega_2 z_2 = z^{\omega}\}$ within the rectangle $[z^a, z^b]$; clearly, below this line in $[z^a, z^b]$, there are no non-dominated points. Therefore, only areas above that line in the rectangles $[z^a, z^*]$ and $[z^*, z^b]$ are contributing to rH. This is the main difference to the definition of the adjusted hypervolume indicator (6), that would consider the whole areas of $[z^a, z^*]$ and $[z^*, z^b]$. If ω_1, ω_2 are chosen in such a way that the level lines of the objective are parallel to the line through z^a and z^b , we distinguish between the following two cases: Point z^* corresponds either to a supported solution (case A, Figure 6), or to a non-supported one (case B, Figure 6). Notice that in case A, the area that contributes to rH is the area of two trapezoids, and in case B, it is the area of two triangles. If ω_1, ω_2 are chosen differently (as e.g., in Lemma 1), we may end up with calculating a sum of a trapezoid and a triangle.

Observe that after recursively applying this procedure for subsequent rectangles, one may end up with arbitrary convex polygons whose area is not easy to calculate. We therefore overestimate these areas by only considering trapezoids and triangles. With this calculation, it may happen that $rH(M_i) > rH(M_{i+1})$, but $H(P_E) = rH(M_T)$ holds.

Figure 6: Two possible cases of calculation of the value contributing to rH by a rectangle. Weights ω_1, ω_2 are assumed to be chosen in such a way that the level lines of the objective are parallel to the line between z^a and z^b . The area contributing to rH is shaded in light gray. The dark shaded area is not contributing to rH.

5.3 Instances

Our benchmark instances are based on realistic networks representing FTTH/FTTC deployment areas in Germany. Five deployment areas are considered: berlin-tu, berlin-rotdorn, vehlefanz, atlantis and berlin-lichterfelde, generating five groups of instances. Within each group, we consider different scenarios regarding the possible distribution of existing copper infrastructure, resulting in instances with similar network topology within the same group, but with different distribution of potential facilities, and different assignment graphs. These instances have been partly used in (26). Basic properties of our instances are summarized in Table 1. Facilities of technology one represent FTTH connections, which means that each customer location is at the same time a potential facility location (for FTTH technology). Hence, customer nodes have degree one for the FTTH technology (i.e., $|I^1| = |C| = |A^1|$ holds). Facilities of technology two represent FTTC connections, i.e., there are at least two customers, which can be assigned to such a facility.

Table 1: Details of the test instances. # gives the number of instances within each group, *abbrev*. gives the abbreviation used for the name of the group, $|I^1|$ and $|I^2|$ are the number of facilities of technology one and two, resp., |S| is the number of Steiner nodes, |C| is the number of customers, |CO| is the number of available central offices, |E| is the number edges in the core graph, and $|A^1|$, $|A^2|$ are the numbers of assignment arcs.

set	abbrev.	#	$ I^1 , C , A^1 $	$ I^2 $	S	CO	E	$ A^2 $
berlin-tu	Т	19	39	15-70	271-326	4	560	45-211
berlin-rotdorn	\mathbf{R}	14	91	15-66	95 - 146	2	314	107-502
vehlefanz	V	54	238	28 - 169	483-624	5	1096	306 - 3531
atlantis	А	16	345	16-102	550-636	4	1029	506 - 2607
berlin-lichterfelde	\mathbf{L}	12	747	79-446	618 - 985	5	2074	1117-7260

For BOConFL, only FTTC facilities are available, while for BOTAConFL, both FTTC and FTTH facilities can be installed, the latter ones representing the better technology. Note that for BOTAConFL, for three instances from berlin-lichterfelde, the boundary points of the Pareto front could not be determined within the given runtime. Thus, we consider 115 instances in total for BOConFL and 112 for BOTAConFL. Figures 7a to 7c illustrate three Pareto optimal solutions for one of the largest instances from our benchmark set when considering the mixed deployment (BOTAConFL). In the first solution, most of the customers are connected using the FTTC technology, while in the third solution the situation is the opposite, most of the customers are connected using the FTTH technology. It can be observed that some of FTTC facilities are open in all three solutions, while others are only open in one or two of the solutions. Such an analysis, determining which features of a deployment are occurring in many Pareto optimal solutions, can be a helpful guidance for decision makers. Figure 7d shows the Pareto front obtained by our ILP-based heuristic with the three pictured solutions highlighted.

Figure 7: Instance from the set berlin-lichterfelde. (a)-(c): three Pareto optimal solutions, (d): approximate Pareto front discovered by our ILP-based heuristic (which worked best for this instance). Customers connected with the FTTH technology are given as orange circles, customers connected with FTTC are given as green circles. Opened facilities are given as blue triangles, the opened central office is the blue diamond. Solution (a) is indicated as red circle in the Pareto front, solution (b) as green rectangle and solution (c) as blue diamond.

5.4 Results

The purpose of our computational study was to assess the efficacy of the new exact method (abbreviated as *asos* below) and the new two-phase ILP-based heuristic (denoted by *ilph*). To this end, we have also implemented the ϵ -constraint method (*eps*) and BSOS (*bsos*). According to our recent study on BOPCSTP, *eps* and *bsos* computationally outperformed other iterative exact methods (22). We additionally consider the rectangle-splitting method (*rect*) recently proposed in (6). If a method is combined with BINS (which turned out to be beneficial in most of the cases, see below), a letter *B* is added to the name of the method, e.g., *bsosB* means binary search with BINS. Let \mathcal{M} denote the set of all methods considered in this study, i.e., $\mathcal{M} = \{asos, asosB, bsos, bsosB, eps, ilph, rect, rectB\}$.

Default Implementation Settings Preliminary tests led us to use the configuration described in the following for our main computations. Dominated customer inequalities (17) reduced the number of weakly-dominated points discovered; however, the resulting increase in runtime for a single iteration led us to turn them off. All local branching neighborhoods worked very well; we decided to use the neighborhood defined by customer variables whose values are equal to one and radius n = 10. No clear picture emerged regarding the attempt to prove optimality of more than one solution in an iteration (application of Lemma 1). For some instances it payed off, while for others the changed objective function coefficients increased the difficulty of solving the ILPs. Thus, we finally decided not to use this setting. Directional local branching is only used in the second phase of *ilph* (as described in Section 3.3). The variant of *ilph* with local branching also applied in the first phase performed very similar to *ilph*.

Comparison Based on Hypervolumes We start our comparison by showing performance plots depicting the number of instances against the square root of the hypervolume gap: Figures 8 and 9 report the obtained hypervolume gaps for BOConFL and BOTAConFL, respectively. Four methods are compared: eps, rectB, asosB and bsosB. In the remainder of this section, the hypervolume gap for a method $M \in \mathcal{M}$ is calculated as:

$$gH(M) = \frac{rH}{H(\hat{P}_E(M))} - 1, \quad \text{where} \quad rH = \min_{M \in \mathcal{M}} rH(M). \tag{19}$$

In other words, for the hypervolume gap calculation, the best rH over all methods is used. Most of the time, the best rH is achieved by bsosB or asosB, since both eps and rectB often exceed the time- or memorylimit in an iteration where most of the front still remains undiscovered. The square root-transformation is chosen to improve the readability of the plots.

We notice that the worst hypervolume gaps are by far provided by eps, followed by rectB, while the remaining two methods (bsosB and asosB) provide hypervolumes of similar quality. The latter effect can possibly be explained by the weak performance of eps. Consequently, asosB (which combines eps and bsosB) cannot draw significant advantages from eps. We also observe that the considered methods establish the complete Pareto front for 40 to 55 instances (out of 115) for BOConFL and for 20 to 42 instances (out of 112) for BOTAConFL.

Figures 10 and 11 compare *bsos* and *asos* with and without BINS, for BOConFL and BOTAConFL, respectively, without the 60 individually easiest instances for each method. We observe that the use of BINS clearly improves the performance (with respect to the obtained hypervolume gaps) both for BOConFL and for BOTAConFL on these hard instances that cannot be solved withing the given time- or memorylimit.

Drawbacks of Analysis Based on Hypervolumes A significant drawback of analyzing bi-objective methods by means of the hypervolume is that this indicator does not tell a lot about the number of non-dominated points discovered by a method and their distribution in the objective space. A method may, for example, provide a very small hypervolume gap even if it discovers only very few non-dominated points. This is demonstrated in Figure 12 where we plot the set of non-dominated points obtained by four methods: *eps*, *rectB*, *asosB* and *ilph* for instance A3 for BOConFL. One observes that the most useful approximation of the Pareto front is obtained by *ilph*. It is, however, almost impossible to distinguish between *rectB*, *asosB*,

Figure 8: Exact methods applied to BOConFL.

Figure 9: Exact methods applied to BOTAConFL.

Figure 10: asos and bsos with and without BINS applied to BOConFL.

Figure 11: asos and bsos with and without BINS applied to BOTAConFL

and *ilph* when comparing the values of the hypervolume; see Figure 13 which shows the hypervolume versus runtime for the same instance. In the remainder of our computational study, we will therefore provide a more detailed comparison of selected methods, which (besides the hypervolume gaps) also details numbers of non-dominated points discovered and/or proved to be Pareto optimal.

Figure 12: Pareto fronts discovered by different methods within the given memory-and timelimit.

A More Detailed Computational Analysis Figure 13 depicts a typical progress of the hypervolume which occurs for many of our more difficult benchmark instances. We observe that, for the given instance, only one exact method (rectB) terminates due to the timelimit while the other two (eps and asosB) exceed the memorylimit. Method *ilph* terminates since no new solution could be found. Contrary to the exact methods, the heuristic is successfully prevented from getting stuck while calculating a single Pareto optimal solution, due to the timelimit imposed in each iteration.

Figure 13: Normalized hypervolume against runtime for different methods and instance A3 for BOConFL.

We also see that the ϵ -constraint method hits the memorylimit quite early and therefore derives only a very limited part of the Pareto front and a small hypervolume. This behavior may be not too critical in case we are lucky and a decision maker is only interested in solutions found in the considered region. This outcome is, however, clearly not desirable in case it is not known beforehand which area of the objective space is relevant.

For this reason, the goal in designing our heuristic framework was to provide many (possibly Pareto optimal) solutions that also cover most of the Pareto front. We next analyze whether this goal has been achieved and also discuss the effects of BINS and the two phases. Thereby, ilph - nobins is used to denote the variant of the heuristic framework without BINS.

Table 2 details the performance of *ilph* and *ilph* – *nobins* for BOConFL on instances for which the complete Pareto front could be identified using the ϵ -constraint method (i.e., all instances from set T except for T5). In addition, results for selected difficult instances of sets A and R for BOConFL (A1, R5, R9) and set A for BOTAConFL (A11, A13, A14, A16)¹ are given. Besides the number of Pareto optimal solutions of *ilph* – *nobins* and *ilph* in their first and second phase ($|Z_1^*|, |Z_2^*|$), we also report the corresponding runtimes (t_1, t_2) , the sizes of the obtained heuristic fronts ($|Z_1|, |Z_2|$), and their associated hypervolume gaps (gH_1, gH_2) .

We note that the group T for BOConFL has been the easiest in our benchmark set, and the ϵ -constraint method managed to solve all these instances (except T5). From Table 2 we observe that both with and without BINS, *ilph* works very well and BINS gives a significant improvement in the number of non-dominated points discovered in the first phase, while the additional cost on runtime is quite modest. Naturally, for this easy group T, *eps* outperforms the two variants of the heuristic framework with respect to the required

¹To obtain the results for eps for the latter instances, we set the timelimit to 40 hours and the memorylimit to 60GB. Note that even with these limits, some instances from these sets could not be solved with eps (and the sets V and L are even more difficult to solve)

runtime. We observe that BINS helps the ILP-heuristic to find between 25% to 50% of the non-dominated points in its first phase within 1/3 of the total running time of *eps*. Except for one instance, the hypervolume gap of *ilph* is below 0.05% after the first phase and the whole Pareto front is discovered after the second phase for most instances (for T16 and T19 the front is determined already in the first phase). We also observe that both after the first and second phase, the heuristic fronts contain mostly points that are in fact non-dominated.

Turning our attention to the more challenging instances A1, R5, R9 (BOConFL) and A11, A13, A14, A16 (BOTAConFL), it can be seen that the fraction of discovered non-dominated points, and also the hypervolume gap, are very similar to the respective values in the easier instances. The runtime of the first phase is much smaller than the runtime of *eps*: At the end of the second phase more than 66% of the Pareto front is discovered, while the time spent is less than half the time *eps* needed to discover the whole front. We want to point out the results obtained for R9 (BOConFL) where both variants of the heuristic manage to discover the whole front in less than 220 seconds, while *eps* requires more than 17000 seconds for the same task.

Instances T1-T19, A1, R5, R9 are for BOConFL; and A11, A13, A14, A16 are for BOTAConFL $|\mathcal{Z}|$ is the size of the Pareto front, t[s] is the runtime for eps, $|\mathcal{Z}_1^*|$ shows, how many solutions on the heuristic front of the first phase are really Pareto optimal, $|\mathcal{Z}_1|$ denotes the size of the heuristic front after the first phase, $|\mathcal{Z}_2^*|$ and $|\mathcal{Z}_2|$ are the resp. indicators for the second phase. The hypervolume gap after the first, resp. second phase is denoted by $gH_1[\%]$, resp. $gH_2[\%]$ The runtime for the first phase is indicated with $t_1[s]$ and the total runtime (i.e., first and Table 2: Overview of runtime and size of Pareto front for eps, the ILP-based heuristic (*ilph*) and its variant without BINS (*ilph – nobins*). second phase) with $t_2[s]$.

	$t_2[s]$	107	914	622	629	385	263	127	193	130	71	103	94	260	49	83	6	401	×	8600	3600	217	8600	3600	3600	8600
	1[s]	38 1	22	84]	36	19	10	9	38	16	7	9	9	12	7	12	4	30 1	4	341 3	163 3	7	242 3	179 3	166 5	245 3
	$gH_2[\%] t$	0.0004	0.0003	0.0005	0.0001	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0067	0.0003	0.0000	0.0013	0.0019	0.0018	0.0023
ilph	$gH_1[\%]$	0.0219	0.0376	0.0152	0.0175	0.0210	0.0364	0.0667	0.0139	0.0034	0.0045	0.0044	0.0274	0.0232	0.0028	0.0021	0.0000	0.0399	0.0000	0.0171	0.0143	0.0048	0.0074	0.0149	0.0137	0.0173
	$ \mathcal{Z}_2 $	202	176	117	128	138	122	81	72	76	62	76	71	69	59	63	40	218	39	391	253	121	544	541	549	532
	$ \mathcal{Z}_2^* $	193	173	111	126	135	122	81	72	76	62	76	71	69	59	63	40	212	39	299	249	121	453	442	488	439
	$ \mathcal{Z}_1 $	42	33	32	40	35	29	30	36	41	37	36	38	36	39	41	40	44	39	123	64	86	283	236	241	240
	$ \mathcal{Z}_1^* $	36	30	32	37	33	28	29	36	39	37	36	37	36	38	40	40	31	39	89	61	86	247	204	209	203
	$t_2[s]$	1185	929	1749	689	402	234	103	198	127	20	87	64	209	48	75	4	1405	9	3600	3600	166	3600	3600	3600	3600
	$t_1[s]$	27	16	78	24	13	7	4	30	13	ъ	4	4	14	4	x	က	22	2	213	116	7	101	70	68	104
	$gH_2[\%]$	0.0001	0.0005	0.0003	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0069	0.0003	0.0000	0.0044	0.0025	0.0031	0.0050
-nobins	$gH_1[\%]$	0.0478	0.0657	0.0360	0.0357	0.0285	0.0753	0.0783	0.0162	0.0080	0.0215	0.0316	0.0341	0.0215	0.0247	0.0076	0.0034	0.0719	0.0288	0.0269	0.0225	0.0221	0.0166	0.0222	0.0259	0.0231
ilph	$ \mathcal{Z}_2 $	204	174	119	130	139	122	81	72	76	62	76	71	69	59	63	40	216	39	387	251	121	481	538	528	477
	$ \mathcal{Z}_2^* $	199	166	114	121	136	122	81	72	76	62	76	71	69	59	63	40	211	39	308	249	121	365	450	408	358
	$ \mathcal{Z}_1 $	18	15	21	22	20	16	21	28	28	27	25	25	24	27	28	25	19	23	67	30	15	101	95	94	96
	$ \mathcal{Z}_1^* $	16	14	18	21	19	16	21	26	28	27	25	25	24	27	27	25	17	23	57	27	15	93	86	86	85
ps	t[s]	584	498	2357	370	247	146	93	172	91	40	57	43	145	33	32	ç	470	ę	5064	14834	17470	24697	9162	16878	21533
e	$\overline{\aleph}$	206	178	120	133	139	122	81	72	26	62	76	71	69	59	63	40	217	39	672	271	121	597	611	608	620
	inst	$\mathbf{T1}$	T2	T3	T4	T6	$^{\rm LL}$	$^{\mathrm{T8}}$	T9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	A1	$\mathbb{R}5$	$\mathbf{R9}$	A11	A13	A14	A16

Next, we provide detailed computational results to compare our methods asosB and *ilph* against eps and rectB. Tables 3 to 6 report results obtained for BOConFL, whereas Tables 7 to 10 the results obtained for BOTAConFL. Recall that each method returns at the end a set of non-dominated points, some of them being provably non-dominated, others being heuristically obtained. For every instance we present value $|\mathcal{Z}^{opt}|$, which is either the size of the Pareto front, if at least one method managed to discover it, or the size of the union of the points that were proven to be non-dominated by at least one of the methods, otherwise. If at least one method managed to discover the whole Pareto front, this is indicated by a bold value in the column $|\mathcal{Z}^{opt}|$. Moreover, column $|\mathcal{Z}^*|$ denotes the number of points proven to be non-dominated by the respective method. Thus, $|\mathcal{Z}^{opt}| = |\bigcup_{M \in \mathcal{M}} Z_M^*|$, where Z_M^* denotes the set of provably non-dominated points discovered by method $M \in \mathcal{M}$. In addition, $|\mathcal{Z}^+|$ indicates the number of discovered non-dominated points from \mathcal{Z}^{opt} for which the corresponding method did not prove that they are non-dominated (i.e., heuristically identified points). The number of remaining non-dominated points, contained in the final set produced by a method is shown in the column $|\mathcal{Z}^{-}|^{2}$. In addition, we also report the runtime (t[s]) and hypervolume gap (qH[%]) calculated according to (19) for each method. By TL or ML in column t[s] we denote if a method reached the time- or memorylimit, respectively. A zero hypervolume gap is indicated by opt in the column qH[%]. Observe that qH[%] can be zero even when the method terminates due to the time- or memorylimit. This happens when only rectangles containing no further non-dominated points remain open, but proving emptiness was not possible during the given limits. The best value for a given instance in this column is marked in **bold**.

From Tables 3 to 6 (i.e., for BOConFL) we conclude that the ϵ -constraint method only works well for the smallest instance groups T and R (cf. Table 3). As the instances become larger, *eps* is outperformed by the other methods. For example, for half of the instances of the set V (cf. Tables 4 to 5), the hypervolume gap obtained by *eps* is above 0.2%. At the same time, the gaps obtained by *asosB* and *rectB* are (except for a few cases) consistently below 0.1%. The best-performing method for the set V, with respect to both the number of discovered non-dominated points (i.e., $|\mathcal{Z}^*|$ plus $|\mathcal{Z}^+|$) as well as the hypervolume gap, is *ilph*. The hypervolume gap is by one order of magnitude smaller than the one by *eps*, and the largest hypervolume gap of *ilph* for the set V is 0.077%. A similar picture emerges for the remaining two sets of larger benchmark instances, namely A and L.

For BOTAConFL (see Tables 7 to 10) we again observe that for the easier instance groups T and R, all methods work well and almost always find the complete Pareto front, with eps being the fastest. For the set V, asosB is the overall best method, in particular with respect to the number of discovered non-dominated points (with an exception of some outliers for which eps manages to determine the whole front). For the two largest sets A and L, again, our ILP heuristic ilph, provides the best results, and for the set L containing the largest instances, ilph and asosB work best, both in terms of number of points and hypervolume gap.

Overall, we conclude the following: for easier instances, where the underlying branch-and-cut algorithm runs fast and stable, *eps* is the best performing method. As the size/difficulty of instances increases, *eps* tends to get stuck due to excessive memory or time usage. Alternative iterative methods, like *asos*, *bsos* or *rect*, studied in this paper, can better deal with these issues, providing significantly smaller hypervolume gaps. However, we demonstrate that looking solely at the hypervolume (gaps) is not sufficient, as the number of Pareto optimal points discovered by a method can still be relatively small. With this respect, our study shows that the method that provides the most accurate, diverse and rich Pareto fronts is the new ILP-heuristic *ilph*.

²These points can be of two different types: i) they are dominated by some of the points on the Pareto frontier Z^{opt} , ii) they are not dominated by any of the points on the Pareto front Z^{opt} , i.e., their corresponding solutions could be Pareto optimal but no method managed to prove it. The latter case, obviously, can only happen for instances, where no method discovered the whole Pareto front.

	È
	-+ や
OConFL	
for B	200
ilph	Louor
3 and	1:000
, asosE	a sinta
os, rectB	[outino]
hods ep	Domoto
he met	*
for t]	2.
front	+ for
areto	to from
of Pa	- localo
nd size	י ד: ר
time aı	104 +0
f run	Curry Curry
erview o	of Douot
0 V	
 	_

Table 3: Overview of runtime and size of Pareto front for the methods *eps, rectB*, *asosD* and *upn* to be under the size of Pareto front, bold if complete front found; $|\mathcal{Z}^*|$: Pareto optimal points discovered and proven; $|\mathcal{Z}^+|$: Pareto optimal points discovered and proven; $|\mathcal{Z}^+|$: Pareto optimal points discovered, but not proven; $|\mathcal{Z}^-|$: further points discovered; t[s]: runtime; gH[%]: hypervolume gap (wrt. to best rH of all methods).

	eps					rectB					asosB					ilph		
$\overline{\mathcal{S}}^{-}$		t[s]	gH[%]	*2	$ \widetilde{\mathcal{A}} $	- M	t[s]	gH[%]	*N	$ \mathcal{Z}^+ $	<u>1</u>	t[s]	gH[%]	*N	$ _{\mathcal{B}}^+$	- <u>1</u>	t[s]	gH[%]
0		584	opt	206	0	0	1868	opt	206	0	0	1022	opt	13	180	6	1107	0.000
0 (498	opt	178	0	0	2073	opt	178	0	0	687	opt	16	157	°	914	0.000
0 0		2357	opt	115	5	0	ΤĽ	0.000	120	0	0	1017	opt	19	92	9	1622	0.000
0 (370	opt	133	0	0	1144	opt	133	0	0	538	opt	23	103	5	629	0.000
1 3		ML	0.159	13	10	4	ΤL	0.038	62	11	11	\mathbf{TL}	0.006	19	47	35	3444	0.007
0		247	opt	139	0	0	835	opt	139	0	0	399	opt	21	114	က	385	0.000
0 (146	opt	122	0	0	471	opt	122	0	0	238	opt	19	103	0	263	opt
0 (93	opt	81	0	0	199	opt	81	0	0	119	opt	25	56	0	127	opt
0 (172	opt	72	0	0	458	opt	72	0	0	166	opt	32	40	0	193	opt
0 (91	opt	76	0	0	255	opt	76	0	0	148	opt	33	43	0	130	opt
0 (40	opt	62	0	0	89	opt	62	0	0	56	opt	32	30	0	71	opt
0 (57	opt	76	0	0	156	opt	76	0	0	86	opt	31	45	0	103	opt
0 (43	opt	71	0	0	123	opt	71	0	0	68	opt	31	40	0	94	opt
0 (145	opt	69	0	0	500	opt	69	0	0	160	opt	31	38	0	260	opt
0 (33	opt	59	0	0	69	opt	59	0	0	50	opt	34	25	0	49	opt
0 (32	opt	63	0	0	118	opt	63	0	0	76	opt	36	27	0	83	opt
0 (က	opt	40	0	0	x	opt	40	0	0	9	opt	40	0	0	6	opt
0		470	opt	217	0	0	1845	opt	217	0	0	849	opt	15	197	9	1401	0.000
0		က	opt	39	0	0	x	opt	39	0	0	വ	opt	39	0	0	x	opt
0		550	opt	346	45	0	ML	0.000	413	0	0	447	opt	28	385	0	444	opt
0 (715	opt	299	1	0	ΤL	opt	300	0	0	2452	opt	40	258	7	712	0.000
0 (1730	opt	109	57	4	ML	0.001	35	11	9	ML	0.018	43	219	-	975	0.000
0 (944	opt	197	51	0	ΤĽ	0.000	263	6	0	ΤL	0.000	40	252	0	579	opt
0 (ML	0.187	51	38	12	ΤL	0.004	127	13	15	ML	0.003	44	196	13	TL	0.001
) 1		ML	0.212	17	6	Ч	ML	0.038	42	က	4	ML	0.039	65	47	53	720	0.024
0 (ML	0.143	ю	2	0	ML	0.184	22	ъ	7	ML	0.077	72	19	39	553	0.047
0 (176	opt	14	x	Ч	ML	0.021	97	10	0	ΤL	0.000	82	41	0	218	opt
0		ML	0.067	27	11	2	ML	0.016	61	9	2	ML	0.014	83	24	14	217	0.008
0		22	opt	133	0	0	247	opt	133	0	0	1194	opt	82	51	0	91	opt
0		98	opt	13	6	0	ML	0.018	40	x	0	TL	0.016	82	38	0	178	opt
0 (106	opt	124	0	0	206	opt	124	0	0	421	opt	84	40	0	153	opt
0		382	opt	457	0	0	852	opt	457	0	0	422	opt	32	424	-	596	0.000
0 (4	opt	91	0	0	17	opt	91	0	0	11	opt	91	0	0	16	opt

Table 4: Overview of runtime and size of Pareto front for the methods *eps*, *rectB*, *asosB* and *ilph* for BOConFL. $|\mathcal{Z}^{opt}|$: size of Pareto front, bold if complete front found; $|\mathcal{Z}^*|$: Pareto optimal points discovered and proven; $|\mathcal{Z}^+|$: Pareto optimal points discovered and proven; $|\mathcal{Z}^+|$: Pareto optimal points discovered, but not proven; $|\mathcal{Z}^-|$: further points discovered; t[s]: runtime; gH[%]: hypervolume gap (wrt. to best rH of all methods).

				eps					rectB					$_{lsosB}$					$_{ilph}$		
	$ \mathcal{Z}^{opt} $	3*	$ \mathcal{Z}^+ $	$ \mathcal{Z} $	t[s]	gH[%]	<u>*</u>	$ \mathcal{Z}^+ $	$ \mathcal{Z} $	t[s]	gH[%]	$ \mathcal{Z}^* $	$ \mathcal{Z}^+ $	$ \mathcal{Z} $	t[s]	gH[%]	8	$ \mathcal{Z}^+ $	$ \mathcal{Z}^{-} $	t[s]	gH[%]
V1	129	115	0	0	ML	0.298	9	3	0	ML	0.127	13	2	2	ΤL	0.116	116	13	126	2712	0.077
V2	157	135	0	1	ML	0.233	9	က	ю	ΤL	0.091	21	ю	4	ML	0.050	138	4	74	2535	0.028
V3	150	135	0	Г	ML	0.224	9	4	က	ML	0.091	15	ß	0	ML	0.080	137	12	148	3381	0.038
V4	150	135	0	0	ML	0.216	9	4	0	ML	0.105	16	4	Ч	ML	0.099	136	13	115	2845	0.056
V5	148	134	0	0	ML	0.228	ъ	7	0	ML	0.132	20	ъ	က	ML	0.053	136	12	141	2912	0.031
V6	149	135	0	0	ML	0.221	9	က	0	ML	0.111	16	2	μ	TL	0.097	134	14	135	2638	0.066
V7	161	135	0	Г	ML	0.222	9	4	7	ΤL	0.108	25	9	10	ML	0.033	138	1	30	1916	0.023
V8	170	156	0	0	ML	0.158	x	4	0	ML	0.083	16	2	0	TL	0.092	155	15	105	2058	0.048
V9	203	186	0	Г	ML	0.111	2	5 C	က	ML	0.048	32	x	4	TL	0.027	187	15	102	2584	0.012
V10	200	186	0	Г	ML	0.113	2	က	က	ML	0.066	25	6	2	ML	0.033	188	12	108	2052	0.015
V11	200	186	0	0	ML	0.104	2	ъ	0	ML	0.053	36	ß	Ч	ML	0.046	186	12	45	1186	0.021
V12	199	186	0	0	ML	0.104	4	4	1	ML	0.054	19	7	0	ML	0.041	186	13	67	1485	0.017
V13	258	242	0	0	ML	0.003	×	4	0	ML	0.039	22	5	Ч	ΤĽ	0.034	184	73	10	1334	0.001
V14	219	186	0	0	ML	0.109	31	17	Ч	ML	0.015	80	13	9	ML	0.012	189	15	22	1569	0.007
V15	249	238	0	0	ML	0.001	10	ю	0	TL	0.034	18	9	0	ΤL	0.025	204	44	က	811	0.000
V16	244	244	0	0	78	opt	244	0	0	411	opt	244	0	0	535	opt	233	11	0	346	opt
V17	244	244	0	0	61	opt	244	0	0	300	opt	244	0	0	419	opt	233	11	0	273	opt
V18	244	244	0	0	183	opt	76	37	0	TL	0.002	244	0	0	714	opt	233	11	0	286	opt
V19	244	244	0	0	55	opt	244	0	0	283	opt	244	0	0	298	opt	233	11	0	259	opt
V20	243	243	0	0	61	opt	44	27	0	ΤL	0.005	141	11	0	ΤL	0.004	232	11	0	270	opt
V21	244	244	0	0	110	opt	244	0	0	621	opt	244	0	0	567	opt	233	11	0	550	opt
V22	239	239	0	0	40	opt	239	0	0	181	opt	239	0	0	133	opt	239	0	0	189	opt
V23	225	153	0	0	ML	0.653	58	24	45	ΤL	0.021	15	9	5 C	ΤL	0.067	30	35	220	TL	0.021
V24	239	239	0	0	55	opt	239	0	0	267	opt	239	0	0	192	opt	239	0	0	283	opt
V25	239	239	0	0	44	opt	239	0	0	219	opt	239	0	0	155	opt	239	0	0	225	opt
V26	239	239	0	0	39	opt	239	0	0	200	opt	239	0	0	148	opt	239	0	0	207	opt
V27	239	239	0	0	40	opt	239	0	0	197	opt	239	0	0	144	opt	239	0	0	199	opt
V28	239	239	0	0	40	opt	239	0	0	180	opt	239	0	0	133	opt	239	0	0	191	opt

	al points	
	reto optin	methods
	+ : Pa	H of all
nFL.	en; $ \mathcal{Z} $	best rl
· BOCc	id prov	wrt. to
ilph for	ered ar	e gap (v
B and β	discov	volume
3, asos.	points	: hyper
s, rectI	ptimal	gH[%]
hods ep	Pareto (untime;
ne metl	$\boxed{\frac{\cdot}{\mathscr{Z}}}$	t[s]: r
it for th	iound;	overed;
eto fror	front f	ts disc
of Pare	mplete	ter poir
nd size	ld if co	: furth
itime a	ont, bol	$\operatorname{en}; \mathcal{Z}^- $
v of rur	reto fro	ot prove
verview	e of Pa	but no
le 5: O	$ z = \operatorname{sizt}$	overed,
Tab	$t_{o}\mathcal{Z}$	disc

	gH[%]	opt	0.039	0.042	0.027	0.056	0.037	0.037	0.054	0.037	0.043	0.038	0.043	0.056	0.057	0.007	0.039	0.047	0.055	0.067						
	t[s]	379	263	221	200	191	182	357	TL	TL	TL	ΤL	ΤL	TL	ΤL	ΤL	ΤL	TL	ΤL	TL	ΤL	TL	1624	3220	2878	3374
ilph	$ \mathcal{Z}^- $	0	0	0	0	0	0	0	134	49	224	193	210	108	167	192	219	61	139	145	167	84	53	128	113	160
	\mathbb{Z}^+	0	0	0	0	0	0	0	15	11	16	13	13	29	24	10	15	20	13	24	18	206	0	14	22	13
	\mathcal{Z}^*	239	238	238	238	238	238	238	21	23	31	49	41	51	54	54	54	47	71	86	89	57	66	98	66	86
	gH[%]	opt	0.065	0.062	0.050	0.094	0.064	0.051	0.122	0.062	0.073	0.063	0.091	0.097	0.098	0.001	0.052	0.092	0.084	0.128						
	t[s]	245	182	155	143	141	128	234	ML	TL	ML	ML	\mathbf{TL}	ML	ML	ML	ML	ΤL	ML	TL	\mathbf{TL}	TL	ML	ML	ML	Ĩ
isosB	$ \mathcal{Z} $	0	0	0	0	0	0	0	11	13	14	ы	ы	14	9	7	4	10	7	e	П	51	7	က	6	-
0	$ \mathcal{Z}^+ $	0	0	0	0	0	0	0	4	2	4	7	ъ	ы	က	4	5 C	9	4	2	က	81	က	7	7	2
	$ \mathcal{Z}^* $	239	238	238	238	238	238	238	14	13	15	x	16	24	10	14	19	25	14	22	13	334	16	13	23	5
	gH[%]	opt	0.470	0.126	0.093	0.192	0.202	0.455	0.156	0.126	0.101	0.456	0.075	0.112	0.094	0.001	0.073	0.090	0.088	0.107						
	t[s]	386	254	213	191	188	167	347	ML	TL	ΤL	ML	ML	ML	ML	ML	ML	ML	ΤĽ	ΤL	ML	TL	ML	ΤL	ML	ML
rectB	$ \mathcal{Z}^- $	0	0	0	0	0	0	0	0	15	က	0	0	0	က	Ч	7	0	6	ŝ	0	44	9	4	က	,
	$ \mathcal{Z}^+ $	0	0	0	0	0	0	0	0	7	ъ	0	0	0	ъ	က	4	0	ъ	9	4	130	4	ъ	4	4
	$ \mathcal{Z}^* $	239	238	238	238	238	238	238	e C	9	9	4	4	e C	5 C	9	9	e S	x	9	9	306	7	7	7	9
	gH[%]	opt	0.850	0.867	0.848	0.870	0.858	0.766	0.776	0.777	0.771	0.764	0.559	0.378	0.399	0.171	0.330	0.340	0.329	0.316						
	t[s]	78	49	41	36	35	38	69	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ľ	ML	ML	ML	ML
eps	$ \mathcal{Z}^- $	0	0	0	0	0	0	0	-	-	0	0	П	-	0	0	0	0	П	0	П	0	1	1	0	0
	$ \mathcal{Z}^+ $	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
	$ \mathcal{Z}^* $	239	238	238	238	238	238	238	52	57	54	31	32	42	42	42	41	41	66	89	92	395	102	102	110	113
	$ \mathcal{Z}^{opt} $	239	238	238	238	238	238	238	77	96	82	70	56	86	80	67	71	92	93	114	108	599	119	116	136	128
		V29	V30	V31	V32	V33	V34	V35	V36	V37	V38	V39	V40	V41	V42	V43	V44	V45	V46	V47	V48	V49	V50	V51	V52	V53

	[%]	008	019	020	019	308	\mathbf{pt}	000	900	opt	000	opt	200	\mathbf{pt}	\mathbf{pt}	\mathbf{pt}	opt	648	256	019)24	338	026	020	206)29	019	019	050
	gH	0	0.0	0.0	0.0	0.0	Č	ö	0.0		ö	Č	0.0			č	Ū	0	.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0
	t[s]	IL	3022	2908	H	795	497	932	674	578	403	427	3178	292	283	300	441	2311	H	Ę	Ę	H	H	ΙL	Ę	H	H	H	ΤĘ
ilph	<u> </u>	122	503	483	155	108	0	0	114	0	1	0	91	0	0	0	0	56	16	50	32	36	35	34	1	27	15	19	17
	$\overline{\beta}^+$	224	36	17	31	205	313	255	42	155	152	155	52	26	26	10	0	13	ŝ	9	14	0	11	4	11	0	20	24	1
	<u>*</u>	45	63	83	107	165	165	190	248	249	251	249	250	326	326	338	345	34	120	78	137	233	132	406	236	339	213	423	511
	H[%]	0.018	0.047	0.051	0.037	0.046	0.032	0.062	0.065	0.042	0.016	0.020	0.078	0.015	0.017	0.006	\mathbf{opt}	0.035	0.076	0.023	0.028	0.040	0.031	0.035	0.072	0.042	0.026	0.026	0.059
	[s] g	ΓΓ	ΓĽ	Π	ΓĽ	ΛL	ΓL	Π	ΓĽ	Π	ΓĽ	Π	ΓL	Π	Π	Π	03	LL	LL (ΓĽ	ΛL	ΓĽ	ΓĽ	ΓĽ	LL (Π	ΓĽ	ΓĽ	ΓL
osB		28	17	6	21	1	0	1	-	0	-	1	0	0	ч 0	0	69 0	35	27	33	22 N	13	18	13	r-	13 N	16	15	80
as	<u>1</u>	38	°	9	ы	2	6	ъ	ъ	9	6	×	2	21	12	21	0	33	e	9	7	4	2	6	ъ	ъ	10	11	4
	<u>~</u>	45	17	16	16	13	50	10	10	10	03	93	10	48	-26	-94	345	16	2	21	14	17	15	21	12	13	50	68	58
	%] [7	03	34	63	20	10	00	01	08	02	pt]	00	13	pt]	pt]	bt]	bt	04	06	39	93	15	51	26	28	57	84	08	33
	gH[0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ō	0.0	0.0	o	ō	ō	0	0.2(0.2(0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.13	0.1(0.1
	t[s]	$_{\rm TL}$	ΤL	TL	TL	ML	TL	ML	ML	ML	2448	ML	ML	1920	2228	359	431	TL	TL	TL	TL	TL	ML	ML	TL	ML	ML	ML	ML
rectB	$\overline{\mathcal{B}}^-$	64	23	7	39	21	0	-	19	0	0	0	14	0	0	0	0	က	4	27	2	6	12	18	co	6	7	0	0
	$\left \mathcal{Z}^{+} \right $	103	10	7	17	41	106	82	37	53	0	88	33	0	27	0	0	2	2	9	0	2	ю	14	2	ю	-	ŝ	0
	<u>*</u>	187	30	10	58	120	359	173	127	123	404	309	75	352	325	348	345	9	ю	17	4	9	15	23	2	11	9	ю	ъ
	$_{\eta H[\%]}$	0.133	0.779	0.709	0.702	0.097	0.047	opt	0.119	opt	opt	opt	0.102	0.001	opt	opt	opt	0.933	0.897	0.760	0.576	0.542	0.555	0.523	0.349	0.339	0.381	0.400	0.293
	t[s]	ML	ML	ML	ML	ML	ML	1568	ML	2245	137	2522	ML	ML	56	1014	81	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML	ML
eps		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	1	0	0	0
	<u> </u> + 2+	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	<u>8</u>	492	59	72	74	332	387	446	247	404	404	404	263	329	352	348	345	45	67	131	235	245	241	233	345	357	295	280	446
	\mathcal{Z}^{opt}	613	100	100	191	376	478	446	290	404	404	404	308	352	352	348	345	93	158	248	341	290	331	473	363	388	430	554	609
	<u> </u>	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14	A15	A16	L1	L2	L3	L4	L_5	$\Gamma 6$	L7	L_8	L_{9}	L10	L11	L12

	0	th
	to	ne
	are	Ξ
	പ്	fa
	<u></u>	0
FL	\widetilde{M}	rH
on	<u>.</u>	\mathbf{st}
AC	/en	þe
E	ro	$_{\mathrm{to}}$
B	ц Б	rt.
or	anc) M
μf	g	ap
ilp	ere	60
p	00	Ш
ar	lisc	nlc
BB	.0 .8	IV
so_{i}	int	pe
, a	bo	Ę
tB	al	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ec.	in.	5]E
s, 1	pt	g_I
ep	0	ne;
ds	ret	tin
ho	Pa	un.
let	<u> </u>	
ц П	Ň	t[s]
$_{\mathrm{th}}$	<u>,</u>	÷
or	nd	ere
lt f	ou	OVO
ror	It 1	isc
Ч		
C)	ē	0
tetc	e froi	ints c
Paretc	lete fro	points c
of Paretc	nplete fro	er points o
ze of Paretc	complete fro	ther points o
size of Paretc	if complete from	further points o
nd size of Paretc	ld if complete fro	: further points o
e and size of Paretc	bold if complete from	\mathcal{Z}^{-} : further points of
ime and size of Paretc	t, bold if complete from	; $ \mathcal{Z}^- $: further points of
intime and size of Paretc	ront, bold if complete from	ven; $ \mathcal{Z}^- $: further points of
runtime and size of Paretc	o front, bold if complete from	roven; $ \mathcal{Z}^- $: further points of
of runtime and size of Paretc	eto front, bold if complete from	t proven; $ \mathcal{Z}^- $: further points o
ew of runtime and size of Paretc	² areto front, bold if complete from	not proven; $ \mathcal{Z}^- $: further points of
rview of runtime and size of Paretc	f Pareto front, bold if complete from	ut not proven; $ \mathcal{Z}^- $: further points of
verview of runtime and size of Paretc	e of Pareto front, bold if complete fro	, but not proven; $ \mathcal{Z}^- $: further points of
Overview of runtime and size of Paretc	size of Pareto front, bold if complete from	ed, but not proven; $ \mathcal{Z}^- $: further points of
7: Overview of runtime and size of Paretc	: size of Pareto front, bold if complete from	vered, but not proven; $ \mathcal{Z}^- $: further points of
ble 7: Overview of runtime and size of Paretc	^{opt} : size of Pareto front, bold if complete from	covered, but not proven; $ \mathcal{Z}^- $: further points of
Table 7: Overview of runtime and size of Paretc	$ \mathcal{Z}^{opt} $: size of Pareto front, bold if complete from	discovered, but not proven; $ \mathcal{Z}^- $: further points of

	$ \mathcal{Z}^+ $: Pareto optimal points	st rH of all methods).
	and proven	(wrt. to be
-	points discovered	hypervolume gap
	to optimal	me; $gH[\%]$:
	ζ* : Pare	[s]: runti
	bold if complete front found; $ \mathcal{Z} $	$ \mathcal{Z}^- $: further points discovered; $t $
	\mathcal{Z}^{opt} : size of Pareto front,	iscovered, but not proven;

				eps					rectB					asosB					ilph		
	$ \mathcal{Z}^{opt} $	*2	$ \mathcal{B}^+$	\mathcal{B}^{-}	t[s]	gH[%]	<u>*</u> N	$ \mathcal{B}^+$	$\overline{\mathcal{B}}^{-}$	t[s]	gH[%]	*2	$ \widetilde{\mathcal{S}}^+ $	<u> </u>	t[s]	gH[%]	*	$ \mathcal{B}^+$	12	t[s]	gH[%]
$\mathbf{T1}$	241	241	0	0	884	opt	229	6	0	TL	0.000	241	0	0	2353	opt	37	175	17	TL	0.000
$\mathbf{T2}$	228	228	0	0	1005	opt	183	29	7	\mathbf{TL}	0.000	228	0	0	2157	opt	34	154	10	2916	0.000
\mathbf{T}_{3}	230	230	0	0	2287	opt	119	52	20	ΤL	0.001	229	-	0	\mathbf{TL}	opt	33	156	21	ΤL	0.000
T_4	242	242	0	0	902	opt	197	26	9	ΤL	0.000	242	0	0	2145	opt	32	187	14	ΤL	0.000
$\mathbf{T5}$	117	13	0	S	ML	0.437	40	25	26	ΤL	0.016	32	20	18	\mathbf{TL}	0.012	35	41	83	ΤL	0.008
T6	233	233	0	0	705	opt	233	0	0	TL	opt	233	0	0	1807	opt	33	164	20	2564	0.000
$^{\rm L2}$	189	189	0	0	1067	opt	180	×	П	ΤL	0.000	189	0	0	2287	opt	29	130	14	2495	0.000
$^{\mathrm{T8}}$	223	223	0	0	270	opt	223	0	0	1369	opt	223	0	0	757	opt	30	154	24	1309	0.000
$^{\rm T9}$	239	239	0	0	939	opt	239	0	0	2702	opt	239	0	0	1238	opt	28	188	16	2093	0.000
T10	221	221	0	0	592	opt	221	0	0	2244	opt	221	0	0	978	opt	28	155	26	1770	0.000
T11	227	227	0	0	399	opt	227	0	0	1684	opt	227	0	0	901	opt	27	172	19	1489	0.000
T12	222	222	0	0	310	opt	222	0	0	1638	opt	222	0	0	877	opt	28	161	19	1683	0.000
T13	240	240	0	0	416	opt	240	0	0	1698	opt	240	0	0	925	opt	28	195	12	1677	0.000
T14	249	249	0	0	612	opt	249	0	0	2211	opt	249	0	0	1117	opt	28	186	23	2150	0.000
T15	227	227	0	0	402	opt	227	0	0	1680	opt	227	0	0	927	opt	27	165	23	1645	0.000
T16	223	223	0	0	393	opt	223	0	0	1989	opt	223	0	0	998	opt	28	167	15	1626	0.000
T17	241	241	0	0	413	opt	241	0	0	1586	opt	241	0	0	696	opt	27	173	26	1595	0.000
T18	218	218	0	0	202	opt	218	0	0	1627	opt	218	0	0	537	opt	39	179	0	1979	opt
T19	244	244	0	0	486	opt	244	0	0	1810	opt	244	0	0	952	opt	25	186	24	1994	0.000
R1	353	353	0	0	298	opt	52	44	19	TL	0.007	353	0	0	638	opt	72	281	0	3347	opt
$\mathbb{R}2$	368	368	0	0	373	opt	368	0	0	2168	opt	368	0	0	695	opt	73	285	7	2100	0.000
$\mathbb{R}3$	410	410	0	0	748	opt	395	13	-	ΤΓ	0.000	410	0	0	1448	opt	73	317	19	2634	0.000
$\mathbb{R}4$	367	367	0	0	328	opt	367	0	0	ΤL	opt	367	0	0	814	opt	79	273	12	2223	0.000
$\mathbf{R5}$	399	399	0	0	1808	opt	157	71	43	ΤL	0.001	399	0	0	2748	opt	65	261	40	\mathbf{TL}	0.001
$\mathbb{R}6$	448	448	0	0	151	opt	448	0	0	867	opt	448	0	0	393	opt	66	368	10	1043	0.000
$\mathbb{R}7$	447	447	0	0	177	opt	447	0	0	827	opt	447	0	0	404	opt	00	361	23	989	0.000
\mathbb{R}^8	405	405	0	0	340	opt	405	0	0	1742	opt	405	0	0	746	opt	56	336	11	1569	0.000
$\mathbb{R}9$	405	405	0	0	243	opt	405	0	0	1166	opt	405	0	0	517	opt	58	339	x	1190	0.000
R10	419	419	0	0	246	opt	419	0	0	1183	opt	419	0	0	573	opt	64	335	14	1161	0.000
R11	449	449	0	0	236	opt	449	0	0	1100	opt	449	0	0	525	opt	60	352	37	1048	0.000
R12	409	409	0	0	1177	opt	409	0	0	2844	opt	409	0	0	1306	opt	60	319	22	1921	0.000
R13	322	322	0	0	136	opt	4	1	1	ML	0.243	322	0	0	538	opt	87	225	10	\mathbf{TL}	0.000
R14	446	446	0	0	351	opt	446	0	0	1258	opt	446	0	0	663	opt	49	380	16	1496	0.000

	ptimal points	ods).	
FL.	\mathcal{Z}^+ : Pareto o	rH of all meth	
for BOTACon	and proven;	p (wrt. to best	
<i>isosB</i> and <i>ilph</i>	ints discovered	ypervolume gaj	
s eps, rectB, a	eto optimal po	ime; $gH[\%]$: h;	
or the method	nd; $ \mathcal{Z}^* $: Par	ered; $t[s]$: runt	
Pareto front f	plete front fou	points discover	
me and size of	t, bold if com	; $ \mathcal{Z}^- $: further	
erview of runti	of Pareto fron	out not proven	
Table 8: Ov	$ \mathcal{Z}^{opt} $: size	discovered, l	

	gH[%]	0.011	0.010	0.011	0.007	0.007	0.008	0.016	0.008	0.011	0.010	0.010	0.009	0.008	0.017	0.008	0.011	0.009	0.009	0.006	0.007	0.013	0.007	0.004	0.028	0.029	0.012	0.017	0.008
	t[s]	ΤL	ΤĽ	ΤΓ	Ţ	ΓĽ	ΤΓ	ΤΓ	Ţ	ΓĽ	ΓĽ	ΤΓ	ΓL	ΓL	ΤΓ	ΤΓ	ΓL	ΓL	ΤΓ	ΤΓ	ΤΓ	ΓL	Γ	Ţ	ΤΓ	ΓL	ΓĽ	ΤΓ	ΤL
ilph	$\overline{\mathcal{Z}}^{-}$	128	89	112	94	131	146	120	146	151	168	156	92	64	93	75	94	06	147	100	66	178	84	143	125	105	66	00	81
	$\overline{\varkappa}^+_+$	216	37	193	253	233	206	13	203	60	149	187	224	350	ъ	345	208	270	176	291	324	93	273	82	176	193	238	245	251
	3*	116	98	66	101	100	113	91	113	98	66	100	96	96	95	95	93	91	97	93	93	93	93	155	84	84	88	88	93
	H[%]	.001	.002	.001	.000	.001	.001	.011	.001	.001	.001	.001	.000	opt	.011	000.C	.001	000.C	.001	000.C	000.C	.002	.000	.001	.002	.001	.001	.000	000
] g.	0	°	°,	°	<u> </u>	о ,	°,	°	<u> </u>	<u> </u>	°,	, ,	~	<u> </u>	_	, ,	-	<u> </u>	_	_	, ,	<u> </u>	°	°,	, ,	0	<u> </u>	0
m	t[s]	IT	ΙĻ	Ę	Ħ	Ę	Ę	Ę	Ħ	Ę	Ę	Ę	Ę	3525	H	Ę	Ę	Ę	H	IT	IT	Ę	Ę	Ę	IT	Ę	Ę	H	Ε
asosI	$ \mathcal{Z} $	110	157	100	51	26	105	74	113	173	121	94	40	0	61	Г	75	38	66	40	6	117	24	165	97	114	67	54	23
	$ \mathcal{Z}^+ $	66	34	37	80	92	102	18	91	28	46	46	92	0	20	20	80	52	49	48	54	63	70	72	79	86	06	82	72
	3*	311	235	404	522	452	274	78	267	287	395	499	499	801	70	774	367	530	475	573	688	213	633	374	242	304	393	450	642
	[%]	.016	0.030	700.0	0.037	.004	0.014	.069	.009	0.031	0.010	700.0	0.002	.003	0.72	0.002	.008	0.003	0.016	.008	.001	.008	.006	.011	.004	.004	0.003	.003	0.003
	[g]	L L	С Ц	L L	с С	с -	L L	L L	с С	с -	с -	L L	с -	с -	с С	L L	с -	с -	с С	С С	С С	с -	с -	с _	L L	с -	с С	с С	с С
В	t[s]	6 T	6 1	5 H	ы Н	8 E	E O	E O	5 H	6 E	4 T	8 E	ы Ч	-1 -	5 H	5 H	E.	ы Ч	9 H	4 T	8 E	H 9	5 H	6 H	8 E	T 6	E 0	1 H	33 1
rect	$\overline{\mathcal{B}}^{-}$	2	Ċ1	4	-	ŝ	4	Ē	Ś	0	4	4	9	9		1-	ŝ	9	õ	က်	12	4	4	õ	õ	õ	9	S	ю
	$ \mathcal{Z}^+ $	40	14	68	18	111	36	9	59	13	53	68	141	105	S	135	62	118	41	68	173	61	83	45	91	105	121	104	106
	$\overline{\mathcal{B}}^*$	32	18	68	15	114	36	10	57	18	50	66	163	112	6	170	63	131	38	62	247	74	83	44	105	120	143	118	109
	M[%]	0.694	0.632	0.428	0.109	0.157	0.507	0.954	0.674	0.919	0.743	0.454	0.072	opt	0.964	opt	0.204	opt	0.857	opt	opt	0.484	0.620	0.263	0.609	0.789	0.221	0.105	0.620
	t[s]	ML	ML	\mathbf{TL}	\mathbf{TL}	\mathbf{TL}	ML	ML	ML	ML	ML	ML	\mathbf{TL}	614	ML	947	\mathbf{TL}	515	ML	543	934	\mathbf{TL}	ML	TL	\mathbf{TL}	ML	TL	\mathbf{TL}	ML
sa	_	0	2	4	-	e	-1	2	с С	0	-	ы С	0	0	5	0	7	0 3		0	0 1	4	4	9	2	0	0	1	с С
ð	$\overline{\omega}$																												
	$ \widetilde{\mathcal{S}}^+ $	-	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
	<u>*</u>	163	51	219	593	535	130	13	146	33	58	105	635	801	12	801	393	766	27	735	803	97	75	378	62	72	391	483	75
	$ \mathcal{Z}^{opt} $	680	389	616	805	781	646	189	638	442	581	662	190	801	173	801	676	766	643	735	803	445	803	685	561	586	207	720	803
		V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23	V24	V25	V26	V27	V28

	Pareto optimal points	of all methods).
able 9: Overview of runtime and size of Pareto front for the methods eps, rectB, asosB and <i>ilph</i> for BOTAConFL.	\mathcal{Z}^{opt} : size of Pareto front, bold if complete front found; $ \mathcal{Z}^* $: Pareto optimal points discovered and proven; $ \mathcal{Z}^+ $:	is covered, but not proven; $ \mathcal{Z}^- $: further points discovered; $t[s]$: runtime; $gH[\%]$: hypervolume gap (wrt. to best rH of

				eps					rectB					asosB					ilph		
$\mathcal{Z}^{opt} \mid \left \begin{array}{c c} \mathcal{Z}^{*} \mid & \mathcal{Z}^{+} & \mathcal{Z}^{-} & t[s] & gH[\end{array} \right $	$ \mathcal{Z}^* \mathcal{Z}^+ \mathcal{Z}^- \mathcal{Z}^- t[s] gH[$	$ \mathcal{Z}^+ $ $ \mathcal{Z}^- $ $t[s]$ $gH[$	$ \mathcal{Z}^{-} = t[s] = gH[$	t[s] gH[gH[[%	<u>*</u>	- + N	<u>[]</u>	t[s]	gH[%]	<u>*</u>	- + 2	<u> </u>	t[s]	gH[%]	<u>8</u>	- + N	[M]	t[s]	gH[%]
386 41 0 1 ML 0.86	41 0 1 ML 0.86	0 1 ML 0.86	1 ML 0.86	ML 0.86	0.86	6	120	88	84	ΤĽ	0.005	164	45	88	ΤL	0.005	84	68	210	ΤΓ	0.027
431 48 0 2 ML 0.67	48 0 2 ML 0.67	0 2 ML 0.67	2 ML 0.67	ML 0.67	0.67'	2	127	92	79	ΤΓ	0.004	178	39	62	\mathbf{TL}	0.007	82	26	204	ΤL	0.031
407 29 0 1 ML 0.68	29 0 1 ML 0.68	0 1 ML 0.68	1 ML 0.68	ML 0.685	0.68	\sim	118	80	81	Ţ	0.005	196	43	75	ΓL	0.005	82	26	204	Ţ	0.031
347 16 0 2 ML 0.80'	16 0 2 ML 0.80'	0 2 ML 0.80'	2 ML 0.80'	ML 0.80'	0.80'		114	77	78	ΤL	0.005	191	32	85	\mathbf{TL}	0.006	82	62	238	ΤΓ	0.023
317 10 0 2 ML 0.974	10 0 2 ML 0.974	0 2 ML 0.974	2 ML 0.974	ML 0.974	0.974		84	63	69	ΤL	0.008	148	30	51	\mathbf{TL}	0.011	82	69	242	ΤΓ	0.021
318 13 0 0 ML 0.971	13 0 0 ML 0.971	0 0 ML 0.971	0 ML 0.971	ML 0.971	0.971		96	74	80	ΤL	0.006	120	24	37	$_{\rm TL}$	0.016	82	65	253	ΤL	0.030
381 45 0 6 ML 0.648	45 0 6 ML 0.648	0 6 ML 0.648	6 ML 0.648	ML 0.648	0.648		125	74	87	ΤL	0.005	142	33	53	ΤL	0.010	82	65	198	ΓL	0.034
547 232 0 1 TL 0.595	232 0 1 TL 0.595	0 1 TL 0.595	$1 ext{ TL } 0.595$	TL 0.595	0.595		23	25	36	ΤL	0.020	245	72	133	ΤL	0.002	140	50	107	ΓL	0.005
363 72 0 3 ML 0.595	72 0 3 ML 0.595	0 3 ML 0.595	3 ML 0.595	ML 0.595	0.595		11	10	15	TL	0.053	144	46	101	ΤĽ	0.003	147	23	94	ΓL	0.007
801 801 0 0 2776 opt	801 0 0 2776 opt	0 0 2776 opt	$0 \ 2776 \ $ opt	2776 opt	opt		24	28	21	ΤΓ	0.021	468	91	47	\mathbf{TL}	0.000	134	188	100	ΤL	0.005
687 109 0 2 TL 0.709	109 0 2 TL 0.709	0 2 TL 0.709	2 TL 0.709	TL 0.709	0.709		12	12	12	ML	0.047	597	28	104	ΤL	0.000	140	277	130	ΓL	0.005
869 869 0 0 1888 opt	869 0 0 1888 opt	0 0 1888 opt	0 1888 opt	1888 opt	opt		101	66	54	\mathbf{TL}	0.003	591	119	51	ΓĽ	0.000	136	251	133	Ţ	0.004
411 109 0 4 ML 0.601	109 0 4 ML 0.601	0 4 ML 0.601	4 ML 0.601	ML 0.601	0.601		56	44	65	ΤL	0.009	186	45	132	ΤL	0.002	124	30	110	ΓL	0.007
544 188 0 1 TL 0.545	188 0 1 TL 0.545	0 1 TL 0.545	1 TL 0.545	TL 0.545	0.545		83	69	91	TL	0.005	290	73	107	ΤĽ	0.001	139	52	98	Ţ	0.006
796 503 0 2 ML 0.232	503 0 2 ML 0.232	0 2 ML 0.232	2 ML 0.232	ML 0.232	0.232		12	14	12	ΤΓ	0.044	556	87	62	ΓĽ	0.001	141	194	110	Ţ	0.005
837 837 0 0 1579 opt	837 0 0 1579 opt	0 0 1579 opt	0 1579 opt	1579 opt	opt		105	88	59	ΤΓ	0.004	616	83	48	ΤĽ	0.000	132	305	142	Ţ	0.004
264 36 0 3 ML 0.676	36 0 3 ML 0.676	0 3 ML 0.676	3 ML 0.676	ML 0.676	0.676		13	11	13	\mathbf{TL}	0.049	96	42	84	ΤĽ	0.005	110	17	112	Γ	0.009
565 209 1 3 TL 0.571	209 1 3 TL 0.571	1 3 TL 0.571	3 TL 0.571	TL 0.571	0.571		61	56	65	ΤΓ	0.008	299	63	128	ΤĽ	0.001	135	54	78	Ţ	0.006
832 832 0 0 3261 opt	832 0 0 3261 opt	0 0 3261 opt	0 3261 opt	3261 opt	opt		112	97	61	ΤΓ	0.003	582	67	47	ΤĽ	0.000	119	254	108	Ţ	0.005
731 418 1 1 ML 0.285	418 1 1 ML 0.285	1 1 ML 0.285	1 ML 0.285	ML 0.285	0.285		13	14	11	\mathbf{TL}	0.037	507	61	91	ΓĽ	0.001	130	208	145	Ţ	0.006
851 851 0 0 1341 opt	851 0 0 1341 opt	0 0 1341 opt	0 1341 opt	1341 opt	opt		7	7	6	ML	0.088	514	84	95	ΤĽ	0.000	198	109	128	ΓL	0.001
321 32 1 1 ML 0.919	32 1 1 ML 0.919	1 1 ML 0.919	1 ML 0.919	ML 0.919	0.919		19	18	25	TL	0.028	180	41	135	TL	0.002	104	29	105	ΤΓ	0.010
508 173 0 5 TL 0.522	173 0 5 TL 0.522	0 5 TL 0.522	5 TL 0.522	TL 0.522	0.522		32	33	28	TL	0.016	293	58	129	TL	0.001	115	104	166	ΤL	0.008
$766 \mid 413 0 1 TL 0.293$	413 0 1 TL 0.293	0 1 TL 0.293	1 TL 0.293	TL 0.293	0.293		87	85	56	\mathbf{TL}	0.005	460	83	65	ΤL	0.001	118	164	151	ΓL	0.006
834 834 0 0 3055 opt	834 0 0 3055 opt	0 0 3055 opt	0 3055 opt	3055 opt	opt		114	105	60	ΤL	0.003	509	83	63	\mathbf{TL}	0.000	111	272	107	ΤΓ	0.005
162 11 0 1 ML 0.969	11 0 1 ML 0.969	0 1 ML 0.969	1 ML 0.969	ML 0.969	0.969		6	9	15	ΤL	0.069	49	24	55	ΤL	0.014	104	9	94	ΓL	0.017

	: Pareto optimal points	of all methods).
the methods eps , $rectB$, $asosB$ and $ilph$ for BOTAConF	$ \mathcal{Z}^* $: Pareto optimal points discovered and proven; $ \mathcal{Z}^+ $; $t[s]$: runtime; $gH[\%]$: hypervolume gap (wrt. to best rH
Table 10: Overview of runtime and size of Pareto front for	$ \mathcal{Z}^{opt} $: size of Pareto front, bold if complete front found;	discovered, but not proven; $ \mathcal{Z}^- $: further points discovered

				eps					rectB					asosB					ilph		
	$ \mathcal{Z}^{opt} $	*N	$ \mathcal{B} $	- 2	t[s]	gH[%]	*2	$\overline{\varkappa}^+$	- M	t[s]	gH[%]	*N	$\frac{\omega}{\omega}$	<u> </u>	t[s]	gH[%]	<u>*</u>	$ _{+} \varkappa$	- <u>M</u>	t[s]	gH[%]
A1	463	75		3	ML	0.514	30	26	25	ΤΓ	0.018	288	85	112	ΤL	0.001	211	76	146	ΤĽ	0.002
A2	310	60	0	Г	ML	0.579	က	Ч	7	TL	0.403	86	59	44	ΤL	0.006	207	35	214	$\mathbf{T}\mathbf{L}$	0.004
A3	367	77	0	0	ML	0.540	25	23	24	ML	0.023	140	71	72	Γ	0.004	200	96	200	ΤĽ	0.003
A4	349	58	0	4	ML	0.527	x	2	18	TL	0.087	113	58	67	ΤL	0.005	191	23	105	\mathbf{TL}	0.005
A5	293	42	-	Т	ML	0.554	52	37	30	ΤL	0.014	65	41	26	ΤĽ	0.010	184	76	240	ΤL	0.004
A6	287	66	1	Г	ML	0.543	13	x	15	TL	0.051	59	42	27	ΤL	0.012	187	74	303	$\mathbf{T}\mathbf{L}$	0.002
A7	258	58	0	7	ML	0.567	×	e C	×	ΤL	0.089	51	31	35	ΤL	0.013	177	49	274	$_{\rm TL}$	0.005
A8	271	53	0	4	ML	0.545	59	45	32	ΤL	0.012	44	30	29	ΤL	0.015	171	76	261	$_{\rm TL}$	0.005
A9	266	49	П	Т	ML	0.553	26	21	16	TL	0.027	49	34	29	ΤΓ	0.015	179	69	279	\mathbf{TL}	0.003
A10	293	46	0	က	ML	0.524	58	40	27	TL	0.012	82	40	39	ΤL	0.010	167	92	251	$\mathbf{T}\mathbf{L}$	0.004
A11	429	59	0	က	ML	0.640	108	78	48	ΤL	0.005	155	82	66	ΤĽ	0.004	179	168	197	ΤL	0.003
A12	420	102	Ч	7	ML	0.481	109	84	52	ΤL	0.005	31	23	14	ΤL	0.024	161	139	180	$_{\rm TL}$	0.006
A13	406	111	0	2	ML	0.423	212	92	110	ΤL	0.004	51	32	24	ΤĽ	0.020	154	154	233	ΤL	0.005
A14	405	108	П	7	ML	0.372	216	89	116	ΤL	0.004	53	36	24	ΤL	0.018	154	177	218	$\mathbf{T}\mathbf{L}$	0.005
A15	320	68	П	က	ML	0.497	×	9	×	ΤL	0.081	117	52	62	ΤL	0.007	174	98	276	$\mathbf{T}\mathbf{L}$	0.003
A16	410	120	Ч	က	ML	0.561	218	60	119	ΤL	0.005	31	20	16	ΤL	0.030	152	148	232	ΤĽ	0.006
L1	222	6	0	2	ML	0.986	~	0	11	ΤL	0.088	14	5	33	ΤL	0.035	179	4	231	ΤĽ	0.193
L2	344	23	0	0	ML	0.939	10	2	15	ΤL	0.075	64	50	73	Γ	0.006	113	19	206	ΤĽ	0.006
Г3	304	20	0	2	ML	0.954	×	က	10	ΤL	0.093	89	57	88	Γ	0.005	141	24	210	ΤĽ	0.030
L4	377	x	0	1	ML	0.977	x	1	6	ΤL	0.111	40	28	59	ΤĽ	0.009	132	61	179	ΤL	0.022
L_5	380	23	0	0	ML	0.954	18	4	39	ΤL	0.036	88	48	106	ΤĽ	0.005	123	22	221	ΤĽ	0.004
$\Gamma 6$	311	4	0	1	ML	0.997	13	ю	23	ΤL	0.067	33	20	45	ΤĽ	0.014	105	x	177	ΤĽ	0.038
L7	428	13	0	0	ML	0.971	13	2	24	ΤL	0.069	82	45	77	Γ	0.007	130	63	179	ΤĽ	0.008
Γ_8	477	12	0	2	ML	0.969	31	19	45	ΤL	0.021	95	55	100	ΤĽ	0.005	155	50	234	ΤL	0.004
L9	527	19	0	2	ML	0.962	41	18	02	TL	0.015	120	09	06	TL	0.005	172	55	239	TL	0.004

6 Conclusions

In this paper, we introduce a new exact method, two matheuristics and, to the best of our knowledge, a first two-phase ILP-based heuristic approach for bi-objective binary problems. The exact method is a combination of the well-known ϵ -constraint method (5; 14) and the binary search in objective space (7; 13). The two matheuristics, BINS and directional local branching, are bi-objective counterparts of two matheuristics that are known to work well in single-objective context. Both matheuristics are used within exact frameworks to generate solutions that may be Pareto optimal. They are also main ingredients of our two-phase ILP-based heuristic.

The computational experiments show that our exact method outperforms other methods from literature and the proposed matheuristics are not only a useful support for exact methods, but also perform quite well when used within a two-phase ILP-based heuristic solution framework. Since both the exact method and the heuristics can be easily implemented using commercial ILP-solvers, our hope – in the same spirit as (6) – is that practitioners will be encouraged to use ILP-methods for solving bi-objective integer problems. Last but not least, we believe that this study will motivate further research on the boundary area between mixed integer programming and metaheuristics for bi/multi-objective optimization.

Acknowledgement

Markus Leitner is supported by the Austrian Science Fund (FWF) under grant I892-N23. Markus Sinnl is supported by the Austrian Science Fund (FWF) under grant P26755-N19. Axel Werner is supported by the German Research Foundation (DFG) under grant GR 883/18-1.

References

- [1] P. Belotti, B. Soylu, M. M. Wiecek, A branch-and-bound algorithm for biobjective mixed-integer programs, Optimization Online.
- [2] N. Jozefowiez, G. Laporte, F. Semet, A generic branch-and-cut algorithm for multiobjective optimization problems: Application to the multilabel traveling salesman problem, INFORMS J. on Comp. 24 (1) (2012) 554–564.
- [3] S. N. Parragh, F. Tricoire, Branch-and-bound for bi-objective integer programming, Optimization Online.
- [4] T. Stidsen, K. A. Andersen, B. Dammann, A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs, Management Sci. 60 (4) (2014) 1009–1032.
- [5] J. F. Bérubé, M. Gendreau, J. Y. Potvin, An exact ε-constraint method for bi-objective combinatorial optimization problems: Application to the Traveling Salesman problem with Profits, Eur. J. Oper. Res. 194 (1) (2009) 39–50.
- [6] N. Boland, H. Charkhgard, M. Savelsbergh, A Criterion Space Search Algorithm for Biobjective Mixed Integer Programming: The Rectangle Splitting Method, Optimization Online.
- [7] J. Riera-Ledesma, J. J. Salazar-González, The biobjective travelling purchaser problem, Eur. J. Oper. Res. 160 (3) (2005) 599-613.
- [8] C. A. C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques, Knowledge and Information systems 1 (3) (1999) 269–308.
- [9] A. Zhou, B.-Y. Qu, H. Li, S.-Z. Zhao, P. N. Suganthan, Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm and Evolutionary Computation 1 (1) (2011) 32–49.

- [10] E. Danna, E. Rothberg, C. L. Pape, Exploring relaxation induced neighborhoods to improve MIP solutions, Math. Programming 102 (1) (2005) 71–90.
- [11] M. Fischetti, A. Lodi, Local branching, Math. Programming 98 (1-3) (2003) 23–47.
- [12] M. Fischetti, M. Monaci, Proximity search for 0-1 mixed-integer convex programming, J. of Heuristics 20 (6) (2014) 709–731.
- [13] L. G. Chalmet, L. Lemonidis, D. J. Elzinga, An algorithm for the bi-criterion integer programming problem, Eur. J. Oper. Res. 25 (2) (1986) 292–300.
- [14] V. Chankong, Y. Y. Haimes, Multiobjective decision making: theory and methodology, no. 8, North-Holland, 1983.
- [15] M. Fischetti, M. Leitner, I. Ljubic, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, M. Sinnl, Thinning out Steiner trees: a node-based model for uniform edge costs, Technical Report.
- [16] T. Koch, A. Martin, Solving Steiner tree problems in Graphs to Optimality, Networks 32 (1998) 207–232.
- [17] S. Gollowitzer, I. Ljubić, MIP models for connected facility location: A theoretical and computational study, Comput. & Oper. Res. 38 (2) (2011) 435–449.
- [18] M. Leitner, G. R. Raidl, Branch-and-cut-and-price for capacitated connected facility location, J. of Math. Modelling and Algorithms 10 (3) (2011) 245–267.
- [19] A. Przybylski, X. Gandibleux, M. Ehrgott, Two phase algorithms for the bi-objective assignment problem, Eur. J. Oper. Res. 185 (2) (2008) 509–533.
- [20] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. Da Fonseca, Performance assessment of multiobjective optimizers: An analysis and review, Evolutionary Computation, IEEE Transactions on 7 (2) (2003) 117–132.
- [21] E. Ulungu, J. Teghem, The two phases method: An efficient procedure to solve bi-objective combinatorial optimization problems, Foundations of Comput. and Decision Sci. 20 (2) (1995) 149–165.
- [22] M. Leitner, I. Ljubić, M. Sinnl, A Computational Study of Exact Approaches for the Bi-Objective Prize-Collecting Steiner Tree Problem, INFORMS J. Comput. 27 (1) (2015) 118–134.
- [23] F. Tricoire, Multi-directional local search, Comput. & Oper. Res. 39 (12) (2012) 3089–3101.
- [24] T. Lust, J. Teghem, Two-phase Pareto local search for the biobjective traveling salesman problem, J. of Heuristics 16 (3) (2010) 475–510.
- [25] M. Grötschel, C. Raack, A. Werner, Towards optimizing the deployment of optical access networks, EURO J. on Comput. Optim. 2 (1-2) (2014) 17–53.
- [26] M. Leitner, I. Ljubić, M. Sinnl, A. Werner, On the two-architecture connected facility location problem, Electronic Notes in Discrete Mathematics 41 (2013) 359–366.
- [27] I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, M. Fischetti, An Algorithmic Framework for the Exact Solution of the Prize-Collecting Steiner tree problem, Math. Programming 105 (2006) 427–449.
- [28] B. V. Cherkassky, A. V. Goldberg, On implementing the push relabel method for the maximum flow problem, Algorithmica (1997) 390–410.