
A dual-ascent-based branch-and-bound framework for the

prize-collecting Steiner tree and related problems

Markus Leitner∗1, Ivana Ljubić †2, Martin Luipersbeck‡1, and Markus Sinnl§1

1Department of Statistics and Operations Research, University of Vienna, Austria
2ESSEC Business School of Paris, France

Abstract

In this work we present a branch-and-bound (B&B) framework for the asymmetric prize-

collecting Steiner tree problem (APCSTP). Several well-known network design problems can be

transformed to the APCSTP, including the Steiner tree problem (STP), prize-collecting Steiner

tree problem (PCSTP), maximum-weight connected subgraph problem (MWCS) and the node-

weighted Steiner tree problem (NWSTP). The main component of our framework is a new dual

ascent algorithm for the rooted APCSTP, which generalizes Wong’s dual ascent algorithm for

the Steiner arborescence problem. The lower bounds and dual information obtained from the

algorithm are exploited within powerful bound-based reduction tests and for guiding primal

heuristics. The framework is complemented by additional alternative-based reduction tests. All

tests are applied in every node of the B&B tree. Extensive computational results on benchmark

instances for the PCSTP, MWCS and NWSTP indicate the framework’s effectiveness, as most

instances from literature are solved to optimality within seconds, including most of the (previ-

ously unsolved) largest instances from the recent DIMACS Challenge on Steiner Trees. In many

cases the framework even manages to outperform recently proposed state-of-the-art exact and

heuristic algorithms. Since the network design problems addressed in this work are frequently

used for modeling various real-world applications (e.g., in bioinformatics), the presented B&B

framework will also be made publicly available.

1 Introduction

Variants of the Steiner tree problem appear in a broad range of diverse applications, ranging from

infrastructure network design (Ljubić et al. 2006) to the analysis of biological networks (Dittrich

et al. 2008) and pattern recognition (Chen and Grauman 2012, Hegde et al. 2014). Many of these

∗markus.leitner@univie.ac.at
†ivana.ljubic@essec.edu
‡martin.luipersbeck@univie.ac.at
§markus.sinnl@univie.ac.at

1

variants can be covered by a common problem definition. For this purpose, let an arborescence

S = (VS , AS) rooted at r ∈ VS be defined as a subgraph of a given directed graph G = (V,A), such

that for each node i ∈ VS \ {r} there exists exactly one directed path from r to i. Furthermore, if

node i ∈ VS , we say that S spans i. Using this definition, the problem addressed in this work can

be stated as follows:

Definition 1 (Asymmetric prize-collecting Steiner tree problem (APCSTP)). Given a directed

graph G = (V,A), arc costs c : A 7→ R≥0, node prizes p : V 7→ R≥0 and a set of fixed terminals Tf ,

the goal is to find an arborescence S = (VS , AS) ⊆ G that spans Tf such that the cost

c(S) =
∑

(i,j)∈AS

cij +
∑
i 6∈VS

pi

is minimized.

Let Tp := {i ∈ V \Tf : pi > 0} be the set of potential terminals, T := Tp ∪ Tf the set of terminals

and V \ T the set of Steiner nodes. Optionally, the given problem definition may be extended by

specifying a root node r ∈ Tf , such that each feasible solution is an arborescence rooted at r. This

extension of the APCSTP is referred to as the rooted APCSTP. As will be shown, several network

design problems can be transformed to the unrooted/rooted APCSTP and the restriction regarding

the non-negativity of c and p is made without loss of generality.

Our research has been partially motivated by the 11th DIMACS challenge on Steiner tree

problems. This event has provided new results on the state-of-the-art of existing computational

methods, but has also highlighted algorithmic ideas that have not received sufficient attention

in the existing literature. The challenge has shown that it should be possible to design flexible

algorithmic frameworks that can exploit similarities between classes of Steiner tree problems. Such

frameworks are not only flexible with respect to the range of problem classes they can address

— more importantly, they are capable of generalizing successful algorithmic techniques to various

problem classes. One example is the framework proposed by Gamrath et al. (2015), in which several

Steiner tree related problems are solved by the same integer linear programming (ILP) model via

transformations of the input instance. A similar approach is followed by Fischetti et al. (2014),

whose implementation achieved the best overall computational results among the proposed exact

algorithms. Unfortunately, in spite of the recent contributions of the DIMACS challenge, some

computationally successful methodologies have remained restricted to the Steiner tree problem

(STP), like the design of branch-and-bound (B&B) frameworks based on dual heuristics. Pajor

et al. (2014) have proposed a new, empirically more efficient, implementation of the dual ascent

algorithm for the Steiner arborescence problem (SAP) originally proposed by Wong (1984), and

have presented computational results for a B&B procedure based on this algorithm for the STP. In

the past, Wong’s dual ascent algorithm has been successfully applied within a sophisticated B&B

framework for the STP by Polzin and Daneshmand (2001), in which a wealth of reduction tests

2

and various other algorithmic techniques are applied.

Contributions. To the best of our knowledge no framework based on a dual-ascent-based method-

ology has been proposed for any other Steiner-tree-related network design problem, although the

approach seems promising. We therefore present a novel B&B framework for the APCSTP based

on a dual-ascent procedure. The latter generalizes the dual ascent algorithm for the SAP by Wong

(1984), and shares similarities with the primal-dual 2-approximation algorithm for the PCSTP pro-

posed by Goemans and Williamson (1995). The framework is complemented with new bound-based

and alternative-based reduction tests formulated for the APCSTP. Via simple problem transfor-

mations this framework is capable of solving instances of the prize-collecting Steiner tree problem

(PCSTP), the maximum-weight connected subgraph problem (MWCS), the node-weighted Steiner

tree problem (NWSTP), and the STP. Extensive computational results are presented, showing that

in many cases the framework manages to outperform more sophisticated state-of-the-art exact and

heuristic algorithms presented at the 11th DIMACS challenge. In addition, as the network design

problems addressed in this work are used for modeling various real-world applications (e.g., in

bioinformatics), we decided to make our framework publicly available.

Outline. Section 2 gives an overview of the B&B framework’s general layout. Section 3 de-

scribes our new dual ascent algorithm for the rooted APCSTP. Section 4 presents bound-based

and alternative-based reduction tests. Section 5 covers implementation details of the framework.

Section 6 lists computational results, while concluding remarks are drawn in Section 7.

2 General framework

Figure 1 shows a schematic representation of the B&B framework. In Step 1, the given input

instance is transformed to the APCSTP (see Section 5.3). An initial preprocessing and heuristics

are applied in Step 2. This phase consists of an exhaustive application of the reduction tests that

will be detailed in Section 4.2, as well as the application of primal heuristics described in Section 5.1

for a limited number of iterations.1

Steps 3 to 7 represent the main loop of the B&B procedure. In Step 3, a B&B node is selected for

processing. A dual ascent algorithm for the APCSTP (see Section 3) is used in Step 4 to compute a

lower bound for the given B&B node. A primal heuristic is executed in Step 4 to possibly improve

the global upper bound while reduction tests (Section 4) are applied in Step 6. Depending on

the computed bounds, the B&B node is either pruned or a node-based branching is performed in

Step 7. The procedure terminates if all B&B nodes have been pruned or a given time limit has

been reached.

1We have here 2 times references to Sections with reduction tests. I would mention it only one. But, once we refer
to Section 4, the other time to Section 4.2 - can we make it consistent?

3

Figure 1: Overview of the B&B procedure.

3 A dual ascent algorithm for the rooted APCSTP

The following notation is used: For any node set W ⊆ V , let δ−(W) = {(i, j) ∈ A : i /∈ W, j ∈ W}
and δ+(W) = {(i, j) ∈ A : i ∈ W, j /∈ W} denote its set of incoming resp. outgoing arcs. For

brevity, we write δ−(i) and δ+(i) if W is a singleton.

Without loss of generality, the dual ascent algorithm is stated assuming that the condition

|δ−(i)| = 1, |δ+(i)| = 0,∀ i ∈ Tp is satisfied by the given input instance. Otherwise, any given in-

stance can be transformed into an equivalent instance for which the condition holds in the following

way: For each i ∈ Tp with |δ−(i)| > 1 or |δ+(i)| > 0, an additional node i′ and arc (i, i′) are added to

G. The associated prizes and arc cost are set to pi′ := pi, cii′ := 0 and pi := 0. This transformation

corresponds to shifting the prize pi of node i to node i′. Figure 2 shows an instance before and

after the transformation. By definition, the transformation allows a one-to-one mapping between

feasible solutions to the original and transformed instance, in which all leaf nodes are terminals.

Note that all other solutions may be trivially improved by pruning Steiner nodes.

A cut-based ILP formulation for the rooted APCSTP can be stated in terms of connectivity

cuts. Herefore, let W := {W ⊂ V : r /∈ W,V ∩ T 6= ∅} be all node subsets inducing Steiner cuts.

Due to the applied transformation, it is sufficient to consider the following subsets of W:

Wf := {W ∈ W : |W ∩ Tf | ≥ 1}

Wp := {W ∈ W : |W ∩ Tp| = 1}

4

Clearly, the Steiner cuts induced are sufficient to ensure connectivity, as due to the transformation,

r

j

pj = 50

i

pi = 40

(a) Original instance

r

ji

pj = 0, pj′ = 50pi = 0, pi′ = 40

i′

cii′ = 0

j′

cjj′ = 0

(b) Transformed instance

Figure 2: APCSTP instance and its counterpart after transformation (costs of original arcs omit-
ted).

there exists no path PG(r, i), i ∈ T, which crosses a potential terminal. Moreover, each W ∈ Wp can

now be uniquely associated to exactly one potential terminal which greatly simplifies the following

problem formulation and subsequently the given dual ascent algorithm. Therefore these cuts also

correspond to those that can be found by the algorithm.

Model (CUT) shown below states the linear programming (LP) relaxation of the cut-based ILP

formulation.

(CUT) min
∑

(i,j)∈A

cijxij +
∑
i′∈Tp

(1− xii′)pi′ (1)

s.t. x(δ−(W))− 1 ≥ 0 ∀W ∈ Wf (βW) (2)

x(δ−(W))− xii′ ≥ 0 ∀W ∈ Wp, i
′ ∈W ∩ Tp (β′W) (3)

−xii′ ≥ −1 ∀i′ ∈ Tp (πi′) (4)

xij ≥ 0 ∀(i, j) ∈ A (5)

A variable xij ∈ [0, 1] is associated to each arc (i, j) ∈ A. In the original formulation, each

xij is a binary variable, such that xij = 1 if (i, j) ∈ AS , and xij = 0 otherwise. Note that in

the relaxation, upper bound constraints (4) are only necessary for arcs (i, i′) with i′ ∈ Tp, as at

optimality the rest is redundant due to minimization and non-negativity of the cost vector c.

The objective function (1) minimizes the sum over the costs of all arcs part of a solution, plus

the sum over the prizes of all unconnected nodes Tp. Note that (i, i′) ∈ S implies that the prize

pi′ is collected. Constraints (2) and (3) ensure that there exists a directed path from the root r to

each fixed terminal i ∈ Tf , and to each potential terminal i′ ∈ Tp with xii′ = 1.

(CUT-D) model shown below denotes the dual of (CUT), where β, β′ and π denote the dual

5

Data: Rooted APCSTP instance (G = (V,A), c, p, T, r)
Result: Lower bound LB, reduced costs c̃, dual vector π

1 LB ← 0
2 c̃ij ← cij ∀ (i, j) ∈ A
3 πi′ ← pi′ ∀ i′ ∈ Tp
4 Ta ← Tf ∪ Tp \ {r}
/* Implicitly set βW = 0, ∀W ∈ Wf, β′W = 0,∀W ∈ Wp. */

5 while Ta 6= ∅ do
6 k ← chooseActiveTerminal(Ta)
7 W ←W (k)
8 ∆← min(i,j)∈δ−(W)c̃ij
9 if k ∈ Tp then

10 ∆← min{∆, πk}
11 πk ← πk −∆

12 c̃ij ← c̃ij −∆ ∀ (i, j) ∈ δ−(W)
13 LB ← LB + ∆
14 Ta ← removeInactiveTerminals(Ta)

/* Implicitly set βW = ∆ or β′W = ∆, depending on k ∈ Tf or k ∈ Tp. */

Algorithm 1: Dual ascent algorithm for the rooted APCSTP.

vectors associated to constraints (2), (3) and (4), respectively. The structure of (CUT-D) shares

similarities with the dual of the directed cut formulation for the SAP (cf., Polzin and Daneshmand

(2001)). For each arc (i, j) ∈ A, packing constraints (7) restrict the sum of dual variables β and β′

whose associated cut contains (i, j). Constraints (8) link dual variables β′W and πi′ , i
′ ∈W,W ∈ Wp.

Thus each β′W only appears in exactly one constraint from (8).

(CUT-D) max
∑
i′∈Tp

(pi′ − πi′) +
∑

W∈Wf

βW (6)

s.t.
∑

W∈Wp:(i,j)∈δ−(W)

β′W +
∑

W∈Wf :(i,j)∈δ−(W)

βW ≤ cij ∀ (i, j) ∈ A (7)

−πi′ −
∑

W∈Wp:i′∈W
β′W ≤ −pi′ ∀ i′ ∈ Tp (8)

(β,β′,π) ∈ R|Wf |×|Wp|×|Tp|
≥0 (9)

The simple structure of formulation (CUT-D) allows the design of a dual ascent procedure.

Starting with a dual feasible solution, dual variables are iteratively adapted by a greedy scheme

such that the objective value of (CUT-D) increases monotonically, while dual feasibility is preserved

in each step. The following notation is used: The reduced cost of an arc (i, j) ∈ A is defined as

c̃ij := cij −
∑

W∈Wf :(i,j)∈δ−(W) βW −
∑

W∈Wp:(i,j)∈δ−(W) β
′
W . The saturation graph GS ⊆ G is the

subgraph induced by the set of saturated arcs {(i, j) ∈ A : c̃ij = 0}. Let PH(i, j) denote a directed

6

path from i ∈ V to j ∈ V on some graph H = (VH , AH). The set of active terminals is defined

as Ta := {k ∈ Tp : 6 ∃PGS
(r, k), and πk > 0} ∪ {k ∈ Tf : 6 ∃PGS

(r, k)}, and let an active component

rooted at an active terminal k be defined as W (k) := {i ∈ V : ∃PGS
(i, k)}, i.e., this is a set of

nodes that can be reached from i in the saturated graph. It follows that each W (k) induces a valid

Steiner cut δ−(W (k)).

Algorithm 1 shows the dual ascent procedure. In Steps 1–4, variables are initialized. The

algorithm implicitely tracks the values of variables β and β′ in the form of reduced costs, which are

initially set to the respective arc costs. The lower bound (LB) is set to zero, and πi is set to pi. In

the context of the dual ascent algorithm, π can be seen as node potential, sharing similarities with

the 2-approximation algorithm for the PCSTP by Goemans and Williamson (1995). Note that the

chosen initial values imply that all variables β and β′ are set to zero, and that the initial dual

solution is feasible. Initially, the set of active terminals Ta corresponds to Tf ∪Tp \ {r}. Steps 4–14

comprise the main loop. In each iteration, an active terminal k ∈ Ta is chosen by some priority

scheme (see Section 5.4 for details). The associated active component W (k) induces a Steiner cut

based on its node set W . Based on W , ∆ is computed, representing the maximum possible increase

for the associated dual variables βW or β′W without violating (7) and (8). If k ∈ Tf , ∆ is chosen as

the minimum reduced cost over all arcs in δ−(W), and the value of the dual variable βW is increased.

If k ∈ Tp, ∆ is chosen as before, but restricted by πk (Step 10), due to the non-negativity of π.

The value of dual variable β′W is increased, while πk is decreased by the same amount. In either

case, LB is increased by ∆. In each iteration, a subset of active terminals will become inactive, so

|Ta| decreases monotonically. The algorithm terminates if no active terminal remains.

Theorem 1. In each iteration of Algorithm 1, (β,β′,π) is a feasible solution to (CUT-D).

Proof. Proof. By definition, the initial solution is feasible. First, consider an iteration where

k ∈ Tf . In this case, exactly one βW is set to ∆. Since ∆ is computed as the minimum reduced cost

over all cut arcs, clearly (7) holds. The values of all variables included in (8) remain unchanged for

this case. Next, consider an iteration where k ∈ Tp. In this case, exactly one β′W is set to ∆. The

same argument as for k ∈ Tf holds with respect to (7). For (8), equality is preserved at each step,

since both the left and right-hand-side are increased by the same amount. Finally, at each step

πk ≥ 0,∀k ∈ Tp, since in any iteration where k ∈ Tp, due to Step 10, ∆ is bounded by the current

value of πk.

Theorem 2. An execution of Algorithm 1 requires at most O(|A| ·min{|T ||V |, |A|}) steps.

Proof. Proof. Each iteration takes at most |A| steps. An active terminal k can be chosen in |A|
steps, since the set of terminals not reachable from r on GS can be identified by a breadth-first-

search (BFS).The subset {i′ ∈ Tp : πi′ > 0} can also be identified in linear time.2 Similarly, the

2Our efficient implementation avoids using flags to store active terminals and relies on the BFS, see Section 5.4
for further details.

7

Steiner cut W (k) associated to k can be computed by a BFS on GS . In each iteration, the number

of active terminals or the number of unsaturated arcs decreases. If πk < min(i,j)∈W (k) cij for k,

then exactly one active terminal becomes inactive, but no arc becomes saturated. The number

of iterations where no arc becomes saturated is thus bounded by |T |. Otherwise, at least one arc

becomes saturated, and at least one node is added to the active component rooted at k. Thus the

total number of iterations is bounded by min{|T ||V |, |A|}.
For the case Tp = ∅, Algorithm 1 corresponds to the dual ascent algorithm by Wong (1984).

The two algorithms also share the same worst-case complexity.

4 Reduction tests

The given classification into bound-based and alternative-based reduction tests follows the one pro-

posed by Polzin and Daneshmand (2001) for the STP. Bound-based reductions fix nodes and arcs

based on available lower and upper bounds. Alternative-based reductions argue based on the exis-

tence of alternative solutions. For example, for each feasible solution that contains some arc, there

exists an equivalent or better solution without this arc.

4.1 Bound-based reduction tests

Given an instance I = (G = (V,A), c, p, Tf , r) of the rooted APCSTP, reduction tests can be

performed based on the information computed by Algorithm 1, i.e., the reduced costs c̃, dual

solution values of π and lower bound LB. In addition, an upper bound UB on the optimal

objective value of I is required, which is easily obtained from any primal heuristic. Among the

proposed reduction tests, Test 1 and 2 share similarities with tests described by (Duin 1993, Polzin

and Daneshmand 2001) for the STP.

For any pair of nodes i, j ∈ V , let d(i, j) denote the shortest path distance on G, with d(i,

i) = 0. Similarly, let d̃(i, j) denote the shortest path distance using c̃ as costs. For each i ∈ Tp, let

p̃i :=
∑

W :i∈W β′W − pi + πi denote the reduced costs for constraints (8).

Test 1 (Bound-based arc elimination (BAE)). An arc (i, j) ∈ A can be removed if LB + d̃(r,

i) + c̃ij + mint∈T\{r} d̃(j, t) > UB.

Proof. Proof. Given instance I, construct an instance I ′ = (G = (V,A), c′, p′, Tf , r) with modi-

fied costs and prizes, where c′ = c− c̃ and p′ = p− p̃. For any feasible solution S, let c′(S) denote

its cost based on p′ and c′, and c̃(S) denote its cost based on p̃ and c̃. By definition, the dual

solution computed for I by Algorithm 1 is feasible for I ′, and LB = LB′. Similarly, for any feasible

solution S = (VS , AS) to I, it holds that c′(S) + c̃(S) = c(S). Since, LB′ ≤ c′(S), the inequality

LB′ + c̃(S) ≤ c(S) holds.

8

Assume that S is optimal and (i, j) ∈ AS . Then PS(r, i) exists due to feasibility of S. Without

loss of generality, assume that all leafs of S are terminals and |VS | > 1 (there must exist at

least one optimal solution in which all leafs are terminal nodes, and single-node solutions can be

identified during a preprocessing step). Then PS(j, t) exists for some t ∈ T \ {r}. Thus c̃(S) can

be underestimated by the costs of a shortest path from r to the nearest terminal t ∈ T , such that

(i, j) lies on that path, using c̃ as arc costs. Thus LB + d̃(r, i) + c̃ij + mint∈T\{r} d̃(j, t) ≤ c(S)

holds. The inequality must also hold if c(S) is replaced by any valid upper bound UB, and hence

we may conclude that an arc (i, j) is redundant if the underestimation of the objective value of a

solution that contains (i, j) exceeds the UB.

Test 2 (Bound-based node elimination (BNE)).

A node i ∈ V \ Tf can be removed if LB + d̃(r, i) + mint∈T\{r} d̃(i, t) > UB.

The validity of Test 2 follows from similar arguments as Test 1 by assuming that node i (rather

than arc (i, j)) is part of an optimal solution.

Test 3 (Bound-based node inclusion (BNI)).

A node i′ ∈ Tp can be added to Tf if LB + πi′ > UB.

Concerning the validity of Test 3, note that from LP-duality it follows that by increasing the

right-hand side of (4) by one unit, the objective value increases by πi′ . This change implies that

xii′ is fixed to zero, and thus node i′ is not spanned. Consequently, LB+πi′ is a lower bound under

the assumption that i′ is not spanned. If this lower bound exceeds UB, any optimal solution must

span i′.

For all nodes i ∈ V , the distances d̃(r, i) and mint∈T d̃(i, t) can be computed by two executions

of Dijkstra’s algorithm. Note that in any dual solution constructed by Algorithm 1, equality holds

for constraints (8), and thus p̃ is always zero.

4.2 Alternative-based reduction tests

The presented reduction tests generalize and extend various tests initially introduced for the STP

and PCSTP (Duin and Volgenant 1989, Uchoa 2006, Ljubić et al. 2006). For ease of presentation,

we define the following operations: A node i ∈ V can be removed from G, if there exists an optimal

solution that does not contain i. The elimination of i requires that pi is added to the cost of any

solution. Two nodes i, j ∈ V can be merged into a single node, if any optimal solution contains

either both i and j or neither of them. The merged node has prize pi + pj − cij , only the cheapest

arc for each possible arising pair of parallel arcs (multiarcs) is kept, and cij must be added to the

cost of any solution. Let cfixed denote the sum of all fixed cost accumulated this way. The following

two tests are valid for both the unrooted and rooted APCSTP.

9

Test 4 (Least cost (LC)).

Let (i, j) be an arc such that d(i, j) < cij, then (i, j) can be removed.

Test 4 has originally been proposed in the context of the STP and is clearly valid for the

APCSTP. Similarly, a variant of the minimum adjacency test for the PCSTP can be easily stated

for the APCSTP.

Test 5 (Minimum adjacency (MA)). Let i, j ∈ V be two adjacent nodes with cij = cji. If cij <

min{pi, pj}, cij = min(k,j)∈δ−(j) ckj, and cji = min(k,i)∈δ−(i) cki, then i and j can be merged.

The validity of Test 5 is based on the following argument: Due to cij = cji ≤ min{pi, pj}, if

either i or j is spanned by any feasible solution S, then the other node can be connected without

increasing c(S). Furthermore, since the cost of (i, j) and (j, i) is minimal among all incoming arcs

to i and j, for any solution S spanning i and j, there exists a solution of equivalent cost that

contains either (i, j) or (j, i). Note that the condition cij = cji is somewhat restricting if arc costs

are asymmetric. A test without this condition can be formulated for the rooted APCSTP.

Test 6 (Asymmetric minimum adjacency (AMA)). Let i, j ∈ V, j 6= r be two adjacent nodes with

cij < cji. If cij < pj, cji < pi, cij = min(k,j)∈δ−(j) ckj, and cji = min(k,i)∈δ−(i) cki, then the following

operation is valid: Let ∆ := cji − cij, and set ckj := ckj + ∆, for all (k, j) ∈ δ−(j), pj := pj + ∆

and cfixed := cfixed −∆. Then the nodes i and j can be merged.

Test 6 adjusts arc costs and node prizes favorably in order to balance the costs of two anti-

parallel arcs. The performed operation leaves the cost of any feasible solution unchanged. Two

cases can be distinguished: If the node j is not spanned by a solution, the increase in pj is cancelled

out by the decrease in cfixed . Conversely, if the node j is spanned, then exactly one incoming arc

of (i, j) is chosen and the increase in the cij and the decrease in cfixed cancel. The rest of the

argument follows the same reasoning as for Test 5. Note that the test can be strengthened if i = r,

as incoming arcs for the root node are redundant. In addition, for both Test 5 and 6, if i ∈ Tf or

j ∈ Tf , the respective prize can be treated as infinite. The following two tests are strengthened

variants of Test 6, that are based on strong graph connectivity:

Test 7 (Minimum successor (MS)).

Let (i, j) be an arc such that pj > cij = min(k,j)∈δ−(j) ckj and i is a cut node with

V = {i} ∪W ∪W, r ∈W, j ∈W,

then i and j can be merged.

Test 8 (Single successor (SS)).

Let (i, j) be a cut arc such that pj > cij , V = W ∪W, δ−(W) = {(i, j)}, r ∈ W, j ∈ W , then i and

j can be merged.

10

For the validity of Test 7, note that from the definition it follows that if node j is part of a

solution, so is i. Since j has no cheaper incoming arc than (i, j), there exists an optimal solution

that contains (i, j) if i ∈ S. The validity of Test 8 follows from the same arguments. Finally, three

simple additional tests are given without proof, as their validity is obvious from their definition.

For these tests counterparts are known for both the PCSTP and STP.

Test 9 (Non-reachability (NR)).

Let i ∈ V \ Tf be a node such that there exists no path from root r to i, then i can be removed.

Test 10 (Degree one (D1)).

Let i ∈ V \ Tf be a node with exactly one adjacent node j and (j, i) ∈ A. If cji ≥ pi, then i can be

removed. If cji < pi, then i and j can be merged.

Test 11 (Degree two (D2)).

Let i ∈ V \ Tf be a node with exactly two adjacent nodes j and k such that (j, i) ∈ A, (i, k) ∈ A,

and pi ≤ min{cji, cki}. Then (j, i) and (i, k) can be replaced by an arc (j, k) with cjk = cji+ cik−pi
and cfixed := cfixed + pi.

Although most of the given alternative-based reduction tests follow rather simple rules, their

effectiveness is usually considerable when applied in combination with bound-based reductions at

each node of a B&B tree. For example, the availability of tighter bounds may cause G to become

sparser, such that disconnected subgraphs, cut arcs or cut nodes appear. It is also noteworthy that

merging nodes is usually beneficial to Test 3, as nodes with higher prize are more likely to be fixed.

Note that most of the presented tests can be trivially extended to equality, such that equivalent

solutions can be eliminated. Finally, note that Uchoa (2006) already observed that the minimum

adjacency test for the PCSTP can be strengthened under various conditions, but did not explore

the idea computationally.

5 Algorithmic framework

Combining the presented techniques into an empirically successful framework requires some non-

trivial techniques which are detailed within the following sections. Important aspects include the

design of primal heuristics, implementation details of the proposed dual ascent algorithm, problem

transformation, and details of the B&B procedure.

5.1 Primal heuristic

Previous empirical results on the STP (see, e.g., Polzin and Daneshmand 2001) suggest that the

saturation graph GS obtained by the dual ascent usually contains good primal solutions. This

property is due to the complementary slackness condition of linear programming, which states that

in an optimal LP-solution, a decision variable or its associated reduced costs is set to zero. The

11

quality of solutions computed by constructive heuristics can thus be boosted by applying them on

GS instead of G. Among the most successful constructive heuristics for the STP is the shortest

path heuristic (SPH) (see Takahashi and Matsuyama 1980, Poggi de Aragão and Werneck 2002).

Its application to the SAP is straightforward, and it can also be applied to the APCSTP when

Tp 6= ∅ by simply connecting all nodes in T . By using this approach the computed solution will

most likely contain nodes from Tp that can be trivially pruned. Therefore, in our implementation,

SPH is followed by an application of the strong pruning procedure proposed by Johnson et al.

(2000) for the PCSTP, which solves the PCSTP on a tree in linear time, and whose generalization

to the APCSTP is straightforward. The whole procedure is referred to as SPHprune. We have also

attempted to devise new variants of the SPH where node costs are considered directly, but did not

manage to achieve improvements with respect to the aforementioned approach.

However, we managed to achieve substantial improvements by using the following simple idea:

Based on the fact that GS does not necessarily contain an optimal solution, it can be beneficial to

perturb arc costs in order to explore different saturation graphs GS . In our approach we use the

best incumbent solution S = (SV , SA) as seed for perturbation. For each arc (i, j) ∈ A, an adjusted

cost c′ij is computed. If (i, j) ∈ SA, c′ij := cij · (1− ε), otherwise c′ij := cij · (1 + ε).

The complete procedure is shown in Algorithm 2. First, the adjusted cost vector c′ is computed.

Next the dual ascent algorithm (DA) is applied to the resulting instance. Finally, SPH is executed

on the resulting GS , followed by the strong pruning procedure.

Data: Instance I = (G = (V,A), c, p, r, Tf), perturbation factor ε,
seed solution S = (VS , AS)
Result: Heuristic solution S′

1 c′ij ← cij · (1− ε) ∀(i, j) ∈ AS
2 c′ij ← cij · (1 + ε) ∀(i, j) /∈ AS
3 (LB, c̃,π)← DA(G, c′, p, T, r)
4 GS ← G[c̃ij = 0, ∀(i, j) ∈ A]
5 S′ ← SPHprune(GS , c, p, Tf , r)
6 return S′

Algorithm 2: Primal heuristic.

Another useful strategy for finding near-optimal primal solutions is to apply an exact algorithm

to various subgraphs of G, e.g., the graph resulting from the union of multiple solutions or the

saturation graph GS . Both strategies are incorporated into the framework, and are executed during

the initialization phase before processing the root node of the B&B tree. As an exact algorithm we

apply the same B&B procedure that is used later-on for exact solution on the whole graph G.

12

5.2 Cost shifting

A strategy similar to the one applied in Test 6 can be used to adjust the cost structure of the

given problem instance favorably. The procedure forms an essential preprocessing step to various

algorithmic components, since it effectively decreases the size of Tp by (partially) “shifting” the

prize of a node into its incoming arcs. A similar idea has been used by Fischetti et al. (2014) to

strengthen and reduce the size of an ILP formuluation for the PCSTP. The idea of applying cost

shifting to enable further reductions has also been explored by Duin (1993) for the STP.

Given an instance of the rooted APCSTP, the following transformation is valid and may decrease

the size of Tp: For each node i ∈ Tp \ {r}, compute ∆ := min{pi,min(j,i)∈δ−(i) cji}, and set

cji := cji −∆ ∀(j, i) ∈ δ−(i), pi := pi − ∆, cfixed := cfixed + ∆. This operation is equivalent to

performing the first few iterations of Algorithm 1 in which each active terminal is selected for the

first time. Let T ′p := {i ∈ Tp : pi ≤ cji ∈ δ−(i)} be the subset of nodes with positive prize whose

prize becomes zero after the transformation, and which are thus removed from Tp. Note that there

always exists an optimal solution S in which no node from T ′p is a leaf of S, as such nodes can be

removed from S without increasing c(S). Thus even before the transformation T ′p are essentially

Steiner nodes.

The transformation can be generalized to the unrooted APCSTP by only considering nodes

Tp \ R, where R ⊆ V is the set of potential root nodes, i.e., all i ∈ V such that there exists

an optimal solution rooted at i ∈ R. For example, for instances with symmetric arc costs, R =

{i ∈ Tp : pi > cji ∈ δ−(i)}. For this, note that the cost of all solutions spanning the same set of

nodes is equal in such symmetric instances. Without loss of generality, assume that there exists an

optimal solution consisting of more than one node, as the best single-node solution can be found

during a simple preprocessing step in linear time. It follows that there exists an optimal solution

S = (VS , AS) rooted at some i ∈ R. Otherwise, there would exist a solution S′ = (VS , A
′
S) rooted

at j ∈ VS , j 6= i, such that c(S) = c(S′) for which i can be removed without increasing c(S′).

The presented cost shifting procedure significantly increases the solution quality for the primal

heuristic given in Section 5.1, as node prizes can now be partially considered within path lengths.

Similarly, the amount of successful arc eliminations performed by Test 4 (LC) may be increased. For

the dual ascent algorithm, the shifting can be interpreted as a warm start, as the set of iterations

in which each active terminal is selected for the first time is independent from each other.

5.3 Problem transformations

The APCSTP covers several known network design problems. For example, for problems defined

on an undirected graph like the STP and PCSTP, it is known that they can be stated equivalently

on a directed graph with symmetric costs (see, e.g., Koch and Martin (1998), Ljubić et al. (2006)).

Herefore a given undirected graph G = (V,E) with edge costs cij , ∀{i, j} ∈ E, is replaced by a

directed graph GA = (V,A) constructed by replacing each edge {i, j} ∈ E by two anti-parallel arcs

13

(i, j) ∈ A and (j, i) ∈ A, such that cij = cji. For the STP, the resulting problem is also known

as the SAP. For the PCSTP, we will refer to the resulting problem simply as directed PCSTP

(DPCSTP). If Tp = ∅ and Tf 6= ∅, the rooted APCSTP corresponds to the SAP. Conversely, if

Tp 6= ∅ and Tf = ∅, the APCSTP corresponds to the DPCSTP. The MWCS can be transformed to

the PCSTP, see Dittrich et al. (2008), and thus also to the APCSTP. Finally, also the NWSTP can

be transformed into an instance of the SAP, and consequently to the APCSTP. The NWSTP is a

generalization of the STP, where nodes are associated a non-negative cost, which in contrast to the

PCSTP, is paid if the corresponding node is part of the solution. The NWSTP can be transformed

to the SAP by replacing the input graph by its bidirected equivalent and adding the cost of a

node to its incoming arcs. In the following, when referring to instances of the PCSTP, MWCS and

NWSTP, we will always refer to their respective representation as rooted/unrooted APCSTP.

Finally, note that Definition 1 requires that arc costs and node prizes of an APCSTP instances

are non-negative. At least for the rooted APCSTP, negative costs/prizes can still be addressed by

a simple problem transformation which exploits the cost shifting strategy from Section 5.2: For

each node i ∈ V \ {r} with ∆ < 0, where ∆ := min{min(j,i)∈δ−(i) cji, pi}, set cji := cji −∆ for all

(j, i) ∈ δ−(i), pi := pi−∆, cfixed := cfixed +∆. Clearly, after applying this procedure, the cost/prize

of every arc and node is non-negative. As described in Section 5.2, these operations do not change

the objective value of any feasible solution, and thus the transformed instance remains equivalent

to the original instance.

5.4 Dual ascent implementation

Our implementation of the dual ascent algorithm for the APCSTP follows the one proposed by Pajor

et al. (2014) for the SAP. A notable aspect of this implementation is that it avoids the computa-

tionally expensive task of storing and updating the set of active components explicitely. Instead,

active components are tracked implicitly, i.e., in each iteration where k ∈ Ta is selected, W (k)

is computed from GS via breadth-first search. In preliminary experiments we have found this

strategy to be essential for tackling large-scale instances containing many terminal nodes. For this

class of instances, explicit tracking may become computationally burdensome for two reasons: (i)

In each iteration, the saturation of an arc usually affects a large number of active components,

which all need to be updated. (ii) The high memory requirements in the order of Θ(|T ||V |) may

be prohibitive. Both (i) and (ii) are avoided by implicit tracking, as in each iteration exactly one

component is updated, and no additional information besides GS needs to be stored. However, this

strategy necessitates a more involved scheme for the selection of active terminals. For this, note

that the lower bound computed by the dual ascent algorithm is highly dependent on the order in

which active terminals k ∈ Ta are processed, and successful schemes typically aim at minimizing

the size of the induced cut δ−(W (k)). If the sets of active components are not known, a heuristic

selection scheme has to be applied. However, results reported by Pajor et al. (2014) suggest that

14

this does not significantly affect the quality of lower bounds.

In our implementation, the same heuristic scheme is applied, although augmented with another

idea originally proposed by Polzin and Daneshmand (2001). The score of an active terminal k is

defined by the following non-decreasing score function σ(k) :=
∑

i∈W δ−(i)−(|W |−1), i.e., the sum

of all incoming arcs for each node in the component minus the number of arcs contained within an

inverse arborescence spanning all nodes in W , which must exist since W is connected. This value is

a non-decreasing estimate for δ−(W (k)). In each iteration, the active terminal k with the smallest

score is selected using a priority queue.

We augment this approach with the following idea proposed by Polzin and Daneshmand (2001),

who made the following observation: Given an optimal solution S, LB can only reach c(S) if in

each iteration the chosen cut contains exactly one incoming arc from S. Even if S is not optimal,

selecting active terminals based on this criteria may in some cases improve the quality of lower

bounds, and in turn also the quality of a heuristic solution computed on the support graph. Given

a feasible solution S = (VS , AS), we incorporate this criteria by using an extended score function

σ′(k) := σ(k) + min{0, |AS ∩ δ−(W (k))| − 1}|V |. Thus the selection of k follows a lexicographical

ordering, where the first part represents the original score function, while the second part counts

the number of surplus solution arcs within the cut.

Pajor et al. (2014) observed that as soon as only one terminal remains active, the remaining

iterations of the dual ascent algorithm can be equivalently solved as shortest path problem on a

graph with adjusted costs. This procedure can be stated as follows: Let k be the last remaining

active terminal, LB′ the lower bound and c̃′ the reduced costs up to this point. Apply Dijkstra’s

algorithm using c̃′ as cost for computing the reverse path from k to r. Set an upper bound u

on the maximum length of the computed shortest path, i.e., d(i, k) := min{d(i, k), u}. If k ∈ Tf ,

u := d(r, k), otherwise, if k ∈ Tp, u := min{d(r, k), πk}. Clearly, the final lower bound is then

LB = LB′+u. The final reduced costs c̃ can be updated in a linear pass by the following formula:

c̃ij = c̃′ij − (d(j, k)− d(i, k)) ∀(i, j) ∈ A

For further implementation details, the reader is referred to Pajor et al. (2014).

5.5 Branch & bound

The following paragraphs list implementation details for the full B&B procedure, which also includes

the initial preprocessing and heuristic phase.

Initial preprocessing & heuristic. We begin by applying the alternative-based tests de-

scribed in Section 4.2 exhaustively, since they are computationally cheap to perform. Cost shifting

(see Section 5.2) is also applied. Afterwards, ten iterations of the heuristic procedure detailed in

Section 5.1 are performed, using the ten highest-prize nodes as roots and the best incumbent as

15

seed solution. The initial solution is computed on the unperturbed saturation graph. Afterwards,

a restricted B&B search is performed on different subgraphs of G, using a small time limit. The

subgraphs include the saturation graphs computed in each iteration, as well as the graph generated

by forming the union of all constructed solutions.

Root node processing. Since Algorithm 1 can only be used to compute valid lower bounds

for unrooted APCSTP instances if Tf 6= ∅, the following procedure is applied to deal with the

case Tf = ∅. For a given unrooted APCSTP instance I with Tf = ∅, let LBr denote the lower

bound computed by Algorithm 1 for each potential root r ∈ R ⊆ V . Then minr∈R LBr is a valid

lower bound for I. The main disadvantage of this approach is that the set R may be very large.

However, for instances with symmetric arc costs the computational effort can be decreased since the

cost of all optimal solutions spanning the same set of nodes is equal. Therefore, after each iteration

with r ∈ R chosen as root, r can be removed temporarily during all remaining iterations (cfixed is

increased appropriately). Furthermore, if a valid upper bound UB is available, the procedure can

be terminated as soon as cfixed ≥ UB. Consequently, the sequence in which roots are selected may

affect the total number of processed roots. In our implementation, we select roots based on their

prize in descending order, as the increase in cfixed is maximized. The presented scheme is akin to

a restricted B&B search, in which at most one node in R is fixed to one. Similar approaches for

exploiting symmetry in PCSTP instances have also been used in ILP formulations (see, e.g., Ljubić

et al. (2006)). Finally, since the evaluation of each root can be performed independent from each

other, the procedure could be parallelized. However, since preliminary computational experiments

have shown that the procedure’s running time is usually already quite short on the tested benchmark

instances, we refrained from parallelization in our implementation.

Computing lower bounds. Depending on the branching strategy, B&B nodes might get

evaluated such that LB > UB. Since LB is valid at each iteration of Algorithm 1 and increases

monotonically, it follows that the algorithm can be terminated as soon as LB ≥ UB, since the B&B

node will be pruned anyway. Notice, that the final iterations of Algorithm 1 are often much more

computationally demanding as the size of active components increases. Thus, the computation time

saved can be significant. In general, preliminary experiments indicated that LB is usually already

very close to the optimum. However, in some cases, having slightly stronger bounds available may

drastically decrease the number of explored B&B nodes. Due to the heuristic nature of Algorithm 1,

perturbing the order in which active terminals are processed may yield different but nonetheless

valid lower bounds. Therefore, in each B&B node, if the node still remains open after an initial

run of Algorithm 1, the algorithm is executed for the ten different guiding solutions computed

during the initialization phase. Although computationally more expensive, this technique makes

the B&B procedure much more robust. This technique almost always improves lower bounds, and

generates different reduced costs which may cause different parts of the instance graph to be fixed

by bound-based reductions.

16

Reduction tests. Within each B&B node, all alternative-based tests are applied exhaustively

in the following order: D1, D2, MA/AMA, MS, SS, LC, NR. Bound-based reductions (BNA, BNE,

BNI) are applied after each execution of Algorithm 1. Since one optimal solution needs to be found

during the B&B procedure, variable fixing due to bound-based tests is also performed if equality

holds for the tested node or arc. This may discard an optimal solution only if UB is already

optimal. During the B&B, Test 4 (LC) is only applied for paths of length two. Cost shifting is also

re-applied at each B&B node. Concerning Tests 7 and 8, for simplicity reasons, cut nodes and arcs

are identified in linear time by computing the set of articulation points of graph GU = (V,E), i.e.,

the undirected counterpart of G, in which directed arcs between each pair of nodes are replaced

by an undirected edge. The connectivity information in the form of articulation points can also be

used to fix to one all cut vertices that separate another fixed terminal from the root. Note that

since this approach essentially ignores the direction of arcs, only a subset of all possible reductions

for tests MS and SS will be identified. However, since the set of addressed benchmark instances

is undirected, this heuristic variant has proven to be sufficient. The implementation could be

further improved by using a near-linear time algorithm for the detection of cut nodes in a directed

graph (see, e.g., Lengauer and Tarjan 1979).

Branching & node selection. Node-based branching is performed on the set of nodes V \Tf ,

such that in one problem a given node is added to Tf , while it is removed in the other. Our

branching and node selection strategies aim at fixing nodes as fast as possible. This strategy

encourages further reductions. It also exploits the fact that Algorithm 1 requires less time during

its first iterations. So even if many B&B nodes get explored that are unlikely to contain an optimal

solution, Algorithm 1 usually requires little time to exceed UB. For this purpose, subproblems

are selected based on the maximum lower bound, since these nodes are most likely to be pruned.

Similarly, the branching priority is defined to accelerate up this behavior. Nodes are scored based

on the number of times branching on them has lead to the subproblem getting pruned. In case

of ties, priority is computed based on the largest degree in GS and subsequently based on largest

degree in the current incumbent.

6 Computational results

The presented framework has been implemented in C++ and compiled with GCC 4.9.2. The

implementation is single-threaded and uses data structures from the Boost library. All test runs

have been performed on a machine with an Intel Xeon CPU (2.5 GHz, 20 cores) and 64GB of

memory. Each test run uses one core, with a memory limit of 16GB and a time limit of one hour.

Unless noted otherwise, all tables list running times in seconds and relative optimality gaps between

the computed lower and upper bounds in percent ((UB − LB)/UB). Test runs which exceeded

their given time or memory limit are denoted by TL, resp. ML. The tested benchmark instances

include all instances for the PCSTP, MWCS and NWSTP that have been collected during the 11th

17

DIMACS challenge. Although our framework is capable of handling instances of the STP, due

to space reasons no results are reported, since for this problem more specialized frameworks have

already been proposed (Fischetti et al. 2014, Pajor et al. 2014, Polzin and Daneshmand 2001),

which are unlikely to be outperformed by our methods. Table 6 gives a short overview on instance

metrics per data set. Notice the size of nwstp instances - to the best of our knowledge, this is a first

computational study on such large benchmark instances. After transformation to the APCSTP,

the larger of the two instances has 205717 nodes, 4932002 arcs, and 54857 terminals.

Table 1: Benchmark instances.

|V | |A| |T |
problem data set #inst. min avg max min avg max min avg max

pcstp crr 80 500 750 1000 1250 12469 50000 5 140 500
jmp 34 100 247 400 568 1701 3152 10 46 120
random 68 200 4000 14000 3150 64056 224738 200 4000 13999
handsd 10 39600 39600 39600 157408 157408 157408 2073 19135 38348
handsi 10 42500 42500 42500 168950 168950 168950 2293 19905 40702
handbd 14 169800 169800 169800 677102 677102 677102 8854 80065 162862
handbi 14 158400 158400 158400 631616 631616 631616 8572 74675 153756
pucnu 18 64 1311 4096 384 19158 57024 8 134 473
i640 25 640 640 640 1920 100700 408960 8 61 160
h 14 64 1161 4096 384 12837 49152 32 581 2048
h2 14 64 1161 4096 384 12837 49152 17 481 2048

rpcstp cologne 29 741 1294 1810 12586 23435 33588 3 9 15
mwcs jmpalmk 72 500 938 1500 5194 17390 41054 499 936 1499

actmod 8 2034 3933 5226 6670 82311 186788 1351 3557 5225
nwstp hiv 2 386 103051 205717 2954 2467478 49320002 35 27446 54857

6.1 Primal heuristics

Table 2 compares the performance of several variants of the implemented primal heuristic. For

each variant and data set, the running time and the average gap between the computed and the

(previously) best known upper bound is given. Note that negative gap values indicate that, on

average, a better upper bound has been computed. All variants apply initial preprocessing, whose

running time is included in the reported time. SPH corresponds to the execution of SPHprune,

see Section 5.1. SPHDA denotes the same procedure, but applied to GS instead of G, where GS

is computed by executing Algorithm 1 for the same root node as SPHprune. SPHDAG denotes

the application of Algorithm 2. The parameter ε is set to a small value, i.e., ε := 0.05 for instances

with integer prizes and costs, and ε := 0.005 otherwise. Finally, SPHDABB denotes the same

procedure as the previous variant, followed by a B&B search with a short time limit of ten seconds.

The results indicate that on average already the simple SPH procedure constructs adequate

solutions, however it fails to do so on data sets i640, h, h2 and pucnu. Note that the relatively

18

Table 2: Performance comparison for primal heuristics. Columns Pgap and time list average
running times in seconds and relative gaps between the computed and the best known upper bound
in percent. SPH - construction heuristic applied to G. SPHDA - construction heuristic applied to
saturation graph GS. SPHDAG - construction heuristic applied to perturbed GS. SPHDAGBB
adds a restricted B&B search to SPHDAG.

SPH SPHDA SPHDAG SPHDAGBB

data set Pgap time Pgap time Pgap time Pgap time

crr 1.607 0.2 0.681 0.2 0.139 0.2 0.022 0.3
jmp 0.567 0.1 0.097 0.1 0.087 0.1 0.030 0.1
random 0.049 0.7 0.013 1.6 0.011 1.8 0.001 2.4
cologne 0.308 0.2 0.547 0.2 0.547 0.2 0.000 0.2
handbd 0.012 2.0 -0.027 54.3 -0.027 55.9 -0.038 56.7
handbi 0.139 1.9 0.001 30.0 0.001 28.3 -0.005 34.3
handsd 0.067 0.4 0.007 3.8 0.018 2.9 0.001 3.4
handsi 0.025 0.4 0.005 2.1 0.006 2.7 0.001 3.5
i640 16.031 0.7 2.136 2.4 1.041 3.3 0.511 3.5
h 6.705 0.1 5.394 0.8 3.477 1.4 1.688 7.4
h2 6.766 0.1 5.896 0.8 4.033 1.4 1.625 7.5
pucnu 6.716 0.1 6.587 0.2 4.820 0.2 2.306 5.2
actmod 0.153 0.2 0.013 1.5 0.011 1.6 0.001 1.9
hiv 0.677 1182.9 0.430 1187.1 0.430 1187.0 0.090 1195.0

large running times on hiv occur due to the initial preprocessing phase. The actual time spent for

the heuristic is always below 25 seconds. SPHDA reliably improves the solution quality on almost

all data sets, except cologne. However, SPHDA necessitates the execution of Algorithm 1, which

notably increases running times on large-scale data sets handbi and handbd. We note that, even

though the gap reduction seems to be small, this additional computational effort turned out to

pay off as more reductions are possible and less B&B nodes need to be considered subsequently.

Variant SPHDAG further increases solution quality on instance sets where SPHDA fails to obtain

average gaps below 1%. Finally, SPHDAGBB reliably improves average solution quality on all

data sets, while hardly increasing the average running time in comparison to SPHDAG. Therefore,

in all subsequent experiments, SPHDAGBB is applied to compute a starting solution before the

performing the B&B.

6.2 Preprocessing & Root node evaluation

Table 3 details average performance for the phases executed before the framework finally begins to

branch. These include the initial preprocessing, start heuristic, and root node evaluation. For each

phase, the average running time is given in seconds. For phase Preprocessing, columns %|V | and

%|A| list the percentage of the remaining nodes and arcs after reduction tests have been applied

exhaustively. Note that for unrooted instances, this includes only a subset of the alternative-based

reduction tests detailed in Section 4 (LC, MA). The results indicate that these tests are most

19

Table 3: Average performance for root node processing. Columns Pgap and Dgap denote the
relative primal and dual optimality gap to the best known upper bound in percent. Column gap
denotes the relative optimality gap between the computed lower and upper bound. Columns %|V |
and %|A| denote the percentage of remaining nodes and arcs after preprocessing. Columns %eval.
and %open denote the percentage of all root nodes that have been evaluated and that remain open.
The running time of each phase is given in seconds.

Preprocessing Heuristic Root Evaluation Total

data set %|V | %|A| time Pgap time %eval. %open %|V | %|A| Dgap time gap time

crr 95.0 82.7 0.1 0.02 0.1 28.5 0.2 3.8 0.5 0.08 0.0 0.10 0.3
jmp 99.0 96.3 0.0 0.03 0.0 60.0 0.2 0.4 0.1 0.00 0.0 0.03 0.2
random 64.0 49.1 0.5 0.00 1.3 28.0 0.1 2.1 0.5 0.00 0.1 0.00 2.5
handsd 98.4 98.7 0.0 0.00 3.1 58.2 0.1 0.1 0.1 0.00 0.5 0.01 4.0
handsi 98.1 98.4 0.0 0.00 3.1 58.2 0.1 0.2 0.1 0.01 0.4 0.01 4.0
handbd 98.2 98.5 0.4 -0.04 54.3 56.1 0.0 6.3 6.2 0.08 18.8 0.04 76.6
handbi 97.8 98.1 0.4 -0.01 31.9 53.3 0.0 8.7 8.6 0.15 8.9 0.14 47.4
cologne 92.8 94.9 0.0 0.00 0.0 100.0 0.0 0.0 0.0 0.00 0.0 0.00 0.2
i640 100.0 100.0 0.6 0.51 2.8 29.4 2.4 46.6 43.1 0.75 1.2 1.25 4.9
h 100.0 100.0 0.0 1.69 1.6 68.8 8.7 91.4 89.9 3.43 87.5 5.02 94.9
h2 100.0 100.0 0.0 1.63 1.5 67.3 8.2 91.0 88.3 3.66 69.8 5.18 77.3
pucnu 99.4 99.9 0.0 2.33 0.2 71.1 12.8 69.2 68.1 4.25 1.3 6.34 6.4
actmod 99.3 98.6 0.1 0.00 1.5 77.9 0.4 0.2 0.0 0.00 0.2 0.00 1.9
hiv 81.7 61.1 1115.3 0.09 7.1 100.0 50.0 37.4 16.3 0.01 93.7 0.10 1224.9

effective on the randomly generated data sets crr and random, as well as on hiv.

For phase Heuristic, column Pgap lists the relative primal optimality gap, i.e., the relative

difference between the computed and the best known upper bound. For phase Root Evaluation,

note that all tested data sets except cologne and hiv contain unrooted instances (for hiv a fixed

terminal is chosen as root). Columns %eval. and %open list the percentage of all evaluated roots

r ∈ R ⊆ V , and the percentage of those that remain open after evaluation, i.e., LBr < UB.

Columns %|V | and %|A| list average percentages (over all open nodes) of remaining nodes and

arcs after additional preprocessing. As in this phase formerly unrooted APCSTP instances are now

decomposed into a set of rooted instances, all reduction tests presented in Section 4 can be applied,

including the bound-based reduction tests. Column Dgap lists the relative dual optimality gap,

i.e., the relative difference between the computed lower and the best known upper bound.

Our results indicate that on average only about half of all root nodes need to be evaluated,

as all others can be discarded using the techniques described in Section 4. Most importantly, for

almost all tested instances, only one root node remains open. The only exception are data sets h,

h2 and pucnu, in which approximately 10% of all potential roots remain open, and the applied

reduction tests are much less effective. Similarly, Dgap is far worse than Pgap. This behavior is

a consequence of the fact that data sets h, h2 and pucnu have been specifically designed with

20

the aim to be challenging for existing exact methods and reduction tests, as their structure is

highly symmetrical. As is evident from the presented results, the techniques applied within the

implemented framework are not very well suited for this type of instances, but are nonetheless

highly effective for all others. Finally, a noteworthy aspect is the performance of reduction tests

during this phase. The running time of the initial preprocessing phase is usually negligible, except

on large-scale instances from hiv. In all data sets where lower and upper bound are already very

close to the optimum, almost 99% of all arcs can already be fixed. Note that as some of the

considered benchmark instances contain over 300.000 arcs, fixing this amount does not necessarily

guarantee that the resulting instance is trivial to solve.

6.3 Branch-and-bound

Table 4 summarizes the performance of applying the full B&B procedure. Only data sets are

listed in which all instances have been solved to optimality within the given time limit. Minimum,

average and maximum numbers of enumerated B&B nodes and running time are reported. The last

column lists the average speedup factors with respect to a state-of-the-art ILP-based exact solver

for the PCSTP, MWCS and STP by Fischetti et al. (2014), in the following denoted by Dimacs.

The instance set i640 has been split into multiple parts, such that i640-0 and i640-1 contain

instances i640-001 to i640-045 and i640-101 to i640-145. The most impressive speedup is achieved

for cologne, which can be solved without any branching. Also notable are our results for MWCS

instances actmod and jmpalmk. Our performance outperforms the framework proposed in El-

Kebir and Klau (2014), which applies a sophisticated divide-and-conquer strategy and reduction

tests for the MWCS. Furthermore, for many instances our framework manages to find better or

equally good solutions in less time than the recent heuristic procedure by Fu and Hao (2014). The

latter achieved the best performance in the PCSTP heuristic categories during the recent DIMACS

challenge. Detailed results on all benchmark instances are reported in the Appendix.

Tables 5–8 report detailed results on data sets in which not all instances have been solved to

optimality within the given time limit. Results on data sets h2 and pucnu can be found in the

Appendix. Columns Root describe the relative optimality gap in percent between upper and lower

bound, as well as the running time in seconds spent before branching. Columns Total describe

information on the complete B&B procedure. Column #BBn lists the number of B&B nodes.

Column ub lists the best computed upper bound. Column gap and time list optimality gap and

running time. The final two columns show gap and running time for Dimacs. For each instance

the results of the best approach are marked in bold.

Table 5 lists results on bioinformatics instances for the NWSTP. No results are available for

Dimacs, as it only solves instances of the PCSTP, MWCS and STP. Instead, the results of Gamrath

et al. (2015) are reported for both instances, denoted by SCIPJack. Their algorithm solves hiv-2

almost instantly, as does the implemented B&B framework. For hiv-1, they report a primal bound

21

Table 4: Data sets solved to optimality within one hour by the presented framework and a state-of-
the-art exact algorithm for the PCSTP by Fischetti et al. (2014), denoted by DIMACS. Column
#inst lists the number of instances per data set. Columns #BBn and time list the minimum,
average and maximum number of B&B nodes and running time in seconds, respectively. The last
column lists the average speedup achieved by the presented framework with respect to DIMACS.
(*) Data sets that contained instances previously unsolved within an hour.

#BBn time avg. speedup w.r.t.
data set #inst min avg max min avg max Dimacs

crr 80 0 29 1751 0.1 0.6 13.4 3.16
jmp 34 0 0 1 0.1 0.2 0.5 7.70
random 68 0 75 3065 0.1 4.5 99.2 7.76
handsd 10 0 2 9 1.3 4.0 13.2 312.11*
handsi 10 0 81 811 1.3 5.5 18.9 194.31*
i640-0 25 0 1 13 0.1 2.7 13.5 10.48
i640-1 25 0 47 213 0.1 4.9 19.8 21.86
cologne 29 0 0 0 0.1 0.2 0.5 249.96
actmod 8 0 1 5 0.3 2.0 5.5 2.49
jmpalmk 72 0 0 0 0.1 0.1 0.3 1.94

Table 5: Results for NWSTP HIV instances.

Root Total SCIPJack
instance |V | |A| |T | gap time #BBn ub gap time gap time

hiv-1 205717 4932002 54857 0.05 2851.4 3 657201.449931 0.05 TL 0.0049 72 (hrs.)
hiv-2 386 2954 35 0.00 0.01 0 568.418461 0.00 0.01 0.0000 0.10 (sec.)

of 656970.94 with an optimality gap of 0.0049%, after 72 hrs. of runtime on a machine with 386

GB of memory. No better upper bound could be achieved by the implemented B&B, even after

increasing the memory and time limit. However, note that our results are reported for a time limit

of one hour and a memory limit of 16GB, while Gamrath et al. (2015) do not report the time until

their best upper bound has been found, and state that the instance hiv-1 exceeded the available

memory on a machine with 48GB.

Table 6 lists results on instances for image recognition of hand-written text. The instances are

planar grid graphs, on which cursive letters are represented as the prize of nodes. Due to their

size and structure, most of these instances remain unsolved by state-of-the-art ILP solvers based

on branch-and-cut. On the contrary, our B&B solves all but three of these instances to proven

optimality and consistently outperforms Dimacs on this instance set.

Table 7 lists results on i640 instances. They have been proposed for the STP, and then converted

to the PCSTP. Originally, they have been created to resist common preprocessing tests. Only the

latter half of these instances are given, since they contain instances which could not be solved to

22

optimality by either methods. Results suggest that the bound-based reductions are crucial to solve

instances with many arcs including some instances that could not be solved by the ILP solver (321

to 325, and 241).

Table 8 lists results on hypercube instances h on which reductions are usually not effective.

They also contain a high level of symmetry and the obtained dual gaps are rather bad. Successful

methods based on ILP (e.g., Fischetti et al. 2014) have used node-based models for instances with

uniform costs (denoted by hc*u). These methods are able to process much more branch-and-bound

nodes in the same time for dense instances and benefit from automatically detected general-purpose

cuts. Results show that the proposed B&B is not very well suited for solving this class of instances

as only the four smallest instances are solved. Its performance is thus complementary to the

framework by Fischetti et al. (2014), achieving significant speedups in case reductions are possible,

but proving much less scalable in all other cases.

7 Conclusions

We have introduced the APCSTP as a generalization of several well-known network design prob-

lems, and proposed a B&B framework based on a new dual ascent algorithm for the rooted APCSTP.

The dual information obtained from the algorithm is exploited within bound-based reduction tests

and to guide the construction of primal solutions. The framework is further complemented by a

set of simple reduction tests. Unrooted instances are decomposed into a set of rooted instances by

an enumerative scheme, which exploits potential symmetries within the instance structure.

The framework’s performance has been evaluated on an extensive set of benchmark instances

from literature, including known test instances for the PCSTP, MWCS and NWSTP, which are

handled by transformation to the APCSTP. Results indicate that for almost all instances, the

computed lower and upper bounds are very tight, allowing bound-based reduction tests to fix

large parts of the input graph, often already at the root node. In the best case, speedups of two

orders of magnitude are achieved in comparison with a state-of-the-art exact algorithm based on a

commercial MIP solver (see Fischetti et al. (2014)). In many cases, the framework even outperforms

recent heuristic methods for the PCSTP, where it computes optimal solutions within seconds which

are not found by the heuristics even after one hour of computation. In addition, optimal solutions

have been computed for some of the (previously unsolved) largest instances considered in the recent

DIMACS Challenge on Steiner Trees (with more than 150 000 nodes and 650 000 edges). For the

largest instance from the DIMACS Challenge with ≈ 200 000 nodes and almost 2.5 million of

edges, we provide a solution of 0.05% optimality gap obtained within one hour of computing time

on a single core. For the family of PUC instances (that have been artificially generated so as to

be “resistant” to bound-based reductions), the state-of-the-art solver remains the branch-and-cut

code recently proposed in Fischetti et al. (2014).

We point out that some of the presented techniques may also be useful by themselves to improve

23

the performance of ILP solvers. For example, the cuts computed by the dual ascent algorithm can

be used to initialize a cutting plane procedure, or the bound-based reductions may be used to

remove parts of the graph which otherwise would slow down the solver.

Finally, since the network design problems addressed in this work are used for modeling various

real-world applications (e.g., in bioinformatics), the presented B&B framework will also be made

publicly available.

Acknowledgement

The authors thank Matteo Fischetti for useful discussions on this and related topics. M. Luipersbeck

acknowledges the support of the University of Vienna through the uni:docs fellowship programme.

M. Leitner has been supported by the Vienna Science and Technology Fund (WWTF) through

project ICT15-014. M. Sinnl is supported by the Austrian Research Fund (FWF, Project P 26755-

N19).

References

11th DIMACS challenge. 11th DIMACS Implementation Challenge: Steiner Tree Problems, 2014.

http://dimacs11.zib.de/.

Boost. Boost C++ libraries, 2016. http://boost.org.

C.-Y. Chen and K. Grauman. Efficient activity detection with max-subgraph search. In Conference

on Computer Vision and Pattern Recognition, pages 1274–1281. IEEE, 2012.

M. T. Dittrich, G. W. Klau, A. Rosenwald, T. Dandekar, and T. Müller. Identifying functional

modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics, 24

(13):i223–i231, 2008.

C. W. Duin. Steiner’s problem in graphs. PhD thesis, University of Amsterdam, 1993.

C. W. Duin and A. Volgenant. Reduction tests for the Steiner problem in graphs. Networks, 19(5):

549–567, 1989. ISSN 1097-0037.

M. El-Kebir and G. W. Klau. Solving the maximum-weight connected subgraph problem to opti-

mality. 11th DIMACS challenge workshop, 2014.

M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, and

M. Sinnl. Thinning out Steiner trees: a node-based model for uniform edge costs. 2014.

Z.-H. Fu and J.-K. Hao. Knowledge guided tabu search for the prize collecting Steiner tree problem

in graphs. 11th DIMACS challenge workshop, 2014.

G. Gamrath, T. Koch, S. J. Maher, D. Rehfeldt, and Y. Shinano. SCIP-Jack – a solver for STP

and variants with parallelization extensions. 2015.

M. X. Goemans and D. P. Williamson. A general approximation technique for constrained forest

problems. SIAM Journal on Computing, 24(2):296–317, 1995.

24

http://dimacs11.zib.de/
http://boost.org

C. Hegde, P. Indyk, and L. Schmidt. A fast, adaptive variant of the Goemans-Williamson scheme

for the prize-collecting Steiner tree problem. 11th DIMACS challenge workshop, 2014.

D. S. Johnson, M. Minkoff, and S. Phillips. The prize collecting Steiner tree problem: theory and

practice. In D. B. Shmoys, editor, Symposium on Discrete Algorithms, pages 760–769. ACM/SIAM,

2000. ISBN 0-89871-453-2.

T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32(3):

207–232, 1998.

T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. ACM

Transactions on Programming Languages and Systems (TOPLAS), 1(1):121–141, 1979.

I. Ljubić, R. Weiskircher, U. Pferschy, G. W. Klau, P. Mutzel, and M. Fischetti. An algorithmic

framework for the exact solution of the prize-collecting Steiner tree problem. Mathematical Program-

ming, 105(2-3):427–449, 2006.

T. Pajor, E. Uchoa, and R. F. Werneck. A robust and scalable algorithm for the Steiner problem

in graphs. 2014. 11th DIMACS challenge workshop.

M. Poggi de Aragão and R. F. Werneck. On the implementation of MST-based heuristics for the

Steiner problem in graphs. In D. M. Mount and C. Stein, editors, ALENEX, volume 2409 of Lecture

Notes in Computer Science, pages 1–15. Springer, 2002.

T. Polzin and S. V. Daneshmand. Improved algorithms for the Steiner problem in networks. Discrete

Applied Mathematics, 112(1):263–300, 2001.

H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Math.

Japonica, 24(6):573–577, 1980.

E. Uchoa. Reduction tests for the prize-collecting Steiner problem. Operations Research Letters, 34

(4):437–444, 2006.

R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical

Programming, 28(3):271–287, 1984. ISSN 0025-5610.

25

Table 6: Results for PCSTP data sets handsi, handsd, handbi, handbd.

Root Total Dimacs
instance |V | |A| |T | gap time #BBn ub gap time gap time

handsd01 42500 168950 42077 0.00 1.6 0 171.636766 0.00 1.9 0.00 77.1
handsd02 42500 168950 2324 0.02 9.7 9 159.751395 0.00 10.2 1.81 TL
handsd03 42500 168950 41290 0.00 1.2 0 31.306275 0.00 1.4 0.00 47.3
handsd04 42500 168950 4362 0.01 13.0 1 491.733164 0.00 13.2 1.60 TL
handsd05 42500 168950 41416 0.00 1.4 0 21.937611 0.00 1.6 0.00 62.3
handsd06 42500 168950 4150 0.03 4.2 5 279.903130 0.00 4.6 0.00 948.8
handsd07 42500 168950 40978 0.00 1.7 0 11.804120 0.00 2.1 0.00 68.4
handsd08 42500 168950 4379 0.00 1.4 0 143.237729 0.00 1.6 0.00 610.3
handsd09 42500 168950 39877 0.00 2.3 0 3.818683 0.00 2.6 0.78 TL
handsd10 42500 168950 3562 0.00 1.0 0 1034.767359 0.00 1.3 0.00 24.5

handsi01 39600 157408 39331 0.00 1.0 0 295.453616 0.00 1.3 0.00 49.1
handsi02 39600 157408 2076 0.06 3.3 1 125.429411 0.00 3.6 0.00 2239.6
handsi03 39600 157408 38386 0.00 1.2 0 56.149422 0.00 1.4 0.00 57.4
handsi04 39600 157408 4049 0.01 18.1 1 722.508197 0.00 18.4 0.00 2863.3
handsi05 39600 157408 38882 0.00 1.2 0 35.043506 0.00 1.5 0.00 41.8
handsi06 39600 157408 3982 0.00 2.6 0 452.953621 0.00 2.8 0.00 775.5
handsi07 39600 157408 38537 0.00 1.3 0 18.410135 0.00 1.5 0.00 56.4
handsi08 39600 157408 3957 0.00 1.1 0 229.529930 0.00 1.4 0.00 532.4
handsi09 39600 157408 37753 0.01 3.9 1 5.962166 0.00 4.3 1.49 TL
handsi10 39600 157408 3304 0.04 3.0 811 1803.697508 0.00 18.9 0.00 482.9

handbd01 169800 677102 168211 0.00 87.8 0 728.963591 0.00 88.8 1.26 TL
handbd02 169800 677102 8877 0.04 54.3 35 296.496486 0.00 67.0 5.14 TL
handbd03 169800 677102 163401 0.00 11.9 0 135.070605 0.00 12.8 0.00 554.7
handbd04 169800 677102 16966 0.02 421.8 391 1813.959161 0.00 453.6 5.43 TL
handbd05 169800 677102 165802 0.00 10.1 0 105.474688 0.00 11.0 0.00 704.6
handbd06 169800 677102 16431 0.04 190.8 545 1528.765436 0.00 274.4 2.75 TL
handbd07 169800 677102 165126 0.00 15.6 0 77.861959 0.00 16.6 0.00 2941.8
handbd08 169800 677102 17464 0.02 38.9 55 1368.166769 0.00 44.8 1.94 TL
handbd09 169800 677102 164501 0.00 13.6 0 62.717160 0.00 14.5 0.00 1004.4
handbd10 169800 677102 17262 0.00 17.5 0 1137.429734 0.00 18.9 1.28 TL
handbd11 169800 677102 163788 0.00 14.1 0 46.772533 0.00 15.0 0.00 719.7
handbd12 169800 677102 16427 0.00 15.2 0 321.204744 0.00 16.5 0.22 TL
handbd13 169800 677102 158381 0.41 227.4 2479 13.188859 0.41 TL 2.67 TL
handbd14 169800 677102 16371 0.00 0.6 0 4379.104236 0.00 1.5 0.00 45.5

handbi01 158400 631616 157385 0.00 216.0 0 1358.563381 0.00 217.0 1.10 TL
handbi02 158400 631616 8589 0.02 32.3 33 531.810883 0.00 37.5 2.71 TL
handbi03 158400 631616 154148 0.00 7.9 0 243.134201 0.00 8.8 0.00 1246.2
handbi04 158400 631616 16288 0.05 171.7 29518 3202.185740 0.04 TL 4.22 TL
handbi05 158400 631616 155695 0.00 10.4 0 184.467331 0.00 11.2 0.00 916.3
handbi06 158400 631616 16002 0.05 89.4 689 2921.544716 0.00 204.8 2.69 TL
handbi07 158400 631616 155449 0.01 11.8 1 150.974258 0.00 12.7 0.00 1265.8
handbi08 158400 631616 15530 0.01 12.8 27 2270.284625 0.00 16.4 1.44 TL
handbi09 158400 631616 154731 0.00 11.7 0 107.768806 0.00 12.6 0.00 985.8
handbi10 158400 631616 15870 0.00 11.7 0 1874.292962 0.00 12.7 0.37 TL
handbi11 158400 631616 153918 0.00 18.4 0 68.944709 0.00 19.4 0.11 TL
handbi12 158400 631616 15546 0.00 6.0 0 138.257023 0.00 7.1 0.00 3378.7
handbi13 158400 631616 140634 1.87 110.8 205 4.274497 1.87 ML 2.55 TL
handbi14 158400 631616 14551 0.00 3.4 0 7881.768740 0.00 4.3 0.00 47.7

26

Table 7: Results for PCSTP instances i640-201 to i640-345.

Root Total Dimacs
instance |V | |A| |T | gap time #BBn ub gap time #BBn gap time

i640-201 640 1920 50 0.48 0.1 7 14372 0.00 0.1 0 0.00 0.3
i640-202 640 1920 49 0.03 0.1 1 15059 0.00 0.1 0 0.00 0.1
i640-203 640 1920 50 0.00 0.1 0 13848 0.00 0.1 0 0.00 0.3
i640-204 640 1920 50 0.34 0.1 15 13108 0.00 0.1 0 0.00 0.4
i640-205 640 1920 50 0.99 0.1 63 15308 0.00 0.2 0 0.00 1.6
i640-211 640 8270 50 5.08 0.5 128343 11109 0.00 1865.1 11205 0.00 439.2
i640-212 640 8270 50 3.66 0.5 5673 10351 0.00 87.4 1154 0.00 69.6
i640-213 640 8270 50 4.57 0.5 6141 10388 0.00 78.3 1833 0.00 93.5
i640-214 640 8270 50 2.46 0.4 621 10675 0.00 12.4 31 0.00 14.8
i640-215 640 8270 50 4.90 0.6 47995 10740 0.00 663.2 3760 0.00 123.3
i640-221 640 408960 50 0.43 12.7 23 8400 0.00 14.8 511 0.00 1486.7
i640-222 640 408960 50 0.35 10.3 5 8993 0.00 10.8 60 0.00 877.4
i640-223 640 408960 50 0.37 9.1 5 9210 0.00 10.1 246 0.00 774.8
i640-224 640 408960 49 0.33 10.1 11 8870 0.00 10.9 455 0.00 1300.6
i640-225 640 408960 49 0.00 8.4 0 8386 0.00 8.7 164 0.00 878.8
i640-231 640 2560 50 2.53 0.2 361 14279 0.00 1.6 29 0.00 14.7
i640-232 640 2560 50 1.45 0.1 31 13526 0.00 0.3 9 0.00 3.6
i640-233 640 2560 49 1.47 0.1 31 12948 0.00 0.3 0 0.00 3.5
i640-234 640 2560 50 0.97 0.1 23 13645 0.00 0.2 0 0.00 1.4
i640-235 640 2560 50 0.36 0.1 5 12650 0.00 0.1 0 0.00 1.0
i640-241 640 81792 50 1.30 5.5 1751 9716 0.00 81.0 12581 0.24 TL
i640-242 640 81792 50 1.48 4.9 1157 9250 0.00 53.8 1560 0.00 439.8
i640-243 640 81792 50 1.57 5.2 1125 9315 0.00 58.0 5846 0.00 1151.6
i640-244 640 81792 50 2.81 5.2 3205 8950 0.00 114.8 14499 0.00 1966.0
i640-245 640 81792 50 1.95 5.3 2433 9448 0.00 107.3 9587 0.00 1826.4

i640-301 640 1920 159 0.72 0.2 139 42701 0.00 0.9 0 0.00 0.9
i640-302 640 1920 160 0.65 0.2 191 42606 0.00 0.4 0 0.00 1.2
i640-303 640 1920 160 0.10 0.1 19 41286 0.00 0.2 0 0.00 0.8
i640-304 640 1920 159 0.73 0.1 249 42050 0.00 0.7 0 0.00 0.7
i640-305 640 1920 160 0.56 0.2 421 42798 0.00 1.1 8 0.00 2.6
i640-311 640 8270 160 4.13 0.9 151554 33953 4.13 TL 72680 0.68 TL
i640-312 640 8270 160 3.76 0.8 222446 33096 3.70 TL 51318 0.83 TL
i640-313 640 8270 159 2.88 0.6 182904 32628 2.85 TL 59731 0.00 3198.8
i640-314 640 8270 160 3.07 0.6 197307 33108 3.07 TL 71012 0.73 TL
i640-315 640 8270 159 3.35 0.6 173883 32821 3.35 TL 83624 0.62 TL
i640-321 640 408960 160 1.03 47.8 25615 28787 0.00 2671.2 665 0.36 TL
i640-322 640 408960 160 0.87 40.9 6583 28456 0.00 731.2 835 0.31 TL
i640-323 640 408960 160 0.79 33.0 3163 28153 0.00 363.9 1106 0.26 TL
i640-324 640 408960 160 0.95 41.6 16955 28746 0.00 2541.3 825 0.26 TL
i640-325 640 408960 160 0.85 30.3 3195 28385 0.00 457.0 849 0.29 TL
i640-331 640 2560 160 0.49 0.2 871 39315 0.00 3.5 8 0.00 7.5
i640-332 640 2560 160 0.96 0.2 677 39030 0.00 5.2 3 0.00 6.0
i640-333 640 2560 160 1.78 0.4 15455 39775 0.00 117.4 324 0.00 29.6
i640-334 640 2560 160 1.13 0.2 3529 39338 0.00 29.9 11 0.00 4.2
i640-335 640 2560 160 1.33 0.3 21329 39601 0.00 187.2 8346 0.00 771.4
i640-341 640 81792 160 1.39 8.4 73067 29902 1.39 TL 6181 0.79 TL
i640-342 640 81792 160 1.17 8.4 84008 29936 1.05 TL 3739 0.56 TL
i640-343 640 81792 160 1.76 8.1 147786 30324 1.53 TL 2536 0.58 TL
i640-344 640 81792 156 1.47 8.4 126109 30131 1.30 TL 7022 0.60 TL
i640-345 640 81792 160 1.28 8.6 107953 29991 0.68 TL 2691 0.88 TL

27

Table 8: Results for PCSTP instances h.

Root Total Dimacs
instance |V | |A| |T | gap time #BBn ub gap time #BBn gap time

hc6p 64 384 32 4.85 0.0 416 3908 0.00 0.4 1324 0.00 1.5
hc6u 64 384 32 0.00 0.0 0 36 0.00 0.1 10 0.00 0.1
hc7p 128 896 64 5.25 0.1 104904 7721 0.00 231.2 61061 0.00 588.4
hc7u 128 896 64 5.48 0.1 1687 72 0.00 1.7 322 0.00 0.2
hc8p 256 2048 128 5.05 0.3 562769 15422 5.05 TL 178611 1.07 TL
hc8u 256 2048 128 4.14 10.1 1668275 143 2.80 TL 18410 0.00 12.6
hc9p 512 4608 256 4.19 1.2 214179 30318 4.19 TL 36536 1.69 TL
hc9u 512 4608 256 5.88 10.4 605820 289 5.88 TL 1001800 0.00 2551.3
hc10p 1024 10240 512 4.66 19.6 105097 60715 4.66 TL 7193 2.71 TL
hc10u 1024 10240 512 6.60 13.2 251115 576 6.60 TL 376031 1.25 2187.0
hc11p 2048 22528 1024 4.48 91.7 42501 120418 4.48 TL 1129 3.42 TL
hc11u 2048 22528 1024 6.86 42.3 78523 1152 6.86 TL 203282 1.34 2032.8
hc12p 4096 49152 2048 5.46 855.6 19139 241162 5.46 TL 15 3.55 TL
hc12u 4096 49152 2048 7.35 287.2 33090 2299 7.35 TL 55328 1.48 TL

28

	Introduction
	General framework
	A dual ascent algorithm for the rooted APCSTP
	Reduction tests
	Bound-based reduction tests
	Alternative-based reduction tests

	Algorithmic framework
	Primal heuristic
	Cost shifting
	Problem transformations
	Dual ascent implementation
	Branch & bound

	Computational results
	Primal heuristics
	Preprocessing & Root node evaluation
	Branch-and-bound

	Conclusions

