
An Exact Solution Framework for the Minimum Cost Dominating

Tree Problem

Eduardo Álvarez-Miranda ∗1, Martin Luipersbeck†2, and Markus Sinnl‡2

1Department of Industrial Engineering, Universidad de Talca, Curicó, Chile
2Department of Statistics and Operations Research, Faculty of Business, Economics and

Statistics, University of Vienna, Vienna, Austria

Abstract

The Minimum Cost Dominating Tree Problem (MCDTP) is a recently introduced NP-hard problem,
which consists of finding a tree of minimal cost in a given graph, such that for every node of the graph,
the node or one of its neighbours is in the tree. We present an exact solution framework combining a
primal-dual heuristic with a branch-and-cut approach based on a transformation of the problem into
a Steiner Arborescence Problem with an additional constraint. The effectiveness of our approach is
evaluated on testbeds proposed in literature containing instances with up to 500 nodes. Our framework
manages to solve all but four instances from literature to proven optimality within three hours (most of
them in a few seconds). We provide optimal solution values for 69 instances from literature for which
the optimal solution was previously unknown.

1. Introduction and Motivation

Many problems concerning the design of sensor networks [9, 14], wireless networks [12], or energy efficient
wireless networks [11], can be reduced to the Minimum Cost Dominating Tree Problem (MCDT).

Definition 1 (Minimum Cost Dominating Tree Problem) Given an undirected graph G = (V,E) and a cost
function c : E → R≥0, the MCDT is the problem of finding a tree T = (VT , ET) ⊂ G so that every node in
V \ VT is adjacent to at least one node in VT and

∑
e∈ET

ce is minimized.

The MCDT belongs to the class of (connected) dominating set problems in graphs, which were originally
proposed back in the 60s [7]. The MCDT has received considerable attention by researchers over the last
years. To the best of our knowledge, the problem was first proposed in [14], in the context of routing backbone
optimization in wireless networks. The authors proposed several approximation algorithms and heuristics
for the case where the input graph is a disk. In [9], the authors first showed that the MCDT is NP-complete
in general graphs and provided an approximation algorithm based on the connection of the problem with
the Directed Steiner Tree Problem (also known as Steiner Arborescence Problem). They also provided a
heuristic algorithm and a Mixed Integer Programming (MIP) formulation; the latter based on the spanning
tree polytope representation based on generalized subtour elimination constraints. Numerical results showed
the effectiveness of the proposed heuristic when solving instances with up to 17 nodes. Later, different
bio-inspired metaheuristics were designed and implemented in [10]; using randomly generated instances
with up to 500 nodes, the authors showed that their approaches were more effective than those proposed

∗ealvarez@utalca.cl
†martin.luipersbeck@univie.ac.at
‡markus.sinnl@univie.ac.at

1

before in [9] and [14]. Two MIP formulations were proposed in [1]; one of the models is based on an
arborescence formulation in the bi-directed counterpart of the input graph, while the second one is obtained
from the generalized spanning tree polytope. Numerical results show that proposed models could be used to
solve instances with up to 100 nodes by off-the-shelf solvers within hundreds of seconds. Very recently, an
evolutionary algorithm with guided mutation was designed in [2]; using the instances proposed in [10], the
authors showed that their approach outperformed previously proposed algorithms. Finally, in [3] a variable
neighborhood search (VNS) algorithm was devised for the MCDT; considering the testbed provided in [10]
and additional randomly generated instances with up to 300 nodes, the authors showed that their method
was capable of computing optimal solutions for instances with up to 20 nodes (using the MIP model proposed
in [9] to solve these instances to optimality), and better solutions than those found in [10] in the case of
large-size instances.

Our Contribution and Paper Outline We present a solution framework combining a primal-dual
heuristic with an exact branch-and-cut (B&C) approach for the MCDT based on the transformation of
the problem into a Steiner Arborescence Problem. The effectiveness of our approach is evaluated on the
testbeds proposed by [3] and [10]. We provide optimal solution values for 69 instances from literature, for
which the optimal solution was previously unknown. Most of the instances are solved to optimality within a
few seconds. The paper is organized as follows; Section 2 details our solution framework, Section 3 contains
the computational results, and Section 4 gives a short conclusion.

2. The Algorithmic Framework

The presented framework is based on a B&C algorithm for solving an exponential size formulation of a
variant of the Steiner Arborescence Problem (SAP) [see, e.g., 13]. The B&C is initialized using a primal-dual
heuristic, which constructs a starting solution and also provides an initial set of cuts (in order to avoid their
potentially time-consuming separation later on).

Definition 2 (Steiner Arborescence Problem) Given a directed graph G = (V,A) with dedicated root node

r ∈ V , a cost function c : A → R|A|≥0 and a set of terminals T ⊂ V , the SAP consists of finding a subgraph
S = (VS , AS) ⊂ G so that every node i ∈ S \ {r} can be reached by a directed path from r ∈ S and

∑
a∈AS

ca
is minimized.

For the purpose of modeling the MCDT as SAP, a modified version of the SAP is required where the
outdegree of the root node r is constrained to be one in a feasible solution. We refer to this version as
root-degree-one SAP (RSAP).

Let (G = (V,E), c) be an instance of the MCDT. Any instance of the MCDT can be transformed into
an instance (G′ = (V ′, A), r, c′, T) of the RSAP as follows [see also 9, for an equivalent transformation]. The
node set V ′ consists of V plus an additional node i′ for each i ∈ V . The terminal set T consists of these
nodes i′, except one, which is (arbitrarily) chosen as root node r. For each e = {i, j} ∈ E introduce two
arcs (i, j), (j, i) with c′ij = c′ji = ce. Moreover, for each i′ 6= r introduce arcs a = (k, i′) for all {i, k} ∈ E
and for k = i, with ca = 0. For i′ = r introduce arcs a = (i′, k) for all {i, k} ∈ E and for k = i, with
ca = 0. In other words, the terminal set consists of a copy i′ of each original node i (except the node
chosen as root node), and i′ is only reachable by going over i or one of its neighbors in G. Moreover, for
the i′ ∈ V ′ chosen as root node r the arcs leaving i′ go to i and all nodes which are neighbors of i in G. It
is easy to see that in a feasible RSAP solution, for each i ∈ V , either i or one of its neighbors from G is
contained. Furthermore, after removing the arcs adjacent to nodes i′ and mapping back the remaining arcs
to the underlying edges of G, the solution is a tree, and hence a feasible solution to the MCDT. (Note that
without the outdegree-constraint on the root node, the backmapped solution may not be a tree.) Finally,
since all the arcs to nodes in i′ have cost zero, this transformation preserves the cost of feasible solutions.
Hence, the MCDT can be solved as a RSAP. For ease of readability, we refer to c′ as c in the remainder of
the paper. As root node r, in our implementation we chose the node with the largest number of adjacent

2

nodes in G. Moreover, preprocessing is done to reduce the size of the obtained graph G′: Observe that if
there are two adjacent nodes i and j, and the adjacency list of i is a subset of the adjacency list of j, only i
needs to be copied to a terminal i′, as any solution containing a node adjacent to i automatically contains
a node adjacent to j.

2.1 Primal-Dual Heuristic

Our primal-dual heuristic is based on the dual ascent algorithm (DA) for the SAP proposed by Wong [13] [see
also 8]. DA performs a greedy construction of a feasible solution to the dual of the Linear Programming (LP)-
relaxation of an exponential size MIP formulation for the SAP. By building this dual solution, a subgraph
GH (called support graph) is obtained, which by construction contains at least one feasible solution. For the
SAP and related problems [see, e.g., 8, 13], construction heuristics usually yield much better solutions when
applied to GH rather than to the original graph G. Moreover, DA also provides a valid lower bound to the
optimal solution and a subset of violated inequalities from the exponential size MIP formulation. We first
give a description of DA and show how to adapt it to our RSAP setting. This is followed by a description
of our construction heuristic.

Dual Ascent Algorithm For solving the RSAP with the proposed DA, we use a directed cut-set MIP
formulation to model it [see, e.g., 5, 6, 8, for similar models used in DAs applied to related problems]. Let
x ∈ {0, 1}|A| be a vector of binary variables so that xa = 1 iff arc a ∈ A is in the solution. Additionally,
consider the following notation. For a given set H ⊂ A, let x(H) =

∑
a∈H xa. Complementary, for a given

set S ⊂ V ′, let δ−(S) = {a : (i, j) ∈ A | j ∈ S, i ∈ V ′ \ S} and δ+(S) = {a : (i, j) ∈ A | i ∈ S, j ∈ V ′ \ S}.
For a terminal i ∈ T , let Wi = {W ⊂ V : W ∩ T = {i}, r 6∈ W} be the set of nodes inducing the so-called
Steiner connectivity cuts [see, e.g., 8], and let W =

⋃
i∈T Wi. The RSAP is formulated as

min
∑
a∈A

caxa (1)

x(δ−(W)) ≥ 1 (βW) ∀W ∈W (2)

−x(δ+(r)) ≥ −1 (λ) (3)

x ∈ {0, 1}|A| (4)

where βW and λ are dual variables associated with the corresponding constraints. Connectivity cuts (2)
ensure that in a feasible solution there exists a directed path from the root node r to each terminal i ∈ T . Note
that due to the fact that (2) are exponential in number, non-trivial instances require on-the-fly separation,
as in a B&C scheme. Constraint (3) ensures that there is only one outgoing arc from the root node. Observe
that (1), (2) and (4) are a formulation for the SAP. The dual of the LP-relaxation of (1)-(4) is given as

max
∑
W∈W

βW − λ (5)∑
W∈W:(i,j)∈W

βW ≤ cij ∀(i, j) ∈ A, i 6= r (6)

∑
W∈W:(r,j)∈W

βW − λ ≤ 0 ∀(r, i) ∈ A (7)

λ ≥ 0 and βW ≥ 0, ∀W ∈W. (8)

Due to the presence of the root-outgoing constraint (3), in contrast to the dual for the SAP, the dual for the
RSAP contains the dual variable λ, which occurs in dual constraints (7) associated with arcs leaving the root
node. We deal with this by fixing the dual variable λ to a large value M before starting the DA. It is easy
to see that this is equivalent to deal with constraints (3) in a Lagrangian fashion by imposing a penalty M
for violation. For λ fixed to M , constraints (7) become similar to (6) (with c0j = M) and the dual problem

3

Data: SA instance (G = (V,A), c, T)
Result: Lower bound LB, support graph GH , subset of cuts (2)

1 LB ← 0; c̃ij ← cij∀ (i, j) ∈ A, Ta ← T , GH ← ∅
2 while Ta 6= ∅ do
3 k ← getActiveTerminal(Ta)

/* Let Wk be the set of nodes reachable by a reverse breadth-first-search in GH

*/

4 ∆← min(i,j)∈δ−(Wk)c̃ij
/* Store cut δ−(Wk) for use in the branch-and-cut */

5 c̃ij ← c̃ij −∆ ∀ (i, j) ∈ δ−(Wk)

6 GH ← {(i, j) : c̃ij = 0}
7 LB ← LB + ∆

8 Ta ← updateActiveTerminals(GH)

Algorithm 1: Dual Ascent Algorithm

is similar to the dual for the SAP. In the following, we assume λ fixed to M , i.e., that all constraints in the
dual are of type (6). In our implementation, we set M to the sum of the two largest costs of edges adjacent
to the node chosen as root.

Note that although there exists an exponential number of variables βW , this is no concern for the
DA procedure, as their values are not tracked explicitly. Rather, they are tracked implicitly based on
constraints (6) and their associated reduced costs c̃ij = cij −

∑
W∈W:(i,j)∈W βW , i.e., c̃ij is the slack of

constraint (6) for arc (i, j) ∈ A. The support graph GH is defined as the graph induced by arcs with c̃ij = 0
at termination of DA.

Algorithm 1 shows a pseudocode of the DA procedure. Note that since a feasible solution to (5)-(8) is com-
puted, also a lower bound LB to the optimal solution is obtained. The algorithm starts with the dual feasible
solution where all βW are set to zero, hence initially c̃ij = cij . Subsequently, a variable βW is increased in
each iteration, thus decreasing c̃ in such a way that c̃ij ≥ 0, ∀(i, j) ∈ A; hence the solution stays dual feasible.
This process is performed with the help of a list of active terminals Ta, which at a given iteration consists of
all terminals t ∈ T with no path from r to t in GH . The method updateActiveTerminals(GH) removes from
Ta terminals that have become inactive during the current iteration, while method getActiveTerminal(Ta)
returns a terminal from Ta. Note that the returned terminal influences the performance of the DA, as the
cuts discovered by it are driven by the returned terminals. In our implementation the method uses a score
st, t ∈ Ta and returns the terminal with the smallest score. The score is calculated in two steps: First, for
each node i ∈ V ′, a score s′i is calculated as the number of terminals from which i is reachable by a reverse
breadth-first-search (rbfs) in GH . For t ∈ Ta, let C(t) be the set of nodes reachable by a rbfs in GH . We
calculate st =

∑
i∈C(t) s

′
i. Using this score turned out to be computationally advantageous compared to

other schemes used in the DA for SAP, e.g., using st = |C(t)|. This could be explained by the fact that the
transformation of an MCDT instance gives a quite specifically structured SAP instance. For more details
about DA for SAP and related problems, we refer to [5, 6, 8].

Construction Heuristic The given procedure is applied to GH as computed by DA. Let L be a list of
terminals ordered by their degree and Sol be the (partial) solution constructed. Sol is initialized with a node
i adjacent to r (the heuristic is repeated for all of them) and all terminals adjacent to i are removed from L
(as these are covered by Sol). The following steps are executed iteratively until L = ∅, which implies that all
terminals have been covered: Let t be the next entry of L, the shortest path from Sol to t in GH is calculated
and its nodes and arcs are added to Sol. L is updated w.r.t. Sol (i.e., all terminals adjacent to some node
in Sol are removed). As soon as L = ∅, a pruning step is performed which iteratively removes unnecessary
leaf-nodes from Sol (as terminals may be covered by more than one node in Sol) [see also 2]. Finally, a simple
local search phase using node-deletion, node-insertion and 2-node-swap operators is performed [see, e.g., 3].

4

2.2 Branch-and-Cut Approach

The exact B&C scheme is based on the MIP formulation (1)-(4). Its main components are described below.

Connectivity Cut Separation Let x̃ be the LP solution at a given node of the B&C tree, and G̃ =
(V,A, x̃) be a capacitated graph with x̃ as capacities. Violated connectivity cuts of type (2) are identified
by solving maximum flow problems on G̃ from r to the nodes in T [see, e.g., 4, for further details].

Branching Priorities We introduce binary node variables y ∈ {0, 1}|V ′| with yi = 1 iff node i ∈ V ′ is in
the solution (yt for t ∈ T are fixed to one at initialization). Node variables are linked to arc variables by∑

(ji)∈δ−(i) xji = yi, ∀i ∈ V ′ \ {r},. During the B&C, variables y are given higher branching priority, i.e.,
branching on nodes is preferred, as this strategy results in a more balanced search-tree.

MIP Initialization Along with constraint (3), the MIP model is initialized using the cuts selected by the
DA procedure (Algorithm 1, Step 4). Moreover, the constraints xij + xji ≤ yi, ∀(i, j) ∈ GH , a special case
of (2), are added to the MIP model.

Primal Heuristic Given the LP solution x̃ at a given node of the B&C tree, a feasible solution is con-
structed by using the procedure outlined in §2.1 on G′ using modified arc weights ca(1− x̃a), a ∈ A′.

3. Computational Results

Experiments have been performed on a single core of an Intel E5-2670v2 with 2.5GHz and 3GB RAM.
All algorithms have been implemented in C++, with CPLEX 12.6 employed as MIP solver. The CPLEX
parameters (except branching priorities, as detailed in the previous Section) have been set to their default
values. Each test run is given a timelimit of three hours.

Benchmark Instances Two sets of instances from the MCDT literature are considered: dtp (proposed
in [3]1) and range (proposed in [2, 10]2).

• dtp: The set contains instance graphs with |V | ∈ {10, 15, 20, 100, 200, 300} and |E| ∈
{15, 20, 30, 50, 150, 200, 400, 600, 1000}.Both G and c are generated randomly, with ce ∈ [1, 10], e ∈ E.
Per |V |, three seeds are used to obtain three different instances. In total, 33 instance have been
generated. Instances are denoted by “|V |-|E|-id”, with id ∈ {1, 2, 3}.

• range: The set’s instance graphs correspond to disk graphs, where the disks indicate the transmission
range R of a node. Each graph is constructed as follows: For each node, a point is chosen at random
in a 500 × 500 plane. An edge exists between two nodes if they are within transmission range. The
edge weight is the squared Euclidean distance (rounded to two decimals). Three graphs have been
constructed for each combination of |V | ∈ {50, 100, 200, 300, 400, 500} and R ∈ {100, 125, 150}, leading
to 54 instances. Instances are denoted by “R-|V |-id”, with id ∈ {1, 2, 3}.

Instance set dtp has been approached with a VNS in [3] and also with a MIP (using the formulation
proposed in [9]) for the instances with |V | ∈ {10, 15, 20}. As this MIP approach already struggled for these
small instances, leaving 20-50-1 unsolved and taking up to 4700 seconds for the other small instances, the
authors did not test the MIP on the larger instances (i.e., for these instances, the optimal solution value is
not known).

Instance set range has been approached with a VNS in [3] (for R = 100), with an Ant Colony Optimiza-
tion and Bee Colony Optimization in [10] (for R = 100), and with an evolutionary algorithm (EA) in [2] (all

1available at http://poincare.matf.bg.ac.rs/~zdrazic/dtp
2available at http://scis.uohyd.ac.in/~alokcs

5

http://poincare.matf.bg.ac.rs/~zdrazic/dtp
http://scis.uohyd.ac.in/~alokcs

R). Both, [3] and [2] conclude that their approaches outperform the approaches presented in [10]. For all
instances from set range, the optimal solution value is not known.

Results Table 1 shows results on instance set dtp. We also provide the best solution value (z[3]) and
runtime (t[3][s]) obtained by the VNS of [3] (runtime is averaged over 20 VNS runs for an instance; the
experiments in [3] were performed on a Intel Core I7-4702MQ with 2.2 GHz and 4GB RAM.) From the
reported results, we can see that for instances 10-15-0 to 100-200-1 our approach computes the same solutions
reported by [3], but much more efficiently. For larger instances, 200-400-0 to 300-1000-2, our approach
provides considerably better solutions than those reported by [3] and, in almost all cases, more quickly. Note
that even the purely primal-dual heuristic solutions, whose primal and dual bounds reported in columns zH

and LBH , respectively, are typically better than those found in [3]. In bold we highlight those cases in which
we outperform the best-known primal bounds (12 cases), and with an asterisk we mark those cases in which
optimality proof is, for the first time, provided (16 cases).

Table 1: Performance of our exact and heuristic approach on the instance set dtp compared to the VNS
presented in [3].

inst z∗ LB t[s] zH LBH tH [s] z[3] t[3][s]

10-15-0 5.89188 5.89188 1 5.89188 5.89188 0 5.89 0
10-15-1 14.42328 14.42328 1 14.42328 14.42328 0 14.42 0
10-15-2 14.35039 14.35039 1 14.35039 14.35039 0 14.35 0
15-20-0 18.87450 18.87450 0 18.87450 18.87450 0 18.87 0
15-20-1 23.02953 23.02953 1 23.02953 23.02953 0 23.03 0
15-20-2 24.94884 24.94884 1 24.94884 24.94884 0 24.95 0
15-30-0 18.19640 18.19640 1 18.19640 18.19640 0 18.20 0
15-30-1 8.31711 8.31711 1 8.31711 8.23169 0 8.32 0
15-30-2 18.06508 18.06508 1 18.27780 16.70500 0 18.07 0
20-30-0 33.80565 33.80565 1 33.80565 33.80565 0 33.81 0
20-30-1 36.03494 36.03494 2 36.03494 36.03494 0 36.03 0
20-30-2 43.49886 43.49886 2 43.49886 43.49886 0 43.50 0
20-50-0 9.81012 9.81012 1 9.81012 8.91638 0 9.81 0
20-50-1 12.18698 12.18698 * 2 12.18698 11.79562 0 12.19 0
20-50-2 17.42320 17.42320 2 17.42320 17.42320 0 17.42 0
100-150-0 152.57259 152.57259 * 2 152.57259 149.94661 1 152.57 295
100-150-1 192.20663 192.20663 * 2 192.20663 188.88742 0 192.21 286
100-150-2 146.34474 146.34474 * 1 146.34474 145.91871 0 146.34 246
100-200-0 135.04003 135.04003 * 3 137.75252 126.95836 1 135.04 334
100-200-1 91.88264 91.88264 * 3 91.97222 91.61818 1 91.88 133
100-200-2 115.93330 115.93330 * 2 116.42103 109.94687 1 115.93 372
200-400-0 257.09155 257.09155 * 15 260.41598 238.46089 4 306.06 565
200-400-1 258.77261 258.77261 * 5 261.13322 249.52902 2 303.53 559
200-400-2 238.27034 238.27034 * 4 238.27034 232.68769 1 274.37 550
200-600-0 121.62120 121.62120 * 67 125.60597 107.54256 3 132.49 554
200-600-1 135.08124 135.08124 * 6 141.31769 129.82916 3 162.92 557
200-600-2 123.30669 123.30669 * 243 132.38667 106.26319 2 139.08 521
300-600-0 348.02734 348.02734 * 9 367.50394 333.38925 4 471.69 539
300-600-1 413.93416 413.93416 * 9 418.08229 404.31348 2 494.91 544
300-600-2 352.14821 352.14821 * 5 355.63689 347.06032 3 500.72 534
300-1000-0 147.16534 144.16129 TL 158.87691 125.18579 4 257.72 575
300-1000-1 165.32331 155.21621 TL 171.21897 140.05051 5 242.79 531
300-1000-2 154.58602 150.58588 TL 166.89772 132.83734 5 223.18 483

Table 2 shows he result on instance set range. We also provide the best solution value obtained by
the EA of [2] in column z[2] (the authors performed 20 runs of the EA per instance). Note that [2] only
report the runtime of the EA in a plot and do not give it explicitly by instance. From their plot, an average
runtime of 50 to 100 seconds can be estimated for the largest instances in the set (the experiments in [2]
were performed on an Intel Core2Duo with 3.0 GHz and 2GB RAM). In bold we report the primal bounds,
computed by our approach, that outperform those computed in [2]; this occurs in 15 cases. From the table,
we can see that the proposed algorithmic framework provides optimality proof for 53 out of 54 instances.

6

Table 2: Performance of our exact and heuristic approach on the instance set range compared to the EA
presented in [2].

inst z∗ LB t[s] zH LBH tH [s] z[2]

100-050-1 1204.41 1204.41 1 1204.41 1195.97 0 1204.41
100-050-2 1340.44 1340.44 1 1353.25 1318.48 0 1340.44
100-050-3 1316.39 1316.39 1 1316.39 1296.74 0 1316.39
100-100-1 1217.47 1217.47 4 1221.11 1130.54 1 1217.47
100-100-2 1128.40 1128.40 4 1128.40 1112.83 2 1128.40
100-100-3 1252.99 1252.99 4 1277.09 1199.37 2 1253.49
100-200-1 1206.79 1206.79 16 1206.79 1129.79 3 1206.79
100-200-2 1213.24 1213.24 50 1242.95 1129.17 3 1216.41
100-200-3 1247.25 1247.25 17 1307.94 1195.61 4 1247.63
100-300-1 1215.48 1215.48 258 1244.39 1126.55 6 1225.22
100-300-2 1170.85 1170.85 88 1199.25 1083.85 7 1170.85
100-300-3 1247.51 1247.51 238 1282.85 1167.04 5 1252.14
100-400-1 1211.33 1211.33 3768 1262.91 1115.94 8 1211.72
100-400-2 1197.66 1197.66 1609 1244.08 1102.94 10 1199.92
100-400-3 1245.25 1245.25 3454 1287.08 1130.63 11 1248.29
100-500-1 1201.31 1195.82 TL 1229.99 1072.96 14 1206.07
100-500-2 1220.47 1220.47 8147 1296.38 1093.37 12 1226.78
100-500-3 1231.81 1231.81 5227 1259.07 1129.90 15 1232.15

125-50-1 802.95 802.95 2 825.73 771.92 0 802.95
125-50-2 1055.10 1055.10 2 1055.10 1055.10 0 1055.10
125-50-3 877.77 877.77 1 918.37 877.77 0 877.77
125-100-1 943.01 943.01 2 943.01 905.28 1 943.01
125-100-2 917.00 917.00 4 917.95 888.35 2 917.95
125-100-3 998.18 998.18 4 1013.91 964.72 1 998.18
125-200-1 910.17 910.17 13 913.96 889.50 4 910.17
125-200-2 921.76 921.76 32 949.82 871.43 4 921.76
125-200-3 939.58 939.58 19 974.04 911.54 2 939.58
125-300-1 977.65 977.65 74 979.69 958.79 8 977.65
125-300-2 913.01 913.01 99 925.92 881.75 7 913.01
125-300-3 974.78 974.78 60 985.18 950.43 9 974.85
125-400-1 965.99 965.99 179 974.99 936.22 12 965.99
125-400-2 934.17 934.17 663 951.27 892.61 13 941.02
125-400-3 1002.61 1002.61 797 1016.10 974.96 11 1002.97
125-500-1 963.89 963.89 2100 1012.42 923.83 20 963.89
125-500-2 948.57 948.57 1513 969.55 919.16 16 948.57
125-500-3 980.67 980.67 509 1005.34 957.32 24 980.67

150-50-1 647.75 647.75 2 647.75 642.32 0 647.75
150-50-2 863.69 863.69 2 886.40 843.32 0 863.69
150-50-3 743.94 743.94 1 743.94 719.58 0 743.94
150-100-1 876.69 876.69 6 885.97 860.02 3 876.69
150-100-2 657.35 657.35 5 657.35 657.35 3 657.35
150-100-3 722.87 722.87 5 722.87 712.81 2 722.87
150-200-1 809.90 809.90 24 814.30 779.87 6 809.90
150-200-2 736.23 736.23 19 765.99 714.67 3 736.23
150-200-3 792.71 792.71 29 805.71 761.86 4 792.71
150-300-1 796.15 796.15 89 796.70 778.04 7 796.15
150-300-2 741.02 741.02 281 759.33 697.70 10 741.92
150-300-3 819.76 819.76 298 825.56 787.41 6 819.76
150-400-1 795.53 795.53 557 799.30 774.18 10 795.53
150-400-2 779.63 779.63 1171 785.15 755.13 12 779.63
150-400-3 814.14 814.14 1591 824.60 780.65 11 814.14
150-500-1 792.21 792.21 1634 796.57 777.82 20 792.21
150-500-2 779.35 779.35 2754 794.31 752.28 26 799.35
150-500-3 808.37 808.37 4649 814.11 775.08 25 810.27

7

4. Conclusions

In this paper we address the Minimum Cost Dominating Tree Problem (MCDT), a recently introduced
network design problem. We design an exact algorithmic framework combining a primal-dual heuristic and
an exact branch-and-cut algorithm. The framework is based on a MIP formulation which results from a
suitable transformation of the problem into a related Steiner Arborescence Problem. A computational study
on benchmark instances from literature shows that our framework outperforms the previously proposed
algorithms for the MCDT. In particular, our framework manages to solve all but four instances from literature
to proven optimality within three hours, most of them in a few seconds. In total, we provide optimal solution
values for 69 instances from literature, for which the optimal solution was previously unknown.

Acknowledgements

E.A.-M. acknowledges the support of the Chilean Council of Scientic and Technological Research, CONICYT,
through the grant FONDECYT N.11140060 and through the Complex Engineering Systems Institute (ICM-
FIC:P-05-004-F, CONICYT:FB0816). The research of M.S. was supported by the Austrian Research Fund
(FWF, Project P 26755-N19). M.L. acknowledges the support of the University of Vienna through the
uni:docs fellowship programme.

References

[1] P. Adasme, R. Andrade, J. Leung, and A. Lisser. Models for minimum cost dominating trees. Electronic
Notes in Discrete Mathematics, 52:101–107, 2016.

[2] S. Chaurasia and A. Singh. A hybrid heuristic for dominating tree problem. Soft Computing, 20(1):
377–397, 2016.

[3] Z. Dražić, M. Čangalović, and V. Kovačević-Vujčić. A metaheuristic approach to the dominating tree
problem. Optimization Letters, pages 1–13, 2016.

[4] M. Fischetti, M. Leitner, I. Ljubić, M. Luipersbeck, M. Monaci, M. Resch, D. Salvagnin, and M. Sinnl.
Thinning out Steiner trees: a node-based model for uniform edge costs. Mathematical Programming
Computation, accepted, 2016.

[5] M. Leitner, I. Ljubić, M. Luipersbeck, and M. Sinnl. A dual-ascent-based branch-and-bound framework
for the prize-collecting Steiner tree and related problems. Technical Report, 2016.

[6] M. Leitner, I. Ljubić, J.-J. Salazar-González, and M. Sinnl. An algorithmic framework for the exact
solution of tree-star problems. Technical Report, 2016.

[7] O. Ore. Theory of Graphs, volume 38 of Colloquium Publications. American Mathematical Society, 1st
edition, 1962.

[8] T. Polzin and S. Daneshmand. Improved algorithms for the Steiner problem in networks. Discrete
Applied Mathematics, 112(1):263–300, 2001.

[9] I. Shin, Y. Shen, and M. Thai. On approximation of dominating tree in wireless sensor networks.
Optimization Letters, 4(3):393–403, 2010.

[10] S. Sundar and A. Singh. New heuristic approaches for the dominating tree problem. Applied Soft
Computing, 13(12):4695–4703, 2013.

[11] M. Thai, F. Wang, D. Liu, S. Zhu, and D. Du. Connected dominating sets in wireless networks with
different transmission ranges. IEEE Transactions on Mobile Computing, 6(7):721–730, 2007.

8

[12] M. Thai, R. Tiwari, and D. Du. On construction of virtual backbone in wireless ad hoc networks with
unidirectional links. IEEE Transactions on Mobile Computing, 7(9):1098–1109, 2008.

[13] R Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical Program-
ming, 28(3):271–287, 1984.

[14] N. Zhang, I. Shin, B. Li, C. Boyaci, R. Tiwari, and M. Thai. New approximation for minimum-weight
routing backbone in wireless sensor network. In Y. Li, D. Huynh, S. Das, and D. Du, editors, Proceedings
of WASA 2008, volume 5258 of LNCS, pages 96–108. Springer, 2008.

9

	Introduction and Motivation
	The Algorithmic Framework
	Primal-Dual Heuristic
	Branch-and-Cut Approach

	Computational Results
	Conclusions

