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Abstract

Heuristics and metaheuristics are inevitable ingredients of most of the general purpose MIP solvers
today, because of their contribution to the significant boost of the performance of exact methods. In the
field of bi/multi-objective optimization, the interaction between the exact and metaheuristic communities
is still fairly low. This article is one of the first steps towards reducing this gap and bringing the attention
of both communities to still unexplored possibilities for performance improvements of exact and heuristic
multi-objective optimization algorithms.

We focus on bi-objective optimization problems whose feasible solutions can be described as 0/1 integer
linear programs and propose a new exact method called adaptive search in objective space (ASOS). ASOS
combines features of the e-constraint method with the binary search in the objective space. In addition,
two matheuristics, boundary induced neighborhood search (BINS) and directional local branching are
proposed. Their main idea is to combine the features and explore the neighborhoods of solutions that
are relatively close in the objective space. Finally, a two-phase ILP-based heuristic framework relying on
BINS and directional local branching is proposed.

Our new methods are computationally evaluated on two problems of particular relevance for the design
of FTTx-networks. Comparison with other known exact methods (relying on the exploration of the
objective space) is conducted on a set of realistic benchmark instances representing telecommunication
access networks from Germany.

1 Introduction

Recent advances in the development of general purpose mixed integer programming (MIP) solvers have
led to an increased popularity of exact MIP-based approaches for bi/multi-objective optimization. Two
main research directions can be observed: branch-and-bound based algorithms (performing the search in the
decision space, see, e.g., (1 25 B; 4)), and iterative exact methods (performing the search in the objective
space, see, e.g., (B [6; [7)). A large body of work is available in the field of meta-heuristics as well (see, e.g.,
(8:[@)). Not much has been done, however, in the development of matheuristics for bi-objective optimization.
After many decades of independent research in mixed integer programming and metaheuristics for single-
objective (combinatorial) optimization, researchers came upon realization that significant advantages can be
drawn from synergetic effects of their hybridization. Nowadays, most of the general purpose MIP solvers
contain (meta)heuristics as their inevitable features that also significantly contribute to the boost of their
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performance (see, e.g., (10} 11} 12))). In the field of bi/multi-objective optimization, this is still not the
case, and the interaction between the communities is still fairly low. This article is one of the first steps
towards reducing this gap and bringing the attention of both communities to still unexplored possibilities
for performance improvements of exact and heuristic multi-objective optimization methods.

In this article we consider bi-objective combinatorial optimization problems that can be modeled as
bi-objective 0/1 integer linear programs (ILPs). Our contribution is twofold:

1. We propose a new exact ILP-based method, adaptive search in objective space (ASOS) that explores
the objective space in order to establish the complete Pareto front. This exact solution framework is
based on combining the binary search in objective space (BSOS) (7; [13])) and the e-constraint method
(5t 14). Our framework is guided by (the absence of) heuristic solutions with the main goal to benefit
from the advantages of the two methods while avoiding their individual drawbacks.

2. We propose two matheuristics for bi-objective 0/1 ILPs: boundary induced neighborhood search (BINS)
and directional local branching, that are bi-objective counterparts of two efficient matheuristics for
single-objective optimization, relaxation induced neighborhood search (RINS) (10) and local branching
(I1)), respectively. The two matheuristcs are then embedded into an two-phase ILP-based heuristic that
is used to approximate the Pareto front for large instances.

The development of these new methods is motivated by our computational experience with certain bi-
objective problems arising in the design of FTTx-networks, showing that established iterative exact methods
are not able to discover the complete Pareto front for most of the instances relevant for these practical
applications.

Planning of Telecommunication Access Networks One main step in cost-efficient planning of
telecommunication access networks is to find an (optimal) assignment of potential customers to different
available technologies (architectures), i.e., a deployment strategy. Commonly used architectures include fiber-
to-the-air (FTTA), fiber-to-the-curb (FTTC), fiber-to-the-building (FTTB), and fiber-to-the-home (FTTH).
Network providers are faced with a natural question: which customers to serve with which technology so as
to minimize the total investment costs while maximizing the quality of service. It is immediate that opti-
mal deployment decisions are naturally subject to multiple objectives. Designing optimal FTTH networks
is typically modeled as a variant of the Steiner tree problem (STP) in graphs (see, e.g., (I8 [16)) while
variants of the Connected Facility Location Problem (ConFL) have been used for planning FTTC networks,
cf. (IT; [18). We introduce the multi-objective k-architecture connected facility location problem (MOKA-
ConFL), generalizing connected facility location to more than two architectures and to multiple-objectives.
The computational success of our new approaches is demonstrated on bi-objective problems, that arise as
special cases of MOkAConFL with practical applications. These problems are the bi-objective connected
facility location problem (BOConFL) and the bi-objective two-architecture connected facility location problem
(BOTAConFL).

Outline of the Article Required concepts from bi-objective optimization and necessary notation are
summarized in the remainder of this section. Based on a short review of the BSOS and the e-constraint
method, we detail our new method, adaptive search in objective space, in Section Section [3| introduces
our general-purpose ILP-heuristics for the bi-objective case and discusses the new heuristic framework while
Section [ introduces MOkAConFL, its bi-objective variants that will be used in our computational study,
and details necessary for adaptating our frameworks to these particular problems. Further implementation
details and the results of our computational study on the considered benchmark problems are summarized
in Section [5} Finally, in Section [6] conclusions and possible directions for future research are provided.

Basic Definitions and Notation Next, we introduce necessary notation and recall some basic termi-
nology for bi-objective optimization, see, e.g., (19) for a more detailed overview. Throughout this article,
we will only consider problems in minimization form and will assume that all input data is integral. For



a bi-objective optimization problem min,ep(z1(0), 22(0)), its feasible region P is called decision space and
Z ={(z1(0),22(0)) : 0 € P} is the set of images of the points in P in the objective space R?.

For ease of notation, for o € P, let 2} = 21(0%), 25 = 22(0?) and 2 = (2%, 24). Moreover, we will also
sometimes slightly abuse notation, and use z* (i.e., a point in the objective space) to also refer to a solution
o! (i.e., a point in the decision space) with z;(0%) = zi, 25(0*) = 24. This is only done when it is clear from
the context, that such a solution exists.

A solution o* € P is called Pareto optimal (efficient), if and only if there is no solution ¢’ € P such
that z;(0’) < z;(0*), i = 1,2, with at least one strict inequality. The objective point z* = (z1(0*), 2z2(c*))
corresponding to an efficient solution o* is called non-dominated. The set of all Pareto optimal solutions is
denoted by Pg and the set of all non-dominated points, also called Pareto front or non-dominated frontier,
by Z. An objective point z(d) corresponding to a solution & is called weakly dominated if there exists another
solution 6 with z;(6) < z;(¢), i = 1,2 and z;(6) = z;(¢) for either i =1 or ¢ = 2.

The set of efficient solutions can be partitioned into two subsets, those whose objective vectors lie on the
convex hull of the Pareto front, which are usually called supported efficient solutions, and the remaining,
so-called non-supported efficient solutions; the points in the objective space are called analogously. The
boundary points (21, 2)¥) and (28, 2) of the Pareto front that are defined by the ideal point 2! = min{z;(o) :
o € P} and the nadir point 2z = min{z;(0) : 0 € P,z;(0) < zj,j # i}, i = 1,2, play an important role in
most iterative solution methods. Given the objective vectors of two solutions @ and ¢® with z,(0%) > z3(c?),
we will denote by [2%, 2%] the rectangle {(z1,2z2) | 2¢ < 21 < 28,25 < 23 < 24} in the objective space defined
by these two solutions.

When using heuristic methods, or when an exact method cannot terminate due to given memory- or
timelimits, one usually ends up with an approximate Pareto front. The quality of such an approximation
can be assessed by the hypervolume indicator, see, e.g., (20) for an overview on performance assessment
methods of multi-objective optimization algorithms. Given a set of solutions Py = {ol,...,0"}, in bi-
objective minimization, the hypervolume indicator H (PE) is defined as the area dominated by the solutions
in Pp, i.e., the area covered by I, [(21, 22), (22, 23)]. The hypervolume indicator attains a maximum for
the complete Pareto front Pg, and it generally provides a lower bound for the area dominated by Pgr. A
higher value of the hypervolume indicator usually indicates a better approximation of the non-dominated
frontier. For exact methods, in this article we introduce the relazed hypervolume indicator rH, which is based
on calculating the upper bound of the hypervolume, and in addition to this we also define a hypervolume
gap indicator (note that a concept of this name is mentioned in (6] without explicit definition) which is
calculated using H and rH. Details are given in Section [5.2

2 New Exact Solution Framework

As mentioned in the introduction, ILP-based exact methods for multi-objective optimization typically follow
one of the two patterns: they either rely on the search of the decision space, or they establish the complete
Pareto front by exploring the objective space. The methods studied in this article fall into the latter category,
and we will refer to them as iterative methods. Typically, an iterative scheme is defined, in which specifically
constrained ILPs are solved, and the objective space is further explored based on the obtained optimal
solutions.

Before introducing the new exact framework in Subsection we detail the two iterative approaches
it is mainly composed of. Given weights w1, we and bounds €7, €3, we will denote by iteration the process
of solving ILP P(w1,ws, €1, €2) = min{wi21(0) + waz2(0) : 0 € P,z1(0) < €1,22(0) < €2}, assuming that
“c € P” symbolically stands for a 0/1 ILP description of the set of feasible solutions. The optimal solution of
such an iteration will be denoted by ¢* while ¢; and d2 will denote the greatest common divider (ged) of all
coefficients in 21 (o) and z5(0), respectively. List Sol is the solution pool. It stores the current approximation
of the Pareto front. Sol is initialized with the boundary points (z{,2¥) and (24V, 21) of the non-dominated
frontier. This process is denoted as initBP() in the following. Solutions generated by some heuristic
procedure that are Pareto optimal with respect to the current approximation of the Pareto front are called
candidate solutions or potentially Pareto optimal solutions. Note that such solutions will also be stored in



Sol. Sol is used to initialize the ILP of an iteration with a starting solution and also to guide our exact
framework. More details are given in Subsection [2.3

2.1 Binary Search in Objective-Space (BSOS)

The binary search in objective-space (BSOS) (7t 3) which is summarized in Algorithm [l| is a variant of
the weighted-sum approach. In contrast to the standard weighted-sum method for bi-objective optimization
(see, e.g., (21))), BSOS is able to discover non-supported efficient solutions as well. To this end, the corner
points 2% and z° defining the rectangle [2%, 2°] of a current iteration are cut off with additional constraints
z1(0) < 2% — §; and z5(0) < 2§ — Jo, which are added to the weighted-sum optimization problem, i.e.,
P(wy,wa, 2Y — 01,28 — J3) is solved, see Figure [1| for an illustration.

Algorithm 1 Binary Search in Objective Space
Sol + initBP()
I {[(=1,29), (1, 22)]}
while I # () do
select a rectangle 2%, 2°] € I and remove it from [
o* + argmin P(wy,ws, 28 — 81,25 — &2)
if o* # () then
Sol + Sol U {z(c*)}
if 2§ — z2(0*) > 25 then
I+ TU{[z*2(c")]}
if 20 — 2 (0*) > 26; then
I+ TU{[z(c%), 2%}
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(a) 2%, 22 are not yet discovered Pareto optimal so- (b) Dashed lines are level lines of the objective func-
lutions. The bold lines give the constraints on z1 (o) tion. Non-dominated point 22 is discovered.

and z2(0).

Figure 1: Iteration in the binary search in objective space. Rectangle [2?, 2°] is explored.

We observe that up to 2|Z|+3 ILPs have to be solved to determine a Pareto front consisting of | Z| points
using the BSOS. Besides the four initial ones to obtain the two boundary points and |Z| — 2 to obtain all
remaining points, we also need to solve at most |Z|+ 1 additional ILPs, one for each empty interval between
two Pareto optimal solutions. The latter fact resembles the main weakness of this methods, since the chosen



ILP solver has to prove infeasibility for each of these problems, a process that typically takes significantly
longer than solving an ILP with at least one feasible solution. The order in which rectangles (stored in the
queue [ in the pseudo-code given in Algorithm [1)) are proceeded, may significantly influence the performance
of this approach. In our implementation, we choose rectangles according to their contribution to the relaxed
hypervolume rH (see Section for further details).

While usually weights w; = 2§ — 25 and wy = 20 — 2§ that yield an objective function parallel to the
line through [2%, zb] are chosen, the method works in principle for any selection of wy,ws > 0. Next, we
propose an approach that can possibly prove Pareto optimality of multiple, already known feasible solutions
(such solutions could have been found, for example, by heuristics) in a single iteration. Let P be the set
of all candidate solutions with images lying in the currently considered rectangle [2?,2°], and Z¢ be the
set of corresponding images. The approach exploits the result of the following Lemma, see Figure [2| for an
illustration.

Lemma 1. Consider a facet F of the polygon conv(z®,z%, Z¢, (2}, 2%)), defined by two points z* = z(c*)
and 27 = z(09) with 0*,07 € PC and 2% > 25 such that 2%, 2° € F and let wy = 25 — 23, wo 1= 2] — 2%, and
2% = w12t + wozh. Furthermore, let P¥ be the set of all candidate solutions o € PC such that z(o) € F. If
the optimal solution value of P(wy,ws, 28 — 61,25 — &) is equal to 2, then all solutions in P are Pareto
optimal.

Proof. The obtained solution (with objective value z*) is Pareto optimal by the validity of the BSOS method
(since wy,ws > 0). Since all solutions in P¥ have objective points on F with the same objective value (by
the choice of wy,ws), they are all Pareto optimal. O

Figure illustrates the result of Lemma [I| and also shows that more than two new rectangles may be
obtained when using this approach.
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(a) conv (2%, 2%, 2, (2%, 29)). (b) Non-dominated point z* with objective value 2z

is found.

Figure 2: Z¢ = {z',22, 23, 2*}. The weights are chosen based on 22 and 23 and the dashed lines are level
lines of the resulting objective function. The non-dominated point z* allows us to conclude that 2% and 23
are also non-dominated. The new rectangles are [z, 2], [22, 23], [2%, 2*] and [2*, 2°].

2.2 e-Constraint Method

In the e-constraint method, which is one of the most popular methods for solving bi-objective combinatorial
optimization problems (see, e.g., (5]) for a recent application), one of the two objectives, say zs, is transformed



into a constraint, i.e., problem P(1,0,00,€) is considered. By systematically decreasing parameter e from
2V to 2 the Pareto front is determined.

In this basic version, weakly dominated points may be found. These points can simply be removed in a
post-processing phase. Moreover, this problem can also be resolved by using lexicographic minimization, i.e.,
by either solving P(1,, 00, €) for an appropriately small value of y or by solving a second ILP min{zs(c) : 0 €
P, z1(0) = z1(c*)}, in each iteration. According to our computational experience it is much faster to simply
remove weakly dominated points in the end, rather than using lexicographic minimization. A drawback of
the method arises from the fact that it does not generate a good approximation of the Pareto front early
(since it searches the objective space from top left to bottom right). Consequently, the hypervolume typically
increases only slowly during the solution process.

2.3 Adaptive Search in Objective Space (ASOS)

The motivation of our new exact solution framework, adaptive search in objective space (ASOS) (see Algo-
rithm is to combine the e-constraint method and BSOS in such a way that we benefit from their advantages
and do not face their drawbacks. The default method is BSOS, since it quickly computes an approximation
of the Pareto frontier and does not return weakly Pareto optimal solutions. To avoid proving infeasibility
of ILPs associated to some rectangle [2%, 2], we aim to efficiently guess when such a case might occur and
call the e-constraint method with P(1,0, 0o, 2§ — J3) instead. If our prediction was correct the e-constrained
method will return a solution 2¢ with 2§ = 24 and doing so is typically much faster than proving emptiness
of the interval by BSOS. If, on the contrary, a new solution is found by the e-constraint method, a new
Pareto optimal solution ¢* is derived using its lexicographic variant. Subsequently, the rectangle [z(c*), 2°]
is added to the queue of unprocessed rectangles. Note that, in that case, the e-constraint method implicitly
proves that the rectangle [z,, z(c*)] does not contain further non-dominated points.

ASOS uses the set of so-far discovered and not yet dominated solutions (the solution pool Sol) to decide
which solution method to apply for a given rectangle [2¢, 2°] as follows: If Sol does not contain any solution
lying in the rectangle [2%, z%], we conclude that it is likely that no such solution exists and apply the e-
constraint method (with o® as starting solution). On the contrary, if at least one solution in [2%,2°] has
been found previously, BSOS is applied. We use the most promising solution (i.e., the one with minimum
objective value) from the solution pool as starting solution. The process of passing this starting solution as
initial incumbent to the ILP solver is denoted by setStartingSolution in Algorithm

Clearly, our framework relies on the effective population of the solution pool. Besides adding all incumbent
solutions found throughout previous iterations (which might turn out to be Pareto optimal in subsequent
iterations), we propose to use the general purpose ILP-based heuristic, boundary induced neighborhood search
(BINS), see next section. Observe that in the first ten iterations of ASOS we run binary search to collect
diverse solutions for Sol.

Our  Algorithm  also  uses  further  generic  acceleration  methods  denoted — with
update Branching Priorities(c*) and wupdateConstraintPool(), which are discussed below. Necessary
adaptations of these generic ideas to the considered problems are described in Section [5.1} These acceler-
ation methods and the solution pool are used in all methods considered in our computational study. We
also experimented with wisit and cover inequalities, cf. (22)), but they did not give promising results in
preliminary tests.

Constraint Pool Many combinatorial optimization problems can be modeled as ILPs with a huge (poten-
tially exponential) number of constraints that are dynamically added using branch-and-cut. To this end, an
appropriate oracle (separation method) is called which identifies and adds (separates) violated constraints.
In iterative solution methods some of these inequalities will likely be added in several iterations. Thus, a
constraint pool (see, (7; 22))) stores them and is checked for violated constraints before calling the compu-
tationally more expensive separation routine. In our default setting, the pool is re-initialized with each new
iteration, and only constraints violated in the previous iteration are kept in the pool.



Algorithm 2 Adaptive Search in Objective Space (ASOS)

Sol + initBP()
tterations < 0
I {[(=1,29), (1, 22)]}
while I # () do
iterations <— iterations + 1
select a rectangle [2%, z%] € I and remove it from [
if 3o € Sol : z(0) € [2%,2°] V iterations < 10 then
setStartingSolution(c®, o®)
o* < argmin P(wy,ws, 28 — 61, 25 — 02)
if o* # () then
update Branching Priorities(c™), updateConstraint Pool()
Sol + Sol U {z(c*)}
if 2§ — z2(0*) > 202 then
I+ TU{[z%2(c*")]}
Sol + Sol U BINS(z%,2(c*))
if 20 — 21(0*) > 20, then
I+ TU{[z(c"),2%]}
Sol + Sol U BINS(z(c*), 2%)
else
setStartingSolution(a®)
o* + argmin P(1,0,00,2§ — 9)
if 29(0*) # 25 then
update Branching Priorities(c*), updateConstraint Pool()
o* < argmin {z1(0) : 0 € P, 22(0) = z2(c*)}
update Branching Priorities(c*), updateConstraint Pool()
Sol < Sol U {z(c*)}
if 25(0*) — 25 > 20, then
I+ TU{[z(c%),2"}
Sol + Sol U BINS(z(c*), 2%)

Adaptive Branching Iterative solution frameworks for bi-objective problems allow to better guide the
branching decisions of the current ILP iteration by exploiting knowledge gained during previous iterations
(22)). One natural way that we make use of, is to increase the branching priority of a binary variable each
time the corresponding object is included in a Pareto optimal solution. We refer to this branching strategy
as adaptive branching.

3 ILP-Based Heuristics for Bi-objective Integer Programming

In this section, we propose a new, generic two-phase heuristic framework based on black-box ILP procedures
that aims to overcome the following two severe drawbacks of iterative ILP-based exact methods: a single ILP
iteration may (i) require too much time or (ii) run out of memory. In both cases, only a very small part of the
Pareto front may be discovered and iterative methods may not be able to continue in a reasonable way since
they usually rely on the identification of Pareto optimal solutions of previous iterations. Our framework,
which will be detailed in Section is based on boundary solution induced neighborhood search (BINS) and
directional local branching, cf. Sections and The latter two are new multi-objective generalizations
of well-established single-objective black-box ILP heuristics, namely RINS (L0) and local branching (L),
respectively. In the following, we describe our methods for 0/1 ILPs, but we also point out that our methods
can be easily adapted to general ILPs.



3.1 Boundary Solution Induced Neighborhood Search (BINS)

When LP-relaxations are solved within a branch-and-bound procedure for ILPs, some of the integer decision
variables may be (almost) integer in an optimal LP-solution, while others are not. To produce high-quality
feasible solutions, variable fixing heuristics try to fix decision variables in an intelligent way by using infor-
mation gained during the solution process. In case of the relazation induced neighborhood search (RINS)
(I0), the value of the LP-relaxation is used to fix the decision variables. Inspired by these ideas, BINS aims
to exploit the fact that Pareto optimal solutions corresponding to non-dominated points in some rectangle
[24, 2°] often share solution characteristics with the boundary solutions ¢ and ¢°. Let % be the set of indices
of variables of the considered problem, Fy = {i € ¥ : 0¢ = 0% =0} and F} = {i € £ : 0% = 02 = 1} be
the sets of variables that are equal to zero and one, respectively, in both solutions. We fix (some of) the
variables whose values are identical in these boundary solutions in order to find a new potentially Pareto
optimal solution by solving P(wq,ws, 2§ — 51,28 — 02) extended by constraints o; = 0, for all ¢ € Fy and
o; = 1, for all ¢ € Fy. Since in that case we are solving a restricted variant of a BSOS iteration with a
potentially large number of variables fixed to zero or one, one can expect to find feasible solutions extremely
fast. As in RINS, one may fix only variables from Fy (Fy) to zero (one) or impose both constraints. Note
that the efficiency of BINS clearly depends on the size of the rectangle, the number of feasible solutions
inside, and typically benefits from increasing sizes of sets Fy and F}.

3.2 Directional Local Branching

Local branching (I1)) is a generic ILP-based method to effectively search a neighborhood of a feasible reference
solution &. Given parameter n € N and the set of indices S = {i € ¥ : 5; = 1} of variables whose values
are equal to one in 7, a neighborhood N (n, &) of size n for this reference solution & is constructed by adding
the following local branching constraint to the problem formulation.

Z(l—ai)—i— Z o <n. (1)

iest i€X\S1

Constraint ensures that at most n variables of a feasible solution attain values different to the value
of the reference solution &. Since the associated feasible set is typically small, solving an ILP with the local
branching constraint (and using the reference solution as initial solution) often allows to derive an improved
solution extremely fast.

Directional local branching generalizes local branching to bi-objective problems as follows: Given a (po-
tentially Pareto optimal) solution o we aim to identify yet unknown (potentially Pareto optimal) solutions
close to 0. To this end we minimize one of the objective functions (i.e., z;, i = 1,2) while restricting the
feasible space to a neighborhood of o*. More precisely, we add a local branching constraint for ¢, minimize
in z-direction and additionally add an e-constraint on objective z;, j # 4, to avoid computing a solution
with the ideal-point value for objective i. For example, for i = 1,5 = 2, we solve the problem P(1,0, 00, ¢€)
with an additional constraint as defined in equation . Two variants for choosing the right-hand-side of
this e-constraint can be considered: (i) z}” or (i) zf —;, j # i. The latter variant explicitly ensures that a
solution different to o’ is produced (if a suitable one exists in the given neighborhood).

Observe that our new approach offers a generic way to perform multi-directional local search (23)). By
letting the ILP-solver explore the neighborhood, our approach avoids the implementation of (possibly com-
plicated) problem-dependent local-search procedures whose execution may also be time-consuming. The
idea of the directional local branching can be straight-forwardly adapted to more than two objectives: one
objective is part of the minimization function, the remaining objectives are bounded from above, and the
neighborhood constraint is added.

3.3 The Two-Phase ILP-based Heuristic Framework

In this section we describe a new ILP-based heuristic framework whose main ingredients are BINS and direc-
tional branching described above. Inspired by the two-phase methods (TPM) for bi-objective combinatorial



optimization problems (see, e.g., (2I)) or (24)) our ILP-based heuristic framework consists of two phases.
Using a weighted-sum approach, the first phase aims to discover the set of all supported non-dominated
points, which likely provides a good approximation of the Pareto front. A timelimit tzp is applied in each
iteration, to avoid potentially arising excessive runtimes of single iterations. In addition, we apply BINS
to each rectangle [z, 2°] identified in this first phase in order to find further (potentially Pareto optimal)
solutions and populate the solution pool Sol.

Starting off with the set of solutions found in the first phase, the second phase iteratively refines the
approximate Pareto front by applying directional local branching as long as improved (i.e., non-dominated)
solutions can be found. The framework is summarized in Algorithm [3] As above, Sol contains the set
of currently non-dominated points. The set newSol used in the second phase initially contains all points
discovered in the first phase. The neighborhood of each single point in newSol is explored and the newly
discovered non-dominated points, which are temporary stored in the set neighbors, are passed over to the
next iteration i.e., newSol is reset to non-dominated solutions from neighbors.

Algorithm 3 Two-Phase ILP-based Heuristic Framework
Sol + initBP()
T ([, 2, (Y, 2801}
while I # () do
select a rectangle [2%, z%] € I and remove it from I
setStartingSolution(c®, o)
o* < argmin P(w,ws, 00,00)
if 0 £ DA 21(0%) # 28 A 21(0%) # 2% then
update Branching Priorities(c™), updateConstraint Pool()
Sol < SolU{z(c*)}
if 2§ — z2(0*) > 202 then
I+ TU{[z*z(c")]}
Sol < Sol UBINS(2%, z(c*))
if 20 — z1(0*) > 26, then
I TU{[z(c%),2"]}
Sol <~ Sol U BINS(z(c*), 2°)
newSol < Sol
while newSol # () do
neighbors < )
while newSol # () do
z% < pop a solution from newSol
neighbors < neighbors U directional LocBra(z®)
Sol < non-dominated solutions from Sol U neighbors
newSol < non-dominated solutions from neighbors

We have also tested a variant of this framework in which local branching (using the incumbent solution
o* as initial solution) is performed whenever an ILP terminates due to the timelimit ¢p in the first phase.
Thereby, local branching is iteratively applied until a solution is provably optimal for the considered neigh-
borhood size or until a predefined number of maximum iterations is reached. The main idea behind it is to
avoid a creation of new intervals based on a rather bad solution o*.

It is worth mentioning that we also investigated a heuristic variant of the e-constraint method in which
a timelimit is applied to each iteration. If no solution has been identified in the current iteration, a natural
idea is to simply decrease € and proceed. Using this strategy may, however, result in an approximate front
for which large areas in the objective space remain empty. If on the contrary at least one candidate solution
has been found for the current value of € (which may or may not be optimal given a termination due to the
timelimit), it is not clear how to set parameter € in the next iteration. Our preliminary experiments with
such an e-constraint based heuristics exhibited a rather bad performance (even when combined with local



Figure 3: Schematic view of an access network using different technologies (fiber, copper, and wireless); cf.

(25)

branching) so that we did not try to exploit this idea any further.

4 Bi-objective FTTx Network Design

Our methods are tested on benchmark problems arising in the design of fiber-optic access networks with
different potential technologies (also called architectures), see Figure [3| Despite the fact that a large body
of work has been devoted to this topic (see (25]) for a recent survey), so-called mized deployment strategies
have been considered only recently in (26). In (20), the two-architecture connected facility location problem
(2AConFL) is introduced, which models the problem of supplying customers of a given deployment area
with two potential technologies. Minimum-coverage rates are used to specify the fraction of the customers
to be supplied by the better and by any of the two technologies, respectively.

A main drawback of modeling the deployment using the 2AConFL is that minimum-coverage rates
need to be specified in advance and potentially existing, significantly cheaper solutions slightly violating
coverage constraints will never be considered. Since the latter solutions represent attractive options for
decision makers, it is desirable to study problem variants in which coverage rates are considered as additional
objectives. In order to better capture the trade-off between these two conflicting goals, namely investment
costs and achieved coverage rates, we introduce the multi-objective k-architecture connected facility location
problem (MOKAConFL), generalizing 2AConFL to more than two architectures and to multiple-objectives.
After describing the used ILP formulation for MOkAConFL we discuss practically relevant special cases with
two objectives including those that will be considered in our computational study.

In an instance of the MOkKkAConFL we are given a core graph G = (V, E') whose node set V' is the union of
potential central offices (COs) @ with opening costs ¢, > 0, Vg € Q, potential facility locations I = Ule Il
per technology [ with associated opening costs ¢! > 0, Vi € I', 1 <[ < k, and potential Steiner nodes S.
Facilities in this context are multiplexors or switches, and Steiner nodes are, e.g., street-junctions. Edges
e = {u,v} € E model potential connections between core nodes u and v and are associated with trenching
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Figure 4: a) An instance of MOkAConFL for k = 2 with Q = {q1,q}, I' = {f1, fo}, I? = {g1,92},
and J = {c1,...,¢5}. b) An exemplary solution to this instance where each customer is supplied by some
architecture and customers ¢; and c3 are served by the better architecture. The assignment to the artificial
root node r determines which COs are opened; cf. (26).

costs ¢, > 0. We are further given a set of potential customers J with demands d; € N, Vj € J, and a
bipartite digraph (I U J, Ule A, AL C I' x J, 1 <1 < k, modeling potential assignments between facilities
and customers using technology . Thus, each facility in I' represents a location from which (after the
installation of appropriate equipment) some customers can be supplied using architecture . Note that the
sets I' need not be disjoint.

A facility must be opened if at least one customer is assigned to it and every customer can be assigned to
at most one facility. Furthermore, each open facility must be connected to an open central office by a path
in the core graph. CO nodes and potential facility locations can be used as Steiner nodes, in which case
no opening costs are paid for passing through them. Besides minimizing the overall costs of the network,
MOKAConFL aims to maximize the demand served with technology [ or better, for 1 <[ < k (equivalently,
to minimize the demand that is not served with technology [ or better). A technology i is considered better
as technology j, if its index is smaller, i.e., ¢ < j.

The problem is modeled on a digraph (V U J U {r}, A, U A, U Uf’zl AY). Thereby, r is an artificial
root node r ¢ V connected to each potential central office ¢ € @ via arcs A, = {(r,q) | ¢ € Q} that
incorporate the corresponding opening costs, i.e., ¢;q = ¢4, Vg € Q. Obviously, if || =1 the creation of the
artificial root node and its associated arcs can be skipped and the CO itself can act as the root. The arc
set A, = {(u,v) | {u,v} € E} is obtained by bi-directing the core edges and we assume that ¢y, = Cpy = Ce,
Ve € E. For ease of notation, we use abbreviations A,. = A,UA., A, = Ule Aland A= A,,UA,. Figure
shows an exemplary instance and a feasible solution.

Our generic ILP model for MOkAConFL, which will be specialized later on, is given by 7. Thereby,
core arc variables x;; € {0,1},V(i,j) € Ay, indicate membership of core and artificial root arcs to the
solution while core node variables y; € {0,1},Vi € V, denote if a node 4 is in the solution. Assignment arc
variables xéj € {0,1},V(i,5) € A", 1 <1 < k, indicate if customer j is supplied by facility i using architecture
I, facility variables f! € {0,1}, Vi € I',1 <1 < k, whether or not facility i is open providing connections
using architecture I, and customer variables rﬁ- € {0,1}, Vj € J,1 <1 <k, if customer j is supplied by
architecture [.

Let D =}, ;d;, and let IL = {i e I'| (i,§) € A"} be the set of eligible facilities for a customer j € J
and architecture [, 1 <[ < k. For anodeset W C VUJ,let 5~ (W) ={(i,j) € AUA, |i ¢ W,j € W} and
SH(W) ={(i,j) € AUA, | i€ W,j ¢ W} be the set of incoming and outgoing arcs, respectively. Finally,
for arc set A C A, let z(A) = Z(i,j)eA Tij.

k
min Z CijTij + Z ( Z Cijxéj + Z Cifz‘l) (2)

(ivj)eArc =1 (i,j)eAl iell
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l
min D — Y Y dyr 1<1<k (3)

m=1jeJ

k
sty rh<1 VjeJ (4)

=1
Zxﬁj:rj. Vield 1<I1<k (5)

iel!
wi; < fi Vied iel, 1<I<k (6)
z(6~({i}) = v VieV (7)
fi <y Viell, 1<I<k (8)
2(6~(W)) > v, VW CV,ielnW 9)
(@, 0ty € {0, AT I 1<i<k (10)
(z,y) € {0, 1}/Arel+IV] (11)

While minimizes the total construction costs of the network, the objectives (3]) minimize the demand
not served with technology [ or better, for 1 < [ < k. Constraints and (5)) ensure that a unique
architecture and assignment arc is used for each connected customer. Inequalities @ force a facility to be
opened whenever an assignment arc issuing from it is chosen. Connectivity constraints @[) (y-cuts) ensure,
together with constraints @,, that each opened facility is connected to the artificial root node via opened
core arcs. Since the root node is adjacent only to the CO nodes it follows that at least one CO node is
contained in the solution.

Coverage constraints specifying the minimum fraction p;, 0 < p; < 1, of demand to be covered by
technology [ or better will be added in one of the special cases of MOkAConFL discussed below.

l

Z Zdﬂ“}n > [pD] 1<I<k (12)

m=1jeJ

If p; > 0 for some [, at least one facility of type [ or better must be opened and hence connectivity
constraints (9) are strengthened to

l
(6~ (W) =1, vwWev: [ JI'cw (13)

m=1

if W contains all potential facilities of type [ or better.
Furthermore, whenever all customers must be supplied, inequality is replaced by an equation, which
implies that objective is always 0 for [ = k.

Bi-objective FTTH-Network Design The design of FTTH networks in which customers shall be con-
nected to a central office by fiber-optic cables can be modeled as a bi-objective prize-collecting Steiner tree
problem (BOPCSTP), see (22). The goal is to find a solution that minimizes installation costs and at the
same time maximizes the percentage of served customers. A transformation to MOkAConFL is obtained by
considering only a single architecture (k = 1) and no coverage constraints. Facility locations are identical to
customer locations in this case.

Bi-objective FTTC-Network Design In FTTC network design, multiplexors that need to be connected
to a central office by fiber-optics are installed at certain locations, each potentially serving a set of customers
close to it by existing copper cables. Minimizing the network construction costs while minimizing the
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uncovered customer demand one obtains a bi-objective variant of the connected facility location problem
(see, e.g., (I I8} 26)) which is a special case of MOKAConFL for k¥ = 1 and without imposing coverage
constraints. We denote this problem as BOConFL.

Bi-objective Two-Architecture Network Design Being concerned with the deployment of two differ-
ent architectures (e.g., FTTA and FTTC, or FTTC and FTTH) while assuming that one of them is better
than the other, the goal is to minimize the resulting network’s cost while at the same time minimizing the
demand covered with the worse technology. This problem variant, which we denote as BOTAConFL, cor-
responds to MOkAConFL with k = 2 and a given coverage rate py (for technology two or better) suitably
chosen in advance by a decision maker.

5 Computational Study

We conduct our computational study on a set of real-world instances representing deployment areas for
telecommunication access networks in Germany (with perturbed costs and demands, to ensure data privacy).
The main goal of our study is to asses the computational performance of the two new methods, ASOS and the
ILP-based heuristic, on a set of realistic instances, and to compare their performance with some of the well-
established and well-performing exact methods (according to our recent study in (22)). In addition, we have
also implemented a recently proposed rectangular splitting method (6 and included it in our computational
study.

Each experiment of our computational study has been performed on a single core of an Intel E5-2670v2
with 2.5 GHz and 64 GB RAM using CPLEX 12.6 for solving (integer) linear programs. A timelimit of
3600seconds and a memorylimit of 2GB each (by setting the workmem and treelim parameter) has been
applied. Furthermore, a timelimit of 60seconds has been used for BINS, directional local branching and
each iteration in the first phase of the heuristic, while the maximum number of local branching iterations in
the first phase is set to 5. A total coverage rate of po = 1 (i.e., all customers must be connected) has been
used for BOTAConFL.

5.1 Branch-and-Cut Configuration

Initialization Since the core-network part of our model (i.e., constraints and @[)) correspond to the
well-known cut-formulation of the prize-collecting Steiner tree problem (see, e.g., (27)) we initialize the model
by flow-conservation constraints which are known to be strengthening. Additionally, constraints
and which cut off the empty solution and forbid cycles of length 2, respectively, are initially included.

2(6~({i}) < =(07({i})) vie VI (14)
z(67({r}) =1 (15)
Tij + x5 < Yi ieV (16)

Separation of Connectivity Constraints For each LP-solution, we first check the constraint pool (see
Section for violated cuts. In case no cuts are added from the pool, we either search for violated
connectivity constraints @ by computing the connected components of the support graph (if all variable
values (z*,y*) of the current LP-solution are integral) or by using a maximum-flow algorithm (28) (if some
variable values are fractional). In the latter case, backcuts, nested cuts and minimum cardinality cuts as
suggested in (16; 27)) are used and inequalities are only added if they are violated by at least 0.5. We also
avoid to compute the maximum flow to facility nodes that are reachable from r in the subgraph defined by
all nodes and arcs whose corresponding variable values are equal to one. Those facilities are identified by a
breadth-first search.
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Dominated Customer Inequalities We also consider dominated customer inequalities

!
xéj < Z i, Vgl e die I]l» ﬂIjl-, : céj > céj, /\dé- < dé, (17)
m=1

for technology I, which are separated (by enumeration) for integer solutions only. Their validity follows from
the fact that customer j (which is dominated by customer j' with respect to facility ¢ and technology 1)
may only be connected to facility ¢ in an optimal solution, if customer j’ is connected using technology [ or
better.

Branching-Priorities An adaptive branching strategy (cf. Section has been used in which priority
is given to node and facility opening variables. Their branching priorities are increased by 1 whenever the
associated object is contained in a Pareto optimal solution (branching priorities of arc variables are always
equal to 0). Initially, we set the branching priorities to 25 (y-variables of nodes that are potential facilities),
20 (facility variables), 15 (y-variables of non-facility nodes), and 5 (customer variables).

Adaptation of the ILP-Heuristics Although our ILP-heuristics BINS and directional local branching
described in Section [3] are directly applicable, we slightly adapt them to make use of problem specific
knowledge. Notice that once the core nodes, open facilities, and customers are fixed, the considered problems
reduce to finding a spanning tree in the core network and an assignment problem in the assignment graph.
Thus, only variables associated with the nodes in the core network or with the customers are considered.
In the following, we will describe our adaptations for using only node variables of the core network, the
adaptations for using only the customer variables work analogously. Let V(%) C V be the core nodes that
are selected in solution 0. For BINS and given solutions 0%, 0%, we fix all variables y; with i € V(¢?)NV (a?)
to 1 and optionally also fix all variables y; with i € {V \ V(6%)} N {V \ V(¢?)} to 0. For (directional) local
branching and a given solution ¢®, we used asymmetric local branching constraints

Yy = IVeY) -n, (18)

JEV (o)

that ensure the selection of at least [V (0®)| — n core nodes of solution ¢® for a given parameter n € N.

5.2 Hypervolume Gap Indicator

To better estimate the quality of approximate Pareto frontiers, Boland et al. (6) proposed to compute an
upper bound on the area dominated by the optimal frontier which they call adjusted hypervolume indicator.
Given a set of rectangles [2¢, 2°], where further non-dominated points may lie, their indicator can be computed
by adding the area of each such rectangle to the value of the hypervolume indicator.

We now propose a tighter upper bound to which we refer to as relaxed hypervolume indicator that also
takes into account additional knowledge gained during the course of the current algorithm. Recall that
some of our methods allow to conclude that certain areas of a rectangle [2?,2°] cannot contain efficient
solutions (cf. Section or that the rectangle is empty (the latter information is also used in the adjusted
hypervolume indicator). Consequently, the area of such a rectangle gives only partial or zero contribution
to the relaxed hypervolume indicator.

Definition 1 (Relaxed Hypervolume Indicator, rH). Let M; indicate a given solution method M in iteration
i and let PE(MZ) be its set of non-dominated points found so far. The relaxed hypervolume indicator, denoted
by rH(M;), is given by the hypervolume H(PE(Mz)) plus the area which may still contain non-dominated
points according to the information gained by M up to its current iteration i.

The relaxed hypervolume indicator is illustrated in Figure Clearly, H(Pg(M;)) < H(Pg) = rH(Myp) <
rH(M;) holds for any iteration ¢ smaller than or equal to the final iteration T in which M terminates
(assuming that M discovers the complete Pareto front). Thus, we introduce the hypervolume gap indicator
as follows.
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Definition 2 (Hypervolume Gap Indicator, gH). Let ]ADE(Ml) be the set of non-dominated points found up
to iteration i, using method M. The hypervolume gap indicator for M in iteration i is

gH(M) = THON)
H(Pg(M;))

By definition we have gH(M;) > 0 and gH(M;) = 0 iff ¢ = T, i.e., when M has identified the provably
optimal Pareto front. Note that the adjusted hypervolume indicator (6]) coincides with rH for the rectangle-
splitting method proposed in (6). On the other hand, as it will be described below, rH provides tighter
bounds for ASOS and BSOS.

29 A
° '
Zl
[ ]
< >
<1
Figure 5: A set of discovered Pareto optimal solutions Pz = {z!,...,2%} in the current iteration i. The

lightly shaded area defines the hypervolume H (ISE) and the union of both shaded areas defines the relaxed
hypervolume rH(M;). Tt is assumed that M; implies that the rectangle [z%,2%] does not contain non-
dominated solutions and that only a partial area of the rectangles [2', 22] and [22, 2%] may contain further
non-dominated solutions. Observe that, e.g., BSOS or ASOS can derive both conclusions.

Shrinking of Rectangles and Computation of rH for ASOS/BSOS Consider a rectangle [2¢, z%] and
a new solution z* found inside the rectangle. As observed in (22] Prop. 1), the two new rectangles [z, z*] and
[*, 2%], can be shrinked, depending on the weights w1, ws used to determine z*. Let 2% = w2} +wo25. The
shrinking depends on the position of the line {z € [2%,2°] | w121 + woze = 2¥} within the rectangle [22, 2°];
clearly, below this line in [z, 2°], there are no non-dominated points. Therefore, only areas above that line
in the rectangles [2%, z*] and [2*, 2°] are contributing to rH. This is the main difference to the definition of
the adjusted hypervolume indicator (6)), that would consider the whole areas of [z, 2*] and [2*, 2°]. If wy,ws
are chosen in such a way that the level lines of the objective are parallel to the line through 2% and 2°, we
distinguish between the following two cases: Point z* corresponds either to a supported solution (case A,
Figure @, or to a non-supported one (case B, Figure @ Notice that in case A, the area that contributes to
rH is the area of two trapezoids, and in case B, it is the area of two triangles. If wy,ws are chosen differently
(as e.g., in Lemma , we may end up with calculating a sum of a trapezoid and a triangle.

Observe that after recursively applying this procedure for subsequent rectangles, one may end up with
arbitrary convex polygons whose area is not easy to calculate. We therefore overestimate these areas by only
considering trapezoids and triangles. With this calculation, it may happen that rH(M;) > rH(M;41), but
H(PE) = ’/‘H(MT) holds.
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(a) Case A: z* is a supported non-dominated point. (b) Case B: z* is a non-supported non-dominated

point.

Figure 6: Two possible cases of calculation of the value contributing to rH by a rectangle. Weights wy,ws
are assumed to be chosen in such a way that the level lines of the objective are parallel to the line between
2% and 2°. The area contributing to rH is shaded in light gray. The dark shaded area is not contributing to
rH.

5.3 Instances

Our benchmark instances are based on realistic networks representing FTTH/FTTC deployment areas in
Germany. Five deployment areas are considered: berlin-tu, berlin-rotdorn, vehlefanz, atlantis
and berlin-lichterfelde, generating five groups of instances. Within each group, we consider different
scenarios regarding the possible distribution of existing copper infrastructure, resulting in instances with
similar network topology within the same group, but with different distribution of potential facilities, and
different assignment graphs. These instances have been partly used in (26). Basic properties of our instances
are summarized in Table[] Facilities of technology one represent FTTH connections, which means that each
customer location is at the same time a potential facility location (for FTTH technology). Hence, customer
nodes have degree one for the FTTH technology (i.e., |[I'| = |C| = |A!| holds). Facilities of technology two
represent FTTC connections, i.e., there are at least two customers, which can be assigned to such a facility.

Table 1: Details of the test instances. # gives the number of instances within each group, abbrev. gives the
abbreviation used for the name of the group, |I!| and |I?| are the number of facilities of technology one and
two, resp., | S| is the number of Steiner nodes, |C| is the number of customers, |CO| is the number of available
central offices, |E| is the number edges in the core graph, and |A!|, | A?| are the numbers of assignment arcs.

set abbrev. # \Il\,|C|,|A1| |I2| |S| |CO| |E| |A2|
berlin-tu T 19 39 15-70 271-326 4 560 45-211
berlin-rotdorn R 14 91 15-66 95-146 2 314 107-502
vehlefanz Vv 54 238 28-169 483-624 5 1096 306-3531
atlantis A 16 345 16-102 550-636 4 1029 506-2607
berlin-lichterfelde L 12 747 79-446 618-985 5 2074 1117-7260

For BOConFL, only FTTC facilities are available, while for BOTAConFL, both FTTC and FTTH fa-
cilities can be installed, the latter ones representing the better technology. Note that for BOTAConFL, for
three instances from berlin-lichterfelde, the boundary points of the Pareto front could not be determined
within the given runtime. Thus, we consider 115 instances in total for BOConFL and 112 for BOTAConFL.
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Figures 72 to [7d illustrate three Pareto optimal solutions for one of the largest instances from our bench-
mark set when considering the mixed deployment (BOTAConFL). In the first solution, most of the customers
are connected using the FTTC technology, while in the third solution the situation is the opposite, most of
the customers are connected using the FTTH technology. It can be observed that some of FTTC facilities
are open in all three solutions, while others are only open in one or two of the solutions. Such an analysis,
determining which features of a deployment are occurring in many Pareto optimal solutions, can be a helpful
guidance for decision makers. Figure [7d] shows the Pareto front obtained by our ILP-based heuristic with
the three pictured solutions highlighted.

(a) Pareto optimal solution, (b) Pareto optimal solution,
z1 = 684801, zo = 3534 z1 = 1505710, z2 = 1608
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1000000 * 2000000 " 3000000
Al
(c¢) Pareto optimal solution, (d) Approximate Pareto front discovered by our ILP-based
z1 = 2396450, zo = 438 heuristic method

Figure 7: Instance from the set berlin-lichterfelde. (a)-(c): three Pareto optimal solutions, (d): approx-
imate Pareto front discovered by our ILP-based heuristic (which worked best for this instance). Customers
connected with the FTTH technology are given as orange circles, customers connected with FTTC are given
as green circles. Opened facilities are given as blue triangles, the opened central office is the blue diamond.
Solution (a) is indicated as red circle in the Pareto front, solution (b) as green rectangle and solution (c¢) as
blue diamond.
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5.4 Results

The purpose of our computational study was to assess the efficacy of the new exact method (abbreviated
as asos below) and the new two-phase ILP-based heuristic (denoted by ilph). To this end, we have also
implemented the e-constraint method (eps) and BSOS (bsos). According to our recent study on BOPCSTP,
eps and bsos computationally outperformed other iterative exact methods (22). We additionally consider
the rectangle-splitting method (rect) recently proposed in (6l). If a method is combined with BINS (which
turned out to be beneficial in most of the cases, see below), a letter B is added to the name of the method,
e.g., bsos B means binary search with BINS. Let M denote the set of all methods considered in this study,
i.e., M = {asos, asosB, bsos, bsosB, eps, ilph, rect, rect B}.

Default Implementation Settings Preliminary tests led us to use the configuration described in the
following for our main computations. Dominated customer inequalities reduced the number of weakly-
dominated points discovered; however, the resulting increase in runtime for a single iteration led us to turn
them off. All local branching neighborhoods worked very well; we decided to use the neighborhood defined by
customer variables whose values are equal to one and radius n = 10. No clear picture emerged regarding the
attempt to prove optimality of more than one solution in an iteration (application of Lemma [1)). For some
instances it payed off, while for others the changed objective function coeflicients increased the difficulty of
solving the ILPs. Thus, we finally decided not to use this setting. Directional local branching is only used in
the second phase of ilph (as described in Section . The variant of ilph with local branching also applied
in the first phase performed very similar to ilph.

Comparison Based on Hypervolumes We start our comparison by showing performance plots depicting
the number of instances against the square root of the hypervolume gap: Figures[8|and [0 report the obtained
hypervolume gaps for BOConFL and BOTAConFL, respectively. Four methods are compared: eps, rectB,
asosB and bsosB. In the remainder of this section, the hypervolume gap for a method M € M is calculated
as:
rH .
gH(M)=—————1, where rH = min rH(M). (19)
H(Pp(M)) MeM

In other words, for the hypervolume gap calculation, the best »H over all methods is used. Most of the time,
the best rH is achieved by bsosB or asosB, since both eps and rectB often exceed the time- or memorylimit
in an iteration where most of the front still remains undiscovered. The square root-transformation is chosen
to improve the readability of the plots.

We notice that the worst hypervolume gaps are by far provided by eps, followed by rectB, while the
remaining two methods (bsosB and asosB) provide hypervolumes of similar quality. The latter effect can
possibly be explained by the weak performance of eps. Consequently, asosB (which combines eps and bsosB)
cannot draw significant advantages from eps. We also observe that the considered methods establish the
complete Pareto front for 40 to 55 instances (out of 115) for BOConFL and for 20 to 42 instances (out of
112) for BOTAConFL.

Figures [I0] and [TI] compare bsos and asos with and without BINS, for BOConFL and BOTAConFL,
respectively, without the 60 individually easiest instances for each method. We observe that the use of BINS
clearly improves the performance (with respect to the obtained hypervolume gaps) both for BOConFL and
for BOTAConFL on these hard instances that cannot be solved withing the given time- or memorylimit.

Drawbacks of Analysis Based on Hypervolumes A significant drawback of analyzing bi-objective
methods by means of the hypervolume is that this indicator does not tell a lot about the number of non-
dominated points discovered by a method and their distribution in the objective space. A method may, for
example, provide a very small hypervolume gap even if it discovers only very few non-dominated points. This
is demonstrated in Figure [12| where we plot the set of non-dominated points obtained by four methods: eps,
rectB, asosB and ilph for instance A3 for BOConFL. One observes that the most useful approximation of
the Pareto front is obtained by ilph. It is, however, almost impossible to distinguish between rectB, asosB,
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Figure 8: Exact methods applied to BOConFL.

T T
0.0 0.2 0.4 0.6 0.8 1.0
sqrt (hypervol une gap)

Figure 9: Exact methods applied to BOTAConFL.
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Figure 10: asos and bsos with and without BINS applied to BOConFL.
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Figure 11: asos and bsos with and without BINS applied to BOTAConFL
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and ilph when comparing the values of the hypervolume; see Figure [L3| which shows the hypervolume versus
runtime for the same instance. In the remainder of our computational study, we will therefore provide a
more detailed comparison of selected methods, which (besides the hypervolume gaps) also details numbers

of non-dominated points discovered and/or proved to be Pareto optimal.
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Figure 12: Pareto fronts discovered by different methods within the given memory-and timelimit.

A More Detailed Computational Analysis Figure depicts a typical progress of the hypervolume
which occurs for many of our more difficult benchmark instances. We observe that, for the given instance,
only one exact method (rectB) terminates due to the timelimit while the other two (eps and asosB) exceed
the memorylimit. Method ilph terminates since no new solution could be found. Contrary to the exact
methods, the heuristic is successfully prevented from getting stuck while calculating a single Pareto optimal
solution, due to the timelimit imposed in each iteration.
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Figure 13: Normalized hypervolume against runtime for different methods and instance A3 for BOConFL.

We also see that the e-constraint method hits the memorylimit quite early and therefore derives only a
very limited part of the Pareto front and a small hypervolume. This behavior may be not too critical in
case we are lucky and a decision maker is only interested in solutions found in the considered region. This
outcome is, however, clearly not desirable in case it is not known beforehand which area of the objective
space is relevant.

For this reason, the goal in designing our heuristic framework was to provide many (possibly Pareto
optimal) solutions that also cover most of the Pareto front. We next analyze whether this goal has been
achieved and also discuss the effects of BINS and the two phases. Thereby, ilph — nobins is used to denote
the variant of the heuristic framework without BINS.

Table [2] details the performance of ilph and ilph — nobins for BOConFL on instances for which the
complete Pareto front could be identified using the e-constraint method (i.e., all instances from set T except
for T5). In addition, results for selected difficult instances of sets A and R for BOConFL (A1, R5, R9) and
set A for BOTAConFL (A11, A13, Al4, A16)E| are given. Besides the number of Pareto optimal solutions of
ilph —nobins and ilph in their first and second phase (| 25|, | Z5|), we also report the corresponding runtimes
(t1, ta), the sizes of the obtained heuristic fronts (|Z1], |22|), and their associated hypervolume gaps (gH1,
gH3).

We note that the group T for BOConFL has been the easiest in our benchmark set, and the e-constraint
method managed to solve all these instances (except T5). From Table We observe that both with and with-
out BINS, ilph works very well and BINS gives a significant improvement in the number of non-dominated
points discovered in the first phase, while the additional cost on runtime is quite modest. Naturally, for
this easy group T, eps outperforms the two variants of the heuristic framework with respect to the required

1To obtain the results for eps for the latter instances, we set the timelimit to 40 hours and the memorylimit to 60GB. Note
that even with these limits, some instances from these sets could not be solved with eps (and the sets V and L are even more
difficult to solve)
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runtime. We observe that BINS helps the ILP-heuristic to find between 25% to 50% of the non-dominated
points in its first phase within 1/3 of the total running time of eps. Except for one instance, the hypervolume
gap of ilph is below 0.05% after the first phase and the whole Pareto front is discovered after the second
phase for most instances (for T16 and T19 the front is determined already in the first phase). We also
observe that both after the first and second phase, the heuristic fronts contain mostly points that are in fact
non-dominated.

Turning our attention to the more challenging instances Al, R5, R9 (BOConFL) and A11, A13, Al4,
A16 (BOTAConFL), it can be seen that the fraction of discovered non-dominated points, and also the
hypervolume gap, are very similar to the respective values in the easier instances. The runtime of the first
phase is much smaller than the runtime of eps: At the end of the second phase more than 66% of the Pareto
front is discovered, while the time spent is less than half the time eps needed to discover the whole front. We
want to point out the results obtained for R9 (BOConFL) where both variants of the heuristic manage to
discover the whole front in less than 220 seconds, while eps requires more than 17000 seconds for the same
task.
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Next, we provide detailed computational results to compare our methods asosB and lph against eps
and rectB. Tables [3]to 6] report results obtained for BOConFL, whereas Tables [7] to [I0] the results obtained
for BOTAConFL. Recall that each method returns at the end a set of non-dominated points, some of them
being provably non-dominated, others being heuristically obtained. For every instance we present value
| Z°Pt|, which is either the size of the Pareto front, if at least one method managed to discover it, or the size
of the union of the points that were proven to be non-dominated by at least one of the methods, otherwise.
If at least one method managed to discover the whole Pareto front, this is indicated by a bold value in
the column |Z°P*|. Moreover, column |Z*| denotes the number of points proven to be non-dominated by
the respective method. Thus, |Z°*| = |U,caq 24|, where Z3; denotes the set of provably non-dominated
points discovered by method M € M. In addition, |Z%]| indicates the number of discovered non-dominated
points from Z°P! for which the corresponding method did not prove that they are non-dominated (i.e.,
heuristically identified points). The number of remaining non-dominated points, contained in the final set
produced by a method is shown in the column |Z~|[| In addition, we also report the runtime (¢[s]) and
hypervolume gap (gH[%]) calculated according to (19)for each method. By T'L or ML in column t[s] we
denote if a method reached the time- or memorylimit, respectively. A zero hypervolume gap is indicated
by opt in the column gH[%]. Observe that gH[%] can be zero even when the method terminates due to
the time- or memorylimit. This happens when only rectangles containing no further non-dominated points
remain open, but proving emptiness was not possible during the given limits. The best value for a given
instance in this column is marked in bold.

From Tables|3|to |§| (i.e., for BOConFL) we conclude that the e-constraint method only works well for the
smallest instance groups T and R (cf. Table . As the instances become larger, eps is outperformed by the
other methods. For example, for half of the instances of the set V (cf. Tables H] to , the hypervolume gap
obtained by eps is above 0.2%. At the same time, the gaps obtained by asosB and rectB are (except for
a few cases) consistently below 0.1%. The best-performing method for the set V, with respect to both the
number of discovered non-dominated points (i.e., |Z*| plus |Z7]|) as well as the hypervolume gap, is ilph.
The hypervolume gap is by one order of magnitude smaller than the one by eps, and the largest hypervolume
gap of ilph for the set V is 0.077%. A similar picture emerges for the remaining two sets of larger benchmark
instances, namely A and L.

For BOTAConFL (see Tables m to we again observe that for the easier instance groups T and R, all
methods work well and almost always find the complete Pareto front, with eps being the fastest. For the set
V, asosB is the overall best method, in particular with respect to the number of discovered non-dominated
points (with an exception of some outliers for which eps manages to determine the whole front). For the two
largest sets A and L, again, our ILP heuristic ilph, provides the best results, and for the set L containing
the largest instances, ilph and asosB work best, both in terms of number of points and hypervolume gap.

Overall, we conclude the following: for easier instances, where the underlying branch-and-cut algorithm
runs fast and stable, eps is the best performing method. As the size/difficulty of instances increases, eps
tends to get stuck due to excessive memory or time usage. Alternative iterative methods, like asos, bsos
or rect, studied in this paper, can better deal with these issues, providing significantly smaller hypervolume
gaps. However, we demonstrate that looking solely at the hypervolume (gaps) is not sufficient, as the
number of Pareto optimal points discovered by a method can still be relatively small. With this respect,
our study shows that the method that provides the most accurate, diverse and rich Pareto fronts is the new
ILP-heuristic ilph.

2These points can be of two different types: i) they are dominated by some of the points on the Pareto frontier Z°P*, ii) they
are not dominated by any of the points on the Pareto front Z°P?, i.e., their corresponding solutions could be Pareto optimal
but no method managed to prove it. The latter case, obviously, can only happen for instances, where no method discovered
the whole Pareto front.
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6 Conclusions

In this paper, we introduce a new exact method, two matheuristics and, to the best of our knowledge, a first
two-phase ILP-based heuristic approach for bi-objective binary problems. The exact method is a combination
of the well-known e-constraint method (B} [14) and the binary search in objective space (7t [13)). The two
matheuristics, BINS and directional local branching, are bi-objective counterparts of two matheuristics that
are known to work well in single-objective context. Both matheuristics are used within exact frameworks to
generate solutions that may be Pareto optimal. They are also main ingredients of our two-phase ILP-based
heuristic.

The computational experiments show that our exact method outperforms other methods from literature
and the proposed matheuristics are not only a useful support for exact methods, but also perform quite well
when used within a two-phase ILP-based heuristic solution framework. Since both the exact method and
the heuristics can be easily implemented using commercial ILP-solvers, our hope — in the same spirit as (6]
— is that practitioners will be encouraged to use ILP-methods for solving bi-objective integer problems. Last
but not least, we believe that this study will motivate further research on the boundary area between mixed
integer programming and metaheuristics for bi/multi-objective optimization.
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