
A Branch-and-Cut Algorithm for the Maximum Covering Cycle

Problem

Eduardo Álvarez-Miranda∗1 and Markus Sinnl†2

1Department of Industrial Engineering, Universidad de Talca, Curicó, Chile.
2ISOR, University of Vienna, Vienna, Austria.

Abstract

In many applications in telecommunications and routing, we seek for cost-effective infrastructure or
operating layouts so that many nodes (e.g., customers) of a support network (typically modeled by a
graph) are covered by, or at least are easily reachable from, such layout. In this paper, we study the
maximum covering cycle problem. In this recently introduced problem, we are given a non-complete
graph, and the goal is to find a cycle, such that the number of nodes which are either on the cycle or
are adjacent to the cycle is maximized. We design a branch-and-cut framework for solving the problem.
The framework contains valid inequalities, lifted inequalities and a primal heuristic. In a computational
study, we compare our framework to previous work available for this problem. The results reveal that
our approach significantly outperforms the previous approach. In particular, all available instances from
literature could be solved to optimality with our approach, most of them within a few seconds.

1. Introduction

Covering and domination problems in graphs have attracted the interest of researchers since at least the
1970s. In such type of problems we are concerned with finding a subset of nodes S of an input graph, such
that a certain set of nodes are covered or dominated, i.e., either by belonging to S or by being adjacent to
S. There exists many different versions of such problems, depending on topological constraints on S (e.g.,
it may need to form a tree or cycle), the nodes that are required to be covered, the objective function and,
eventually, additional side constraints. While historically the focus has been on theoretical properties (see,
e.g., [7, 17, 22]), recently, computational studies as well as the applications associated to these problems
(ranging from telecommunication network design to facility location) have also been addressed (see, e.g., [1,
5, 19]).

In this paper we look at the maximum covering cycle problem (MCCP), which was recently introduced
by Grosso et al. [15]. The problems is defined as follows. Let G = (V,E) be an undirected graph and C ⊆ V
be a cycle in G. The cycle C is said to cover a node v ∈ V , if either v is on the cycle C or it is adjacent to
it. The goal of the MCCP is to find a cycle in G, which covers the maximum number of nodes. Let C be the
set of all cycles of G and f(V ′) = {v ∈ V |v ∈ V ′ ∨ ∃{v, v′} ∈ E : v′ ∈ V ′}. The problem, which was shown
to be NP-hard in general graphs, can be formally stated as

max |f(C)|
s.t., C ∈ C.

Note that the problem is trivial in complete graphs, as any single node covers all other nodes. It is also
trivial if the graph is a star, as the center node of the star covers all nodes. Moreover, if the graph contains

∗ealvarez@utalca.cl
†markus.sinnl@univie.ac.at

1

a Hamiltonian cycle, this Hamiltonian cycle is (one) optimal solution. Figure 1 shows an instance of the
problem and a feasible solution.

A

B C

D E

F GH

I

(a) Instance of the MCCP

C

A

B

D E

F GH

I

(b) Solution of the MCCP

Figure 1: An exemplary instance and a feasible solution for the MCCP. The nodes covered in the solution
are black, and the cycle constituting the solution is given by the black edges.

To solve the MCCP, the authors of [15] propose a cutting plane approach based on Integer Linear
Programming (ILP), which we briefly sketch in the following. Let binary variable ui ∈ {0, 1} be a binary
variable so that ui == 1 iff node i ∈ V is covered by the cycle, and let wi ∈ {0, 1} be a binary variable so
that wi = 1, iff node i ∈ V is on the cycle. Let A be the set of arcs obtained by bi-directing the edges E,
i.e., A = {(i, j), (j, i) : {i, j} ∈ E}. Thus, let xij ∈ {0, 1} be a binary variable, so that xij = 1 iff arc (i, j)
is on the cycle. The following formulation for the MCCP follows classic modeling techniques from, e.g., the
asymmetric traveling salesman problem (ATSP, see, e.g., [3]), and the generalized TSP (see, e.g., [11]);

max
∑
i∈V

ui (1)

s.t. xij + xji ≤ 1 ∀{i, j} ∈ E (2)

wi +
∑

j:{i,j}∈E

wj ≥ ui ∀i ∈ V (3)

∑
(i,j)∈A

xij = wi ∀i ∈ V (4)

∑
(j,i)∈A

xji = wi ∀i ∈ V (5)

∑
i∈S

∑
j∈V \S

xij +
∑
j∈S

∑
j∈V \S

xij ≥ 2(wk + wl − 1)

∀S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2 (6)

ui, wi ∈ {0, 1}, ∀i ∈ V and xij ∈ {0, 1}, ∀(i, j) ∈ A (7)

Constraints (2) ensure that, for each edge, only one of the arc-variables xij and xji is taken. Constraints (3)
make sure that either node i or at least one of its adjacent nodes is in the cycle, if i is chosen as covered.
Constraints (4) and (5) ensure that every node on the cycle has exactly one ingoing and outgoing arc,
respectively. Constraints (6) are subtour elimination constraints. these constraints are of exponential size.
Finally, constraints (7) provide the variables nature. In the approach proposed in Grosso et al. [15], the
authors remove the subtour or cycle elimination constraints (6) to obtain a compact formulation. Integer
solutions to this relaxed formulation give a set of disjoint cycles. Hence, their algorithm works by iteratively
solving the relaxed formulation (to integer optimality). The cycle giving the largest coverage is stored as
incumbent solution, and the constraints forbidding the cycles found in the previous iterations are added.
The algorithm terminates when the objective of the relaxed formulation (with the added cycle elimination

2

constraints) is larger then the objective of the incumbent. Note that this proves optimality of the incumbent
and that the algorithm is finite. The authors enhance their approach by heuristically creating additional
cycles, for which the corresponding cycle elimination constraints are also added.

Contribution and Paper Outline In this paper, we develop a solution framework for the MCCP based
on ILP. The framework is based on an exponential-sized ILP formulation, which is solved by means of a
branch-and-cut scheme. A computational study on instances from the literature and additional instances is
carried out in order to assess the efficiency of our approach. The study shows that our algorithm outperforms
the approach by Grosso et al. [15]. Moreover, most of the instances can be solved within a few seconds.

In the remainder of this section, we discuss related work. In Section 2 we present our ILP model along
with additional valid inequalities. Section 3 contains the description of our algorithmic framework, including
separation algorithms and a primal heuristic. The computational results are discussed in Section 4. Finally,
concluding remarks are presented in Section 5.

Related Work As already mentioned in the introduction, connected covering and domination problems
have been studied for a long time. Depending on the application, authors seek for different covering (resp.
dominating) topologies and coverage (resp. domination) protocols.

Complementary, there are of course many problems in literature which are concerned with finding cycles
in a graph, being the travelling salesman problem (TSP) the most famous of them (see, e.g., [10, 18]). In the
TSP, we look for a minimum cost Hamiltonian cycle through all the nodes in the graph. A variant of the
TSP, with covering aspects, is the covering salesman problem (CSP), in which the goal is to find a minimum
cost cycle (a tour), such that every node in the graph is within a certain distance from the cycle. The
problem has been introduced by Current and Schilling [8], where a heuristic is presented. An approximation
algorithm for the geometric version of the CSP is presented in Arkin and Hassin [2], and multi-objective
variants of the problem are considered in Current and Schilling [9]. Furthermore, generalized versions of
the CSP have been proposed, for instance, in [14], [24] and [25]. In Gendreau et al. [13], the covering tour
problem (CTP) is presented. In the CTP, we are concerned with finding a minimum cost tour, which must go
through a given subset of nodes, while the remaining nodes may or may not be on the tour . A bi-objective
variant of the CTP is studied by Jozefowiez et al. [20].

We note that TSP-like problems are usually defined on a complete graph. The MCCP is of course trivial
on such graphs, as any single node already covers all the nodes.

2. ILP-Model and Valid Inequalities

Our approach is based on a slightly different ILP formulation compared to the one proposed in [15]. In our
formulation, we do not bi-direct the edges and, instead, work on the original graph. Let redefine binary
variables xij ∈ {0, 1}, so that xij = 1 iff edge {i, j} ∈ E is in the cycle. Additionally, let yi ∈ {0, 1} be
binary variables such that yi = 1, if node i is on the cycle; and let zi ∈ {0, 1} be binary variables so that
zi = 1, if node i is not on the cycle, but covered by the cycle (i.e., it is covered by being adjacent to a node
on the cycle). Finally, for S ⊂ V , let δ(S) = {{i, j} ∈ E : i ∈ S, j ∈ V \ S}. Considering all these elements,

3

our formulation reads as follows:

max
∑
i∈V

(yi + zi) (OBJ)

s.t. yi + zi ≤ 1, ∀i ∈ V (YZ)∑
j:{i,j}∈E

yj ≥ zi, ∀i ∈ V (COV)

∑
{i,j}∈E

xij = 2yi, ∀i ∈ V (DEG)

∑
e∈δ(S)

xe ≥ 2(yk + yl − 1)

∀S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2. (SEC)

The objective function (OBJ) is the sum of nodes directly on the cycle, and the additional nodes covered by
the cycle. Constraints (YZ) ensure, that a node cannot be both on the cycle, and covered by adjacency to
the cycle. Constraints (COV) ensure that if a node i is selected to be covered by adjacency to the cycle, at
least one adjacent node of i is in the cycle. Constraints (DEG) ensure that every node on the cycle has two
adjacent edges. The subtour-elimination constraints are encoded by (SEC); since there is an exponential
number of them, we separate them on-the-fly. The separation procedure is described in Section 3.1.

The following so-called logic inequalities (see, e.g., [11, 12]) are valid for our formulation;

xij ≤ yi, ∀{i, j} ∈ E, i ∈ V. (LOG)

Moreover, the subtour elimination constraints (SEC) can be lifted in some cases, as detailed by the following
proposition.

Proposition 1. Let S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2. Let K = {v ∈ V |{k, v} ∈ E} and suppose,
K ⊆ S. Then the following inequalities are valid∑

e∈δ(S)

xe ≥ 2(yk + zk + yl − 1). (L-SEC)

Proof. Due to constraints (YZ) only one of yk and zk can be one in a feasible solution. If yk is one, the
inequalities reduce to inequalities (SEC). If instead zk = 1, for at least one of the nodes in K, say m, we
must have ym = 1, due to (COV). As m ∈ S, any feasible solution must fulfill (SEC) defined by m, k and S,
from which follows the validity of (L-SEC).

Let L = {v ∈ V |{l, v} ∈ E}. If L ⊆ V \ S, using the same arguments, (L-SEC) can be further lifted by
additionally adding zl to the term in the parenthesis on right-hand-side. Moreover, if a feasible solution to
the problem is available, an additional lifting is possible as shown in the following proposition.

Proposition 2. Let S ⊂ V, k ∈ S, l ∈ V \ S : 2 ≤ |S| ≤ |V | − 2. Let Z̄ be the objective value of a feasible
solution. Let K2 = {v ∈ V |v ∈ V \S∪v : ∃{v, v′} ∈ E : v′ ∈ V \S}, i.e., the set V \S and all nodes adjacent
to it. If |Z̄| > |K2|, the inequality ∑

e∈δ(S)

xe ≥ 2yl, (L2-SEC)

is valid for the problem.

Proof. Due to |Z̄| > |K2|, the optimal solution cannot be a cycle on the nodes in V \S (plus nodes adjacent
to this cycle). Thus, at least one node in S must be in an optimal solution.

4

Likewise, let L2 = {v ∈ V |v ∈ S ∪ v : ∃{v, v′} ∈ E : v′ ∈ S}, i.e., the set S and all nodes adjacent to it.
If |Z̄| > |L2|, a similar lifting is possible. If both |Z̄| > |K2| and |Z̄| > |L2|, the right-hand-side in (L2-SEC)
can be lifted to two; this means that a solution with objective value of at least Z̄ cannot be a cycle contained
only in S or V \ S, but must contain nodes from both S and V \ S. Finally, if it holds that |Z̄| > |K2| and
|Z̄| > |L2|, then inequalities (L2-SEC) can also be lifted by using the arguments of (L-SEC) for node l; in
this case, the term 2zl can be added to the right-hand-side.

3. Algorithmic Framework

In this section, we give implementation details of our algorithmic framework. Namely, of the separation
procedure for inequalities (SEC) (and its lifted versions), and also the primal heuristic. In contrast to TSP-
like problems, where inequalities (LOG) are usually separated by enumeration, we add them directly at the
initialization, as the instances we are dealing with are sparse (while TSP-like problems normally consider
complete graphs).

3.1 Separation Algorithms

Let (x∗,y∗, z∗) be the solution of the LP-relaxation at a branch-and-bound node. Depending on whether
this solution is fractional or integer, different separation strategies are employed.

Separation of (SEC) for integer solutions. If the solution (x∗,y∗, z∗) is integer, it forms a set of disjoint
cycles, say C1, . . . Cn. For each cycle Ci, we add an inequality (SEC) with S = Ci. As node k, we randomly
chose a node in Ci; as node l, we randomly chose a node in Ci+1 (C0, if i = n).

Separation of (SEC) for fractional solutions. Inequalities (SEC) can be separated in polynomial time,
O(|V |4), by maximum flow-computations (see, e.g., [11]). As this turned out to be too time-consuming
in preliminary computations, we used a heuristic separation instead. In particular, we used the heuristic
from [13]: Construct a maximum spanning tree on G (with edge weights given by the x∗ values) using a
greedy algorithm (in our implementation, we used Kruskal’s algorithm [23]). Whenever an edge e gets added
to the partial tree during the algorithm, we take S, which is the set where e gets added to, as candidate for
a violated inequality (SEC). As node k, we randomly chose a node in S among all nodes with maximum y∗

value in S, and for l, we randomly chose a node in V \ S among all nodes with maximum y∗ value in V \ S.

Separation of (L-SEC) and (L2-SEC). We do not separate (L-SEC) and (L2-SEC) explicitly, but when-
ever we detect a violated inequality (SEC), we check if a lifting is possible. This can be simply done by
checking, if any v ∈ S or V \ S fulfills the condition for (L-SEC), and if S or V \ S fulfills the condition
for (L2-SEC).

3.2 Primal Heuristic

In order to find high-quality solutions during the branch-and-cut, we implemented a primal heuristic, which is
driven by the values of the LP-relaxation in the branch-and-bound nodes. The heuristic works on the support
graph G∗ induced by the LP-solution (x∗,y∗, z∗), i.e., the graph induced by E∗ = {{i, j} ∈ E|x∗ij > 0}.
Using x∗ as weights, we compute a maximum spanning tree on G∗ using Kruskal’s algorithm. Whenever
adding an edge during the course of the algorithm, would induce a cycle C, we check if C gives an improved
primal solution; if yes, we take C as new incumbent.

In addition to the above primal heuristic, whenever we encounter an infeasible integer solution (which
forms a disjoint set of cycles) during the branch-and-bound, we check if any cycle in this solution gives an
improved primal solution (and we take it as incumbent).

5

4. Computational Results

We implemented our framework in C++ and used CPLEX 12.7 for the branch-and-cut. All CPLEX pa-
rameters were left at their default values. The experiments were done on a Xeon CPU with 2.5 GHz using
a single-thread. For each run, we used a timelimit of 600 seconds and a memorylimit of 3GB. The study
in [15] used the same timelimit, but unfortunately does not mention the specifications of the computer.

As benchmark instances, we used a subset of the instances from [15] and also considered additional
instances. We were not able to consider all instances from [15], as not all were available online. Details of
the instance sets are given next:

• Coloring: These are graph coloring instances from ORLIB [4] at http://people.brunel.ac.uk/

~mastjjb/jeb/orlib/colourinfo.html. In [15], the authors state that they used 57 instances from
there. However, directly on ORLIB, we only found 30 instances (gcol1 to gcol30). Additionally, we
included the 79 graph coloring instances available at http://mat.gsia.cmu.edu/COLOR/instances.

html to this set (this webpage was linked in the graph coloring section at ORLIB).

• Benchmark/Random-HC-DLV: These are instances containing a Hamiltonian cycle from http://

wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm. Since they contain a
Hamiltonian cycle, the value of the optimal solution is |V | for all of these instances, and the Hamil-
tonian cycle is an optimal solution (there can also be other optimal solutions). These instances were
used in [15].

• Structured-3col-DLV: These are graph 3-coloring instances from http://wwwinfo.deis.unical.it/

npdatalog/experiments/3-coloring.htm. As well as in [15], we consider three instances from there,
the largest one being comprised by 900 nodes.

• Scale-Free: In [15], the authors created instances based on scale-free graphs (see, e.g., [6]) with up
to 1000 nodes. According to their computational experience, these instances turned out to be the
most difficult ones. As this set of instances was not available online, we created a set of 20 of such
instances (ten with 1000 nodes and ten with 5000 nodes) using the scale-free graph generator available
in NetworkX [16]. The instances are made available online at https://msinnl.github.io/.

• ES250/500FST: As the results below will reveal, our approach can solve all instances from, resp., based
on the ones in [15] within a few seconds. Thus, in order to push our approach to the limit, we looked
at many different graph instances sets available online. In preliminary tests, the set ES250/500FST of
SteinLIB [21], a library of Steiner tree instances, available at http://steinlib.zib.de/showset.php?
ES250FST and http://steinlib.zib.de/showset.php?ES500FST, proved to be the most challenging
of sets containing graphs with a reasonable size (i.e., large enough for yielding difficult ILP problems,
but for which solving the linear relaxation is still not burdensome). This set contains 30 instances.

4.1 Effects of the Framework Ingredients

To study the effects of the proposed enhancements in our framework, we tested the following settings:

• b: Basic setting, where we do not use the primal heuristic and only separate (SEC) for integer solutions.

• bh: b, but with the primal heuristic.

• bhf: Using the primal heuristic and separation of (SEC) also for fractional solution, but no lifting
of (SEC).

• bhfl: bhf, where we also lift inequalities (SEC).

In Figure 2, we show a performance profile plot of the runtime to optimality for all instances and all
settings. Likewise, in Figure 3, we show the performance profile of the optimality gap, which is calculated
as 100 · (zDB − z∗)/z∗, where zDB is the dual bound and z∗ is the best solution found.

6

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/colourinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/colourinfo.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html
http://wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm
http://wwwinfo.deis.unical.it/npdatalog/experiments/hamiltoniancycle.htm
http://wwwinfo.deis.unical.it/npdatalog/experiments/3-coloring.htm
http://wwwinfo.deis.unical.it/npdatalog/experiments/3-coloring.htm
https://msinnl.github.io/
http://steinlib.zib.de/showset.php?ES250FST
http://steinlib.zib.de/showset.php?ES250FST
http://steinlib.zib.de/showset.php?ES500FST

From Figure 2 we see that all settings manage to solve about 75% of the instances within ten seconds.
In general, for most of the instances, there is not much difference in the runtime to optimality between
the different settings, i.e., our branch-and-cut approach is already very effective in its most basic version.
However, setting bhfl manages to solve a few more instances to optimality within the timelimit. Regarding
the instances which cannot be solved within the given timelimit (they are all of the set ES250/500FST, as we
will describe in next section), we can see, from Figure 3, more pronounced differences between the settings.
Every additional ingredient added in our framework improves the performance. Therefore, we conclude
that setting bhfl, which contains all enhancements, is the most effective one for the considered problem.
Therefore, all the results reported in the remainder of the section are obtained with this setting.

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●● ● ●●●●●●●● ●● ● ● ● ● ● ●● ● ●● ●●●●

●●● ● ●● ● ● ●

●

0

25

50

75

100

10 20 50 100 200 600
runtime [s]

#
in

st
an

ce
s

[%
]

Setting
● b

bh

bhf

bhfl

Figure 2: Runtime for different settings

●
●

●
●

●
●

●
●

85

90

95

100

1 10 20 50 80 100
optimality gap [%]

#
in

st
an

ce
s

[%
]

Setting
● b

bh

bhf

bhfl

Figure 3: Optimality gap for different settings

4.2 Detailed Results

In Table 1 we give an overview of the results attained for each instance set. Column t[s] gives the runtime in
seconds, g[%] gives the optimality gap, #BBn gives the number of branch-and-bound nodes, #(SEC) gives

7

the number of separated subtour elimination constraints, while columns #(L-SEC) and #(L2-SEC) report
how often each of the corresponding lifting was successful. Note that for one subtour elimination constraint,
both lifting strategies could be applied (both (L-SEC) and (L2-SEC) can be applied twice; for S and V \S).
The entries associated to each row the table are averages over the corresponding whole instance set. From the
results, we see that all instances, except set ES250/500FST, could be solved to optimality. In particular, and
in contrast to [15], all three instances from Structured-3col-DLV could be solved to optimality. Moreover,
all instances from Coloring could also be solved to optimality, while [15] did only manage to solve 53 out of
57 of this class (recall that we took a superset of the instances from [15]). The runtime and also the number
of branch-and-bound nodes for all instance classes except ES250/500FST is very small. All instances from
sets Benchmark/Random-HC-DLV and Scale-Free were solved in the rootnode.

Table 1: Overview of results by instance class. The table contains the mean values over all instances of a
class.

set t [s] g [%] #BBn #(SEC) #(L-SEC) #(L2-SEC)

Coloring 3.82 0.00 2.60 77.09 57.22 51.85
Benchmark/Random-HC-DLV 0.02 0.00 0.00 1.84 0.37 0.84
Structured-3col-DLV 18.94 0.00 15.67 1869.00 2166.67 1067.67
Scale-Free 54.02 0.00 0.00 37.60 49.05 8.25
ES250/500FST 496.82 8.23 4207.00 19763.77 15104.67 23624.10

In Table 2 we give a detailed overview on the results on the instances from set ES250/500FST, which is
the only class where our algorithm did not find the optimal solution for all instances within the timelimit
(these cases are indicated by TL in column t[s]). We manage to solve eight out of 30 instances of this set
for optimality. For all, except five instances, the gap is under ten percent. In particular, for most of the
instances, the gap is under one percent.

Table 2: Detailed results for instance set ES250/500FST.

name Nodes Edges t [s] UB LB g [%] #BBn #(SEC) #(L-SEC) #(L2-SEC)

es250fst01 623 876 TL 544 543 0.18 16194 7270 4342 9800
es250fst02 542 719 TL 476 473 0.63 16315 16784 6974 25968
es250fst03 543 727 TL 310 182 70.19 4940 25464 38710 10412
es250fst04 604 842 81.66 577 577 0.00 1000 12598 7177 17575
es250fst05 596 832 TL 526 522 0.77 18462 7650 4463 10473
es250fst06 596 824 378.03 493 493 0.00 11169 13993 7598 19717
es250fst07 585 799 TL 550 548 0.36 6214 22924 8123 36952
es250fst08 657 947 TL 637 630 1.11 4684 23771 12186 34622
es250fst09 570 770 TL 534 530 0.75 22173 10574 3626 17135
es250fst10 662 951 7.03 558 558 0.00 37 3917 4847 2906
es250fst11 661 952 TL 522 252 107.14 16 25337 41379 8050
es250fst12 619 872 TL 560 558 0.36 6607 16366 6752 25531
es250fst13 684 993 63.24 589 589 0.00 1060 7501 4729 9886
es250fst14 710 1046 TL 633 631 0.32 3260 20749 13040 27678
es250fst15 713 1053 24.75 640 640 0.00 321 6016 4912 6778
es500fst01 1250 1763 TL 1144 1103 3.72 1682 24772 21644 26727
es500fst02 1408 2056 TL 1347 1302 3.46 902 21837 17413 25205
es500fst03 1337 1933 TL 1264 1104 14.49 667 32613 35753 28256
es500fst04 1296 1879 TL 1247 1158 7.69 471 35571 21095 49193
es500fst05 1172 1627 TL 1088 1058 2.84 1388 30125 18743 40055
es500fst06 1335 1932 TL 1286 1252 2.72 261 24732 20286 27897
es500fst07 1214 1700 TL 1133 1093 3.66 1730 22936 16463 28476
es500fst08 1349 1972 TL 1313 1289 1.86 909 25311 18441 31526
es500fst09 1294 1853 TL 1175 1041 12.87 420 34481 22792 44903
es500fst10 1203 1679 97.04 1050 1050 0.00 644 9179 6670 11155
es500fst11 1274 1808 TL 1187 1179 0.68 1360 29718 16295 42197
es500fst12 1322 1918 TL 1289 1168 10.36 599 21908 24017 19149
es500fst13 1273 1814 TL 1210 1202 0.67 2206 24300 15851 31814
es500fst14 1477 2204 132.70 1436 1436 0.00 0 10948 10729 10446
es500fst15 1334 1927 511.88 1263 1263 0.00 519 23568 18090 28241

8

5. Conclusion

In many applications, such as telecommunications and routing, we are concerned in finding layouts so that
many nodes (e.g., customers) of the underlying graph are covered. In this paper, we study the maximum
covering cycle problem (MCCP), which has been recently introduced by [15]. In the MCCP we are given a
(non-complete) graph, and the goal is to find a cycle such that the number of nodes which are either on the
cycle or adjacent to this cycle is maximized. We design and implement a branch-and-cut framework for the
problem. The framework contains valid inequalities, lifted inequalities and a primal heuristic. In a compu-
tational study, we compare our framework to the approach by [15]. The results reveal that our approach
significantly outperforms the previous approach. In particular, all available instances from literature could
be solved to optimality with our approach.

Regarding further work, the formulation can be easily extended to accommodate for a weighted coverage.
Likewise, the coverage protocol can be extended to more general concepts. However, the primal heuristic
may need non-trivial adaptations to satisfactory work in such cases, and additional valid inequalities could
potentially be derived. It could also be interesting to investigate, if there are certain graphs, where the
proposed formulation gives a complete description. Developing preprocessing tests to reduce the instance
size could be useful. Furthermore, in a real-life setting, is likely that both the set of nodes and links are
subject to uncertainty; therefore, the study of a stochastic or robust version of the problem could be an
worthwhile topic for research. For large-scale instances, solving the Integer Linear Programming formulation
can become a bottleneck, thus the use of Lagrangian relaxation instead of Linear Programming may prove
fruitful to quickly find reasonable dual bounds. The design of (meta)-heuristic approaches to tackle even
larger instances could also be interesting for further work.

Acknowledgements

E.A.-M. acknowledges the support of the Chilean Council of Scientific and Technological Research, CONI-
CYT, through the FONDECYT Grant N.11140060 and through the Complex Engineering Systems Institute
(ICM-FIC:P-05-004-F, CONICYT:FB0816). The research of M.S. was supported by the Austrian Research
Fund (FWF, Project P 26755-N19).

References

[1] A. Aazami. Domination in graphs with bounded propagation: algorithms, formulations and hardness
results. Journal of combinatorial optimization, 19(4):429–456, 2010.

[2] E. M. Arkin and R. Hassin. Approximation algorithms for the geometric covering salesman problem.
Discrete Applied Mathematics, 55(3):197–218, 1994.

[3] E. Balas. The asymmetric assignment problem and some new facets of the traveling salesman polytope
on a directed graph. SIAM Journal on Discrete Mathematics, 2(4):425–451, 1989.

[4] J. E. Beasley. OR-Library: distributing test problems by electronic mail. Journal of the Operational
Research Society, pages 1069–1072, 1990.

[5] A. Bley, I. Ljubić, and O. Maurer. A node-based ilp formulation for the node-weighted dominating
steiner problem. Networks, 69(1):33–51, 2017.

[6] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. Directed scale-free graphs. In Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete Algorithms, pages 132–139. Society for Industrial
and Applied Mathematics, 2003.

9

[7] C. Colbourn and L. Stewart. Permutation graphs: Connected domination and Steiner trees. In S. Hedet-
niemi, editor, Topics on Domination, volume 48 of Annals of Discrete Mathematics, pages 179–189.
1991.

[8] J. R. Current and D. A. Schilling. The covering salesman problem. Transportation Science, 23(3):
208–213, 08 1989.

[9] J. R. Current and D. A. Schilling. The median tour and maximal covering tour problems: Formulations
and heuristics. European Journal of Operational Research, 73(1):114–126, 1994.

[10] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-salesman problem. Journal
of the operations research society of America, 2(4):393–410, 1954.

[11] M. Fischetti, J. Salazar-González, and P. Toth. A branch-and-cut algorithm for the symmetric gener-
alized traveling salesman problem. Operations Research, 45(3):378–394, 1997.

[12] M. Fischetti, J. Salazar-González, and P. Toth. Solving the orienteering problem through branch-and-
cut. INFORMS Journal on Computing, 10:133–148, 1999.

[13] M. Gendreau, G. Laporte, and F. Semet. The covering tour problem. Operations Research, 45(4):
568–576, 1997.

[14] B. Golden, Z. Naji-Azimi, S. Raghavan, M. Salari, and P. Toth. The generalized covering salesman
problem. INFORMS Journal on Computing, 24(4):534–553, 2012.

[15] A. Grosso, F. Salassa, and W. Vancroonenburg. Searching for a cycle with maximum coverage in
undirected graphs. Optimization Letters, 10(7):1493–1504, 2016.

[16] A. Hagberg, P. Swart, and D. Schult. Exploring network structure, dynamics, and function using
networkx. Technical report, Los Alamos National Laboratory (LANL), 2008.

[17] T. Haynes, S. Hedetniemi, and P. Slater. Fundamentals of Domination in Graphs. Pure and Applied
Mathematics. CRC Press, 1st edition, 1998.

[18] K. L. Hoffman, M. Padberg, and G. Rinaldi. Traveling salesman problem. In Encyclopedia of operations
research and management science, pages 1573–1578. Springer, 2013.

[19] I. Jeong. An optimal approach for a set covering version of the refueling-station location problem and
its application to a diffusion model. International Journal of Sustainable Transportation, 11(2):86–97,
2017.

[20] N. Jozefowiez, F. Semet, and E. Talbi. The bi-objective covering tour problem. Computers & Operations
research, 34(7):1929–1942, 2007.

[21] T. Koch, A. Martin, and S. Voß. SteinLib: An updated library on Steiner tree problems in graphs.
Steiner trees in industry, 11:285–326, 2001.

[22] J. Kratochv, A. Proskurowski, and J. Telle. Complexity of graph covering problems. Nordic Journal of
Computing, 5:173–195, 1998.

[23] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

[24] G. Ozbaygin, H. Yaman, and O. Karasan. Time constrained maximal covering salesman problem with
weighted demands and partial coverage. Computers & Operations Research, 76:226–237, 2016.

[25] M. Shaelaie, M. Salari, and Z. Naji-Azimi. The generalized covering traveling salesman problem. Applied
Soft Computing, 24:867–878, 2014.

10

	Introduction
	ILP-Model and Valid Inequalities
	Algorithmic Framework
	Separation Algorithms
	Primal Heuristic

	Computational Results
	Effects of the Framework Ingredients
	Detailed Results

	Conclusion

