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Abstract

In this paper a new routing problem referred to as the Generalized Clustered Orienteering Problem
(GCOP) is studied. The problem is motivated by the mobile phone game Pokémon GO, an augmented
reality game for mobile devices holding a record-breaking reception: within the first month of its release,
more than 100 million users have installed the game on their device. The game’s immense popularity has
spawned several side businesses, including taxi-tours visiting locations where the game can be played, as
well as companies offering to play the game for users during times when they cannot. The GCOP applies
– but is not limited to – these business cases.

Additional applications arise naturally in typical operative transportation problems which necessitate
the availability of tours that are both time-effective and profitable. The studied problem combines
aspects from several well-known routing problems, including the Traveling Salesman Problem (TSP), the
Generalized TSP, and the Orienteering Problem.

In order to solve the GCOP to optimality, a polynomial-sized Mixed-Integer Linear Programming
(MIP) formulation and an exponential-sized MIP formulation are presented. Based on these formula-
tions, branch-and-bound (B&B) and branch-and-cut (B&C) algorithms are developed. The framework
is further enhanced with valid inequalities, a lifting procedure for strengthening inequalities, as well as
initialization and primal heuristics.

The computational performance of the proposed approaches is assessed in an extensive computational
study, using real-world instances that combine crowd-sourced data associated with the Pokémon GO game
with street maps of three European cities, as well as instances derived from the TSPLIB testbed.

1 Introduction and Motivation

The industry of mobile video games is a thriving sector, with revenues expected to be nearly USD 100
billion in 2016, surpassing revenues from more traditional gaming platforms such as consoles and PCs [33].
Augmented reality games are a growing subcategory in this area. In this type of game, the players are
required to perform tasks in the real-world in order to gain points or move to the next game level. The
most prominent example is Pokémon GO; however, many games of the same type exist [8]. Pokémon GO
was released in July 2016 in several zones of the world, holding a record-breaking reception from the mobile
phone users; within the first month of its release, more than 100 millions of users installed the game on their
devices [see 3], leading to more than USD 250 millions in revenues [see 6]. Roughly speaking, the mobile
device of a player (or trainer) is used to capture, battle, and train virtual creatures, known as Pokémon,
who appear in the player’s mobile in augmented reality, i.e., as if they were in the same real-world location
as the player. Among the player’s main goals is the collection of one member from each Pokémon species, as
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well as to catch as many Pokémon as possible. These tasks can be performed by wandering around a city,
aiming to encounter and subsequently catch Pokémon.

The enormous success of the game has allowed the growth of many side business and has enhanced
other industries as well; for instance, in cities such as Edinburgh, taxi drivers offer tourists trips not only
to visit the main sights of the city, but also to the locations of valuable Pokémon [see,e.g., 5]; there are
organized meet-ups to catch Pokémon together with a large group people [9]; moreover, companies have
offered the service to play the game for their customers in order to assist them at enlarging their Pokémon
collections [10]. Note that due to crowd-sourcing activities performed by the game’s users, there exist several
online maps providing real-world locations at which various Pokémon species have been sighted [see, e.g., 2].

In this paper, we show how to model the main task of the Pokémon GO game, i.e., traveling between
locations with the aim of encountering Pokémon, which is also the core of the three real-world business
applications mentioned above, as an optimization problem. The result is a routing problem that combines
features of the Orienteering Problem (OP) [see 31, 45] and the Generalized (or Clustered) Traveling Salesman
Problem (GTSP) [41]. This problem will be denoted as Generalized Clustered Orienteering Problem (GCOP).

In the OP, we are given a root node and the goal is to find a tour which maximizes the (weighted)
number of visited locations, while a budget-constraint for the length of the tour needs to be respected. In
the GTSP, nodes are divided into clusters and the goal is to find a minimum distance tour that visits at
least one element of each cluster.

The Generalized Clustered Orienteering Problem (GCOP) is defined as follows: Besides the typical trav-
eling distances associated with the transportation links, we also have prizes or revenues associated with the
nodes, i.e., a reward that is collected if a node is visited. Additionally, K node subsets (clusters) are given
and we are given a budget B for the length of the tour. The optimization task addressed by the GCOP is
to find an unrooted tour that maximizes the total collected prize while ensuring that (i) at least one node
of each cluster is visited, and (ii) the total distance of the tour does not exceed the budget B.

Note that considering the context of the addressed application, in this work we will focus on the case
where all clusters are disjoint as in the GTSP, but do not require them to form a partition of V , i.e., there
may be some nodes, which are not in any cluster. These nodes may be visited as intermediary nodes to
shorten the length of the tour or to increase the revenue collected by the tour. However, in our problem
definition we do not incorporate these assumptions, as all of the methods presented in this work are also
valid in the more general context.

The GCOP is motivated by the following aspects of the Pokémon GO game: A player aims to complete
his/her Pokémon collection, thus he/she likely wants to plan a Pokémon-catching tour in such a way that for
some Pokémon species of his/her choosing, at least one location where this species is occurring, is visited,
while also maximizing the total number of visited Pokémon locations. Moreover, a player is likely to be
constrained with respect to the effort that can be spent for hunting Pokémon. Such a limitation might be
associated with the amount of time that the user is willing to play, the autonomy of the device battery, or
a maximum quota of data traffic associated with the user’s mobile contract.

Finally, note that we do not impose a fixed root node (as is the case in the OP), since an important
aspect of the game is that certain mechanisms only work if the player travels at walking speed. Thus, our
goal is also to find some starting location in the city, which allows the most efficient tour with respect to
collecting Pokémon. This point is further motivated by the fact that, sometimes, not a single person, but
a group of people wants to walk together, so there is no clear location, e.g., the home of the player, which
can be taken as root node. Note that the GCOP, however, allows for taking into account a fixed root node,
since this can be implicitly imposed by defining a cluster of size one. It follows that the OP is a special case
of the GCOP. As the OP is NP-hard, NP-hardness of the GCOP follows.

In Figure 1(a) an instance of the GCOP with disjoint clusters is shown; clusters are denoted by different
nodes with particular color and shape, while prizes are indicated within each node. A solution for the
problem is shown in Figure 1(b); as can be seen, nodes of each cluster are visited by a partial tour of the
instance.

Aside from the motivating example given above, the GCOP is suitable in transportation settings where
customers (retailers) can be divided into clusters or classes (e.g., shop locations, type of client, geographical
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(a) Instance of the GCOP
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(b) Solution of the GCOP

Figure 1: An exemplary instance and a feasible solution for the GCOP. Prizes are given as numbers of the
nodes; all nodes of a color/shape form a cluster. In this example, all the travel distances associated to the
edges are assumed to be one, and the budget B for the length of the tour is eight.

area, end user stratum, etc.) and different revenues are associated to each of them. In such a setting, it
seems natural to seek for distance-effective routes enabling the collection of as much revenue as possible while
ensuring presence within each of the customer classes. Moreover, the GCOP might appear in applications
where a manufacturer wants to distribute its production to a set of retailers that have not only one, but many
shops or selling points (the set of locations of these shops corresponds to the clusters). The manufacturer
assumes that if a single selling point of a retailer is served, then the retailer will thereafter distribute the
product among the remaining shops. However, if the manufacturer transportation policy allows it, it is also
desirable to visit other selling points of the same retailer; this could make his relation with such retailer more
beneficial (as it saves the retailer transportation cost). In this sense, the prize of the selling point embodies,
for instance, its relative importance with respect to the other shops of the same retailer.

Literature Review on Related Problems As said before, the GCOP combines the Orienteering
Problem (OP), and the Generalized TSP (GTSP).

The first problem, the OP, was proposed in the early eighties [see 44, for one of the earliest references
to the problem]. The problem is motivated by the family of sports with the same name [see 17, and the
references therein]. Generally speaking, in the orienteering problem a competitor starts from an specific
obligatory location (root) and tries to visit as many stations as possible while ensuring to return to the
starting point within a given time bound. Each station has a certain prize so the goal of the competitor
is to maximize the total collected prize. As pointed out in [45], the OP can be regarded as a combination
between the Knapsack Problem and the TSP. Exact algorithms for the OP have been proposed, for instance,
in [24, 28, 29]; likewise, heuristics schemes have been investigated in, e.g., [30, 40, 43]. The reader is referred
to [31] and [45] for thorough reviews on the OP and its variants. Note that, aside of course from the
cluster-requirements, a difference between the OP and the GCOP is that in the latter there is no predefined
starting point; this adds an additional level of generality to the GCOP. Moreover, the GCOP differs from
the Clustered OP, recently proposed in [11], since it is not required to visit all nodes of a cluster to gain its
prize, and there is no fixed starting point.

The second problem, the GTSP, was first proposed back in the late sixties [41]. In the GTSP, nodes are
partitioned into clusters and the goal is to find a minimum distance tour that visits at least one element from
each cluster. Exact approaches have been proposed for the symmetric counterpart of the problem in [27]
and [35], and also for the asymmetric counterpart [36]. Applications of the GTSP are discussed in [34].

Another related problem is the Prize-Collecting TSP, which was originally proposed by [13]; it corre-
sponds to finding a tour that minimizes the sum of the travel costs and the non-collected prizes, while
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visiting enough cities to collect a prescribed amount of the prizes (a quota). The author studied structural
properties of the corresponding Mixed Integer Programming (MIP) polytope, and provided several families
of facet-defining inequalities for it. From the algorithmic point of view, the problem has been approached
by approximation algorithms [see, e.g., 12, 16], relaxations and bounding procedures [see 21, 26], heuristic
schemes [see, e.g., 22], and exact algorithms [see 15].

Our Contribution and Paper Outline Although the GCOP shares common aspects with other prob-
lems, the presence of clusters and the lack of an obligatory starting node make the problem much more
general than the previously proposed models. The main contribution of this paper is the formulation of the
GCOP using two MIP models and the design of corresponding branch-and-bound (B&B) and branch-and-cut
(B&C) algorithms based on these two MIP formulations. Concretely, we provide a polynomial-sized MIP
formulation and an exponential-sized MIP formulation. The framework is enhanced with valid inequalities,
and initialization and construction heuristics. The heuristics are employed in both algorithms.

By using instances based on crowd-sourced data for the Pokémon GO game in Vienna, Budapest and
London, as well as instances generated from the TSPLIB, the state-of-the-art TSP testbed, we show the
effectiveness of our proposed schemes to solve large-scale, real-world-based instances.

The paper is organized as follows. A formal definition of the problem and two MIP formulations are
given in Section 2. Section 3 lists implementation details of our solution framework. In Section 4 we report
computational results attained by the proposed algorithms on synthetic and real-world instances. Finally,
conclusions and paths for future research are drawn in Section 5.

2 MIP Formulations for the GCOP

2.1 Problem Definition and Notation

Let G = (V,E) be an undirected transportation network with node set V (|V | = n) and edge set E (|E| = m).
Moreover, let C = {C1, . . . , CK} denote a (not necessarily disjoint) collection of K node subsets Ck ⊂ V
referred to as clusters. The prize function p : V → Rn≥0 defines the prize collected if node i ∈ V is visited.
The distance function d : E → Rm≥0, associates a travel distance to each edge e ∈ E. The GCOP is defined
as the problem of finding a tour T = (ET , VT ) ⊂ G such that (i) at least one element of each cluster is
visited, (ii) its traveled distance does not exceed a given bound B (i.e.,

∑
e∈ET

de ≤ B), (iii) and the amount
of collected prizes,

∑
i∈VT

pi, is maximized.
For modeling the GCOP as MIP problem, the following notation is used. Let y ∈ {0, 1}n be a vector of

binary variables such that yi = 1 if node i ∈ V is visited by the solution, and yi = 0 otherwise; complementary,
let x ∈ {0, 1}m be a vector of binary variables such that xe = 1 if edge e ∈ E is used in the solution, and
xe = 0 otherwise. A vector (y,x) ∈ {0, 1}n+m defines a feasible solution if the following constraints are
fulfilled: ∑

e∈δ(i)

xe = 2yi, ∀ i ∈ V (DEGREE)

∑
i∈Ck

yi ≥ 1, ∀ k = {1, . . . ,K} (CLUSTER)

∑
e∈E

dexe ≤ B (BUDGET)

(y,x) contains no subtour. (NO-SUBTOUR)

Constraints (DEGREE) ensure that the number of solution edges incident to a node i is exactly two
(
∑
e∈δ(i) xe = 2) if the node is visited (yi = 1), or zero (

∑
e∈δ(i) xe = 0) if not (yi = 0). The condition

that at least one node of every cluster must be visited is modeled by (CLUSTER). Constraint (BUDGET)
ensures that the tour satisfies the given budget. Finally, (NO-SUBTOUR) states in a generic way that the
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solution is not allowed to contain subtours. Hence, with these constraints the GCOP can be modeled as

p∗ = max

{∑
i∈V

piyi

∣∣∣∣(DEGREE)-(NO-SUBTOUR), (y,x) ∈ {0, 1}n+m
}
. (MIP)

There are several MIP alternatives to model (NO-SUBTOUR). In this paper we will consider two
modeling alternatives; one based on the so-called Miller-Tucker-Zemlin (MTZ) constraints [see 38], and one
based on (generalized) subtour elimination constraints (GSECS) [see 37]. On the one hand, a MTZ-based
formulation has polynomial size, i.e., it can be directly given to a state-of-the-art black-box MIP solver to
tackle it, but usually gives rather poor bounds. On the other hand, a formulation using GSECs has an
exponential number of constraints and thus requires on-the-fly cut-separation, i.e., branch-and-cut (B&C),
but usually gives much better bounds compared to a MTZ formulation. In the remainder of this section,
these two alternatives are studied.

Regardless of the chosen formulation, we observe that constraints (CLUSTER) can be lifted to∑
i∈Ck

yi ≥ 1 +
∑

e:{i,j}∈E|i,j∈Ck

xe, ∀ k = {1, . . . ,K}. (CLUSTER+)

The correctness of these constraints follows from this observation: if an edge, say e : {i, j} ∈ E, is part of
the tour (xe = 1) and both endpoints belong to the same Ck cluster (i, j ∈ Ck), then at least two nodes in
Ck are visited (

∑
i∈Ck

yi ≥ 2). These lifted constraints are a special case of the GSECs which are discussed
in §(2.2).

Finally, due to the budget-type of constraint (BUDGET), the family of so-called cover inequalities are
valid for the (MIP) formulation. Let C be a set of edges whose total distance exceeds the bound B (i.e.,∑
e∈C de > B); clearly, the inequality ∑

e∈C
xe ≤ |C| − 1, (COVER)

must hold. A strengthened variant of inequalities (COVER) can be formulated based on the fact that any
feasible solution forms a tour. Given a tour T = (VT , ET ) whose length exceeds B, the so-called cycle-cover
inequalities, given by ∑

e∈ET

xe ≤
∑
i∈VT

yi − 1, (CYCLECOVER)

have been derived for the OP by [27]. (CYCLECOVER) excludes the cycle in ET and is valid since T is
infeasible due to the budget constraint. In the case of the OP, it is assumed that T contains the root node.
Clearly, these inequalities are also valid for the GCOP if at least one cluster is a subset of VT . This condition
can be relaxed via a prize-based argument; let P (S) =

∑
i∈S pi be the amount of revenue contained in S ⊆ V ,

and LB the objective value of the current incumbent solution. If P (V \VT ) ≤ LB, then a feasible subtour of
strictly better value than LB cannot exist in V \ VT alone. The consequence is that any improving solution
contains at least one node from VT . Note that (CYCLECOVER) may cut off feasible solutions, but only
those with objective value lesser or equal to the incumbent’s, which is acceptable in a B&C context.

2.2 A Polynomial-Sized MIP Formulation for the GCOP

We first give a compact, i.e., polynomial-sized model extending the well-known MTZ constraints [see 38] to
our unrooted, prize-collecting setting. Note that MTZ constraints are often used for modeling the TSP and
related problems. As said before, such a compact formulation allows the direct use of any off-the-shelf MIP
solver without the need of implementing cutting plane separation procedures. This may be preferable if a
practitioner wants to solve the GCOP without too much effort. However, note that formulations using MTZ
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constraints are usually (much) weaker than formulations using GSECs, and thus are typically effective only
on instances of limited size [see, e.g., 14].

The proposed MTZ-based formulation is an extended formulation, i.e., besides y and x, additional
variables are required. First, let us consider the bi-directed counterpart of G, GA = (V,A), where A =
{(i, j), (j, i) | ∀e : {i, j} ∈ E}; likewise, for a given S ⊆ V , let δ+(S) = {(i, j) ∈ A|i ∈ S, j ∈ V \ S} (outgoing
arcs from S) and δ−(S) = {(i, j) ∈ A|i ∈ V \ S, j ∈ S} (incoming arcs to S). Since the tour must visit every
cluster, one can state that the tour shall start from an arbitrary cluster, say C1; hence, let z ∈ {0, 1}|C1|

be a vector of binary variables such that zi = 1 if node i ∈ C1 is the starting node of the tour, and zi = 0
otherwise. Moreover, let u ∈ Zn≥0 be a vector of integer variables such that ui indicates the position in
which node i is visited by the tour, starting at zero. Nodes not in the solution, i.e., with yi = 0 will also get
position zero. Since the underlying graph is now bidirected, let t ∈ {0, 1}|A| be a vector of binary variables
so that tij = 1 if arc (i, j) ∈ A is part of the tour, and tij = 0 otherwise. The tour structure of a pair (y,x)
can be ensured by

(MTZ)
∑

(k,i)∈δ−(i)

tki = yi, ∀i ∈ V (MTZ.1)

∑
(i,j)∈δ+(i)

tij = yi, ∀i ∈ V (MTZ.2)

zi ≤ yi, ∀i ∈ C1 (MTZ.3)∑
i∈V

zi = 1 (MTZ.4)

ui ≤ (n− 1)(1− zi), ∀i ∈ C1 (MTZ.6)

ui ≤ n− 1, ∀i ∈ V (MTZ.7)

ui − uj + ntij ≤ n− 1, ∀(i, j) ∈ A |j /∈C1
(MTZ.8)

ui − uj + n(tij − zj) ≤ n− 1, ∀(i, j) ∈ A |j∈C1 (MTZ.9)

xe = tij + tji, ∀e : {i, j} ∈ E. (MTZ.10)

Constraints (MTZ.1) and (MTZ.2) are the so-called in- and out-degree constraints, they ensure that if a
node, say i ∈ V , is part of the tour (yi = 1), then one incoming and one outgoing arc must be part of
the tour. Constraints (MTZ.3) model the fact that if node i ∈ C1 is selected as starting node of the tour
(zi = 1), then it must be part of the tour (yi = 1). The fact that only one node can serve as starting point of
the tour is embodied by constraint (MTZ.4). Constraints (MTZ.6) ensure that the node selected as starting
node has position zero. The adapted MTZ constraints correspond to (MTZ.7)-(MTZ.9); they ensure that
variables t and y build a tour (whose order is embodied by u) that starts from the node selected as starting
node. Finally, constraints (MTZ.10) translate variables from the arc (t) to the edge space (x).

Additional Valid Inequalities for (MTZ) In the following, lifted variants of some of the inequalities of
formulation (MTZ) are given. Besides, additional valid inequalities which strengthen the formulation (i.e.,
improve the value of its linear programming (LP)-relaxation) or cut off symmetric solutions, are presented.

First, we present a simple-lifting for (MTZ.7) inequalities. Validity follows from the fact that a node i
can only have a position greater than zero if the node i is in the solution; moreover, it can only be in position
n− 1 if an arc from i to the starting node (which must be in C1) is in the solution.

Theorem 1. Inequalities

ui ≤ (n− 2)yi +
∑

(i,j)∈A|j∈C1

tij , ∀ ∈ V (MTZ.7+)

are valid for (MTZ).

The validity of the next constraints relies on the following observation: A node i ∈ V \ C1 can only be
the second node in the tour (i.e., ui = 1), if it is visited from a node in C1, since the starting node is a node
in C1.

6



Theorem 2. Inequalities

2yi ≤ ui +
∑

(j,i)∈A|j∈C1

xji, ∀i ∈ V \ C1 (MTZ.11)

are valid for (MTZ).

Next, we present variants of inequalities (MTZ.8) and (MTZ.9)

Theorem 3. Inequalities

ui − uj + ntij + (n− 2)tji ≤ (n− 1)yi, ∀(i, j) ∈ A |j /∈C1
(MTZ.8+)

and
ui − uj + n(tij − zj) + (n− 2)tji ≤ (n− 1)yi, ∀(i, j) ∈ A |j∈C1

(MTZ.9+)

are valid for (MTZ).

Proof. The validity of the introduction of the (n − 2)tji-term follows from the observation that in case arc
(j, i) is taken in the solution, node j must be on the position strictly before i in the tour. Observe that
a similar lifting has been proposed for the original MTZ constraints for the TSP in [23]. Regarding the
right-hand side of the inequalities, if yi = 0, i.e., node i does not occur in the solution, per design it gets
assigned ui = 0 and clearly all arcs associated with it must be zero.

The following set of constraints, (ASYM), helps to get rid of symmetric solutions, i.e., different feasible
vectors (y,x, t, z,u) which correspond to the same solution when projected back to the original space (y,x).
This situation can occur because different choices of the starting node can give the same tour in the original
space, just with a different ordering u, as we have ui = 0, if zi = 1, i.e., i is chosen as starting node. The
following constraints,

yi +
∑

j∈V |j>i

zj ≤ 1, ∀i ∈ C1, (ASYM)

ensure that of all nodes visited in C1, the one with the smallest index is chosen as root node. Finally, the
following (directed) GSECs of size two,

xij + xji ≤ yi, ∀(i, j) ∈ A, (GSEC-2)

are also valid, since they prevent subtours of size 2.

2.3 An Exponential-Sized MIP Formulation for the GCOP

We now present a different alternative for modeling the tour-structure of the solution; although exponentially
large, this formulation enables the design of more effective algorithmic strategies. For a given subset of nodes
S ⊂ V , let δ(S) = {{i, j} ∈ E|i ∈ S, j ∈ V \ S}, i.e., δ(S) corresponds to the cut-set associated to the cut S.
The constraints∑

e∈δ(S)

xe ≥ 2 (yi + yj − 1) , ∀ i ∈ S, j ∈ V \ S, S ⊂ V |2≤|S|≤n−1, (GSEC)

known as generalized subtour elimination constraints (GSECs) ensure that a pair (y,x) defines a tour on G.
These constraints guarantee that the cut-set δ(S) separating two visited nodes (i from S and j from V \ S)
must be crossed at least twice. We denote the formulation resulting from modeling the generic constraints
(NO-SUBTOUR) by (GSEC) as (CUT ). Note that these constraints are equivalent to those used by [27] for
the generalized TSP. Constraints (GSEC) are exponential in number, meaning that the formulation (CUT )
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cannot be solved directly even for small-sized instances. This calls for a more advanced algorithmic strategy.
A natural option is the dynamic management of the GSECs in a B&C framework, in which these constraints
are separated on-the-fly [see 15, 24, 27, 28, 29, 35, 36, for implementations of this idea for related problems].
The separation of these, and similar, inequalities corresponds to the main component of our algorithmic
framework (see Section 3).

Lifting Inequalities (GSEC) For a given S ⊆ V , let µ(S) = |{k | Ck ⊆ S, ∀k = {1, . . . ,K}}| (the
number of clusters contained in S). Clearly, if µ(S) 6= 0, at least one node in the set S must be in the
solution. Thus, if for a cut S, S and V \ S have µ(S) 6= 0 and µ(V \ S) 6= 0 a least a node in S and V \ S
must be visited in any feasible solution, which leads to the following lifted GSECs (see [27])∑

e∈δ(S)

xe ≥ 2, ∀S ⊂ V |2≤|S|≤n−2 so that µ(S) 6= 0 and µ(V \ S) 6= 0. (GSEC.1)

Similar arguments for µ(S) = 0 and µ(V \ S) 6= 0 lead to the lifted GSECs∑
e∈δ(S)

xe ≥ 2yi, ∀i ∈ S, ∀S ⊂ V |2≤|S|≤n−2 so that µ(S) = 0 and µ(V \ S) 6= 0. (GSEC.2)

The separation of inequalities (GSEC), (GSEC.1) and (GSEC.2) is discussed in the next section. In
contrast to the GTSP, for the GCOP, constraints (GSEC) and (GSEC.2) can be lifted by a prize-based
argument similar to the one used for inequalities (CYCLECOVER) in §2.1. In particular, the condition
µ(S) 6= 0, S ⊂ V can be relaxed to P (V \ S) ≤ LB, with LB being the objective value of the incumbent
solution, since at least one node in S must be in any solution better than the incumbent due to P (V \S) ≤ LB.
Let E(S) = {e : {i, j} ∈ E | i, j ∈ S}. Following [27], in computations we use∑

e∈E(S)

xe ≤
∑

i∈S\{i}

yi − yj + 1,

∀i ∈ S, ∀j ∈ V \ S, ∀S ⊂ V |2≤|S|≤n−2 ,∑
e∈E(S)

xe ≤
∑
i∈S

yi − 1, ∀S ⊂ V |2≤|S|≤n−2 so that µ(S) 6= 0 and µ(V \ S) 6= 0,

∑
e∈E(S)

xe ≤
∑

i∈S\{i}

yi,

∀i ∈ S, ∀S ⊂ V |2≤|S|≤n−2 so that µ(S) = 0 and µ(V \ S) 6= 0.

as equivalent forms of (GSEC), (GSEC.1) and (GSEC.2), respectively, which have less nonzero coefficients.

3 An Algorithmic Framework for the GCOP

We now provide the main elements of the algorithmic framework designed for the GCOP. First we describe
the separation procedures devised for the identification of violated GSECs (GSEC),(GSEC.1), (GSEC.2) and
cycle-cover inequalities (CYCLECOVER). (Note that separation of inequalities (COVER) has been left to
the general-purpose cutting-plane generation procedure of the used MIP-solver.) Afterwards, we outline the
primal heuristic and the initialization heuristic.

GSEC Separation Let (x̃, ỹ) be the LP solution obtained at some node of the B&C tree, and
G̃ = (V,E, x̃) an edge-capacitated graph, where the capacity ce of every e ∈ E corresponds to x̃e. The
GSECs (GSEC), (GSEC.1) and (GSEC.2) can be separated exactly by using max-flow computations on
G̃ (and slightly modified versions of G̃) [see 27, for details]. However, in preliminary computations, exact
separation (for non-integer solutions) turned out to be too time consuming. Thus, following [27], our imple-
mentation handles the separation of inequalities (GSEC), (GSEC.1) and (GSEC.2) via a simple scheme that
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Data: An optimal LP solution (x̃, ỹ), best incumbent objective value LB.
Result: A set of violated inequalities Q.

1 (G, G̃)← constructFlowGraphs(x̃, ỹ)
2 s← chooseRandomElement(arg maxi∈V ỹi)
3 foreach ε ∈ {0.1, 0.01, 0.001} do
4 foreach i ∈ V \ {s}, 2(ys + yi − 1) > ε do

5 (f∗, (S, V \ S), (S′, V \ S′))← maxflow(s, i, G̃)
6 if f∗ + ε < 2(ys + yi − 1) then
7 Q← Q ∪ chooseGSEC(S, V \ S, S′, V \ S′,LB)
8 cs,i ← 2

9 foreach k ∈ {1, . . . ,K} \ C(s) do

10 (f∗, (S, V \ S), (S′, V \ S′))← maxflow(s, t, G̃k)
11 if f∗ + ε < 2ys then
12 Q← Q ∪ chooseGSEC(S, V \ S, S′, V \ S′,LB)
13 cs,t ← 2

14 if Q 6= ∅ then break

15 if Q = ∅ then
16 Q← Q ∪ separateCycleCover(x̃, ỹ)

Algorithm 1: Separation procedure.

is exact under the mild condition that max{ỹi : i ∈ V } = 1, and heuristic otherwise. Note that for integer
(x̃, ỹ), this procedure is exact (and thus correctness of our approach is ensured), since at least one node must
be in any feasible solution due to the cluster constraints (CLUSTER). It requires at most n+m−2 maximum
flow computations, as in this case it can be argued that in order to identify a most violated inequality, it
suffices to consider a node s ∈ V with ỹs = 1 as fixed source.

For this claim, first note that for each violated inequality (GSEC.1), Ck ⊆ S and Ck′ ⊆ V \ S, the
inequality (GSEC.2), Ck ⊆ V \ S and i = s, must have the same degree of violation. A similar argument
can be applied for each inequality (GSEC.2), Ck ⊆ V \ S and i 6= s. Two cases need to be distinguished. If
s ∈ S, then an inequality (GSEC.2) with i = s exists for the same S that is at least as violated. Otherwise
if s ∈ V \ S, there exists an inequality (GSEC) with j = s with the same degree of violation.

Algorithm 1 shows the implemented separation procedure. Notation C(i) is used to denote the set of
cluster indices where node i ∈ V is contained in. In Step 1, capacitated graphs are constructed from the
LP solution. Since the support is usually much smaller than the complete graph, it pays off to consider for
separation only the induced subgraph. Next, the source s is chosen at random from arg maxi∈V ỹi.

To limit the number of inequalities added during each cutting plane iteration, we begin by only separating
those cuts whose degree of violation exceeds a certain threshold ε ∈ {0.1, 0.01, 0.001}. Initially setting ε = 0.1,
the threshold is lowered to the next smaller value only if no inequality with the given degree of violation
exists.

The maximum-flow f∗ is computed by procedure maxflow on G̃ between each pair (s, j), j ∈ V \ {s}.
Clearly, all nodes j having 2(ỹs + ỹj − 1) < ε can be skipped. Our framework applies the preflow-push
maximum-flow algorithm [18]. In addition to the maximum-flow f∗, the used implementation returns two
associated minimum cuts, denoted by (S, V \ S) and (S′, V \ S′). If f∗ + ε < 2(ỹs + ỹj − 1), procedure
chooseGSEC selects between (GSEC), (GSEC.1), and (GSEC.2) based on the contained clusters. It also
takes into account the objective value LB of the incumbent solution to apply the prize-based lifting detailed
in §2.3. If multiple cuts of the same type are identified, the one induced by the minimum cardinality subset
S is added. A similar approach is followed for separation of cuts between s and each cluster that does not
contain s. For each cluster Ck ∈ C, the maximum flow is computed on a modified graph G̃k which contains
an additional artificial node t as sink that is connected to each node in cluster Ck. Each time a violated cut
is identified, the capacity of the edge connecting source and sink is set to 2, which prevents the same cut
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from being separated multiple times. If no violated GSEC inequality has been identified, we try to identify
violated inequalities (CYCLECOVER) as described in the next paragraph. The complexity of the total
separation procedure (including separation of (CYCLECOVER)) is O(n4).

A special case of (GSEC.2) arises when S = {i, j}, in which the inequalities take the following form:

xe ≤ yj ∀e ∈ δ(j), j ∈ S.

In order to decrease the number of cutting plane iterations, the LP is initialized with a subset of these
inequalities which are likely to be tight in an optimal solution. In our implementation, the inequalities
associated to the five cheapest edges incident to each node are added at the beginning of the B&C procedure.

Separation of Inequalities (CYCLECOVER) Inequalities (CYCLECOVER) are separated heuristically
as suggested in [28]. The procedure consists of two steps. First, a maximum spanning tree TMST ⊂ E is
computed based on x̃. Next, each edge e /∈ TMST that induces a cycle when added to TMST is considered.
If the length of the cycle exceeds the budget, and if one of the two conditions detailed in §2.1 is satisfied,
the inequality associated with the cycle is checked for violation.

Primal Heuristic The procedure consists of two steps: (i) construction and (ii) refinement/repair. In
Step (i), given an LP solution (x̃, ỹ), an attempt is made to construct a feasible tour on the subgraph induced
by the node set Ṽ = {i ∈ V : ỹi ≥ 0.5}. Step (ii) is then executed on the whole graph.

For the construction step three complementary schemes have been devised:

1. Farthest/nearest insertion. Adaptations of the TSP construction heuristics to the GTSP have been
proposed in [27]. Applying the same scheme to the GCOP is likely to yield a feasible solution as the
set of visited nodes is minimal, but usually requires additional refinement as the amount of collected
profit is low.

2. Steiner-tree-based construction. The given scheme generalizes the MST-heuristic for the TSP [39].
First, an extended auxiliary graph is constructed from G by adding for each cluster an artificial terminal
node and connecting it to all its members. On the resulting graph a heuristic Steiner tree is computed
using the path-based construction heuristic [42] and modified travel distances d′ scaled by the current
LP solution, i.e., d′e = de(1 − x̃e), e ∈ E. A tour is then defined by choosing a root node at random
and performing a pre-order traversal of the tree. Clearly, the constructed tour visits all clusters and is
likely to satisfy the budget constraint.

3. TSP-based construction. The procedure follows a more aggressive approach than the previous
schemes by computing an optimal TSP tour visiting each node in Ṽ . For this task the state-of-the-art
TSP solver Concorde [see 20] is employed, which finds an optimal tour on the considered benchmark
instances and subgraphs within seconds. If Ṽ is already a good approximation of the nodes visited in
the optimal GCOP tour, this strategy is likely to yield a near-optimal solution. However, both the
budget and cluster constraints may possibly be violated.

The shortcomings of the constructed tours are addressed in Step (ii), in which insertion, deletion and
swap moves are applied exhaustively in order to attain a more profitable and (hopefully) feasible tour. Let
T = (VT , ET ) be the (potentially infeasible) tour constructed in Step (i) and D(VT ) its length. For each node
i ∈ V , a score σi = minj∈VT \{i} dij/pi is computed. Then the following steps (a)-(e) are applied exhaustively
(ties are broken arbitrarily):

(a) Insert i∗ = arg mini∈Ck
σi for each Ck ∩ VT = ∅.

(b) Insert i∗ = arg mini∈V \VT
σi while D(VT ∪ {i∗}) ≤ B.

(c) Delete i∗ = arg maxi∈VT
σi while D(VT ) > B.

(d) Swap i ∈ VT and j /∈ VT whenever σi < σj .
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(e) Perform 2-opt and 3-opt.

The insertion of node i /∈ VT is always performed via cheapest insertion, i.e., the resulting tour visits
i between j, k ∈ VT such that cij + cik − cjk is minimal. The swap move simultaneously performs an
insertion and deletion. Note that these moves alter the set VT , but not the sequence in which nodes are
visited. Although the collected profit is invariant with respect to the order of visits, finding a short tour
may possibly enable further insertion or swap moves. For this purpose the 2-opt and 3-opt improvement
heuristics for the TSP are applied to T .

Construction, and a subsequent refinement, is executed after each cutting plane iteration at the root
node, and thereafter at every tenth (1000th for the MTZ formulation) node of the search tree. In preliminary
experiments, neither construction scheme 1 nor 2 has been found to dominate the other, so in each call to
the heuristic one of these two schemes is selected at random. Since construction scheme 3 has been found to
be relatively time-consuming in some cases, it is only applied after every fifth cutting plane iteration. This
decision is also supported by the fact that a near-optimal set Ṽ is most likely only available during the final
cutting plane iterations.

Initialization Heuristic In order to compute a high quality starting solution for initializing the B&C,
ten iterations of the implemented construction and improvement heuristics are performed. In each iteration,
perturbed distances d̃e, e ∈ E, chosen uniformly from the interval [de, 1.2 de], are used for construction.
Afterwards, local branching [25] is applied to the best solution found as an additional refinement procedure,
in which the presented MIP framework is used to successively explore local neighborhoods defined by the
current incumbent solution via a local branching constraint. Let T = (VT , ET ) be the current incumbent
solution; the constraint ∑

i/∈VT

yi +
∑
i∈VT

(1− yi) ≤ k, (LB)

is added to the MIP model which restricts the search space to solutions that differ by at most k nodes from
the incumbent. In our implementation, we initially set k = 2. If no improving solution is found for the
resulting neighborhood within a time limit of 20 seconds, the neighborhood is successively enlarged in steps
of two, up to k = 6. Each time an improving solution is found, the MIP solver is terminated and restarted
with the neighborhood defined by the new solution and k reset to its initial size. The procedure is repeated
until no improving solution can be found for k = 6 within the time limit. Note that solutions constructed
by the primal heuristic during the B&C are still accepted even if they lie outside the current neighborhood.

Finally, the cutting planes separated in each local branching iteration are globally valid and are thus
stored within a cut pool to be reused in each subsequent iteration. The cut pool is also used to initialize the
final B&C.

4 Computational Results

The algorithmic scheme described in Section 3 has been implemented in C++ and compiled using GCC 4.9,
CPLEX 12.6.3 has been used as a MIP solver, and OGDF [19] has been used for graph data structures. For
solving TSP instances the release 03.12.19 of the Concorde TSP Solver [available in 20] has been used. All
experiments have been performed single-threaded on an Intel Xeon CPU with 2.5 GHz. For each test run a
time limit of one hour and memory limit of 8 GB has been set. Figures displaying maps have been rendered
using Open Street Map [32] and the “Terrain” map tiles by Stamen Design [7]. Unless noted otherwise,
relative optimality gaps listed in all tables are computed as (UB − LB)/LB and given in percent. If a test
run terminated due to the time or memory limit, the cell usually listing the running time contains TL or
ML instead. For computing averages of running times, all runs that terminated due to reaching the memory
limit before the time limit are counted using the full time limit.

Benchmark Instances Two sets of instances have been generated in order to assess the proposed frame-
work’s effectiveness:
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• TSPLIB: The instances have been created based on an adaptation of the CLUSTERING procedure
applied in [27], originally used to generate instances for the GTSP from the TSPLIB [4] testbed.
Given an instance of the symmetric TSP, the procedure can be sketched as follows: First, d|V |/5e
centers are chosen iteratively from V such that each newly selected center maximizes the distance to
each already selected center. Next, each non-center is assigned to its closest center. We adapt this
scheme by enforcing an additional lower bound of 2 on the cluster size in order to cover the most
general case of the GCOP, in which no single starting point can be identified. In total 64 TSPLIB
instances for the symmetric TSP with |V | ≤ 500 have been selected for conversion to GCOP instances.
For almost all of these instances the distance function is Euclidean.

Note that for any given instance of the GCOP, the range of budget values B worth considering lies
between the optimal objective values of the GTSP and TSP for said instance. For the GCOP, smaller
values of B lead to infeasibility, while larger ones will not change the optimal objective value. We
choose B for each instance as combination between the objective value of a feasible GTSP solution
(GTSPFEAS) visiting the node with the smallest index of each cluster, and the optimal TSP solution
(TSPOPT ), i.e., B = α · TSPOPT + (1−α) ·GTSPFEAS , α ∈ {0.25, 0.5, 0.75}. Two different schemes
for assigning profits are considered which have been proposed in [28] for the OP: (i) uniform profits
and (ii) pseudo-random profits between 1 and 100, computed as pi = 1 + 7213 · i mod 100, i ∈ V .

• Pokémon: These instances have been derived from location data associated with the Pokémon GO
game. The original data can be viewed online on the website PokeMapper [1], a global crowd-sourced
map that allows its visitors to display and report locations at which certain Pokémon species have been
sighted. We focus on the set of sightings present within the areas of three European cities: Vienna,
London and Budapest. These cities have been selected based on the property that a large number of
sightings was available within walking distance from the city center.

Per city a complete graph has been generated in which nodes correspond to sighting locations and travel
distances are set to the shortest path distances between locations based on the city’s street network
graph (as obtained from Open Street Map [32]). Note that in general, the resulting distance function
does not satisfy the triangle inequality. In order to make the data suitable for a routing application,
the location information displayed on the website had to be manually curated, as some sightings were
located at coordinates inaccessible from the street network (e.g., within buildings). More specifically,
all sighting locations have been mapped manually to suitably close nodes within the street network
graphs. Finally, concerning the cluster sets necessary to define an instance of the GCOP, note that a
natural clustering is already present within the data, since each sighting location is associated with a
Pokémon type.

Table 1: Pokémon GO data sets.

#locations per cluster
city locations clusters min avg max TSPOPT [km]

Budapest 468 100 1 5.09 29 75.134
London 437 102 1 4.28 35 104.920
Vienna 484 99 1 4.89 21 212.474

Table 1 summarizes the data obtained through this procedure for each city. Although the number of
clusters and their average distribution may appear similar, the data differs significantly with respect to
the spatial distribution of Pokémon sightings and the topological properties of the street network. Due
to the same reasons as detailed for the TSPLIB, an additional post-processing step has been applied in
which all clusters of size one have been eliminated. Nodes belonging to an eliminated cluster remain
part of the instance, but their visit is optional. Column TSPOPT lists the optimal travel distance in
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kilometers for the TSP on the generated graphs. The magnitude of the computed distances makes
apparent that visiting all clusters is likely to be infeasible for a Pokémon GO player traveling by foot.

Therefore, in our computational experiments we consider two scenarios: In the first we define budgets
and profits as for the TSPLIB instances. In the second scenario, which aims to model a more realistic
setting in terms of the Pokémon GO game, we consider variants of each city instance in which only a
subset of all clusters is selected, while all remaining clusters are eliminated, i.e., visiting nodes in these
clusters becomes optional. For the resulting instances, budget B has been chosen based on distances (in
[km]) considered suitable for travel by foot or bike, i.e., B ∈ {10, 15, 20}. As for the TSPLIB instances,
both the uniform and random profit scheme have been considered. However, due to the fact that in
the game’s setting the value of a Pokémon to a player is only determined by its species, random profits
are assigned such that each node within a cluster is of equal profit.

4.1 Comparing (MTZ) and (CUT )

We begin by comparing the performance of formulations (MTZ) and (CUT) within the implemented algo-
rithmic framework. Table 2 shows results on the TSPLIB instances having |V | ≤ 100 for uniform and random
profits. For this class of small-scale instances the performance is similar for each tested α, and thus only
the results for α = 0.5 are shown. Per formulation and instance, the number of B&B nodes (#BBn.), the
relative optimality gap in percent (g [%]) and the running time until proven optimality (t [s.]) are reported.

Table 2: Performance comparison for formulations (MTZ) and (CUT) based on instances generated from
the TSPLIB (α = 0.5) having |V | ≤ 100.

uniform profits random profits
(CUT) (MTZ) (CUT) (MTZ)

instance #BBn. g [%] t [s.] #BBn. g [%] t [s.] #BBn. g [%] t [s.] #BBn. g [%] t [s.]

burma14 0 0.00 1 0 0.00 1 0 0.00 2 0 0.00 1
ulysses16 0 0.00 1 0 0.00 1 0 0.00 6 0 0.00 1
gr17 0 0.00 1 10 0.00 1 0 0.00 1 154 0.00 1
gr21 0 0.00 1 0 0.00 1 0 0.00 7 0 0.00 1
ulysses22 0 0.00 1 0 0.00 1 0 0.00 3 0 0.00 2
gr24 0 0.00 2 0 0.00 1 7 0.00 51 65 0.00 3
fri26 0 0.00 1 0 0.00 1 0 0.00 26 233 0.00 15
bayg29 0 0.00 2 9 0.00 1 7 0.00 66 1964 0.00 22
bays29 0 0.00 2 0 0.00 1 0 0.00 12 80 0.00 3
dantzig42 0 0.00 1 0 0.00 9 0 0.00 43 2607 0.00 66
swiss42 0 0.00 1 7 0.00 13 49 0.00 69 1552 0.00 60
att48 0 0.00 1 13768 0.00 164 0 0.00 26 919012 0.32 TL
gr48 0 0.00 1 3 0.00 13 0 0.00 30 112771 0.00 680
hk48 0 0.00 1 133001 0.00 570 0 0.00 30 411933 1.01 TL
eil51 0 0.00 1 0 0.00 6 43 0.00 127 2077 0.00 64
berlin52 0 0.00 7 4112 0.00 97 0 0.00 19 17566 0.00 260
brazil58 0 0.00 2 142655 3.57 ML 0 0.00 9 354682 0.14 ML
st70 0 0.00 17 15707 0.00 167 162 0.00 219 92167 4.27 ML
eil76 0 0.00 2 0 0.00 25 0 0.00 42 3467 0.00 117
pr76 18563 1.56 TL 347543 6.25 TL 13725 0.00 1929 358909 5.85 TL
gr96 0 0.00 33 79851 1.10 TL 0 0.00 38 143113 0.87 TL
rat99 0 0.00 15 127959 1.23 ML 102 0.00 142 318955 0.77 TL
kroA100 0 0.00 11 207556 3.49 TL 25 0.00 213 234948 5.81 TL
kroB100 0 0.00 11 214600 5.88 TL 59 0.00 156 49763 5.69 ML
kroC100 0 0.00 4 215818 3.41 TL 0 0.00 166 40866 6.59 ML
kroD100 0 0.00 52 79659 5.88 ML 22 0.00 58 300417 3.42 TL
kroE100 0 0.00 129 184395 3.53 TL 178 0.00 219 51831 4.37 ML

(average) 688 0.06 145 65432 1.27 1240 533 0.00 137 126635 1.45 1648

The obtained results clearly indicate the strength of formulation (CUT), which solves to optimality
almost all considered instances within seconds, with little or no branching necessary. The only exception
forms instance pr76, which appears to be much harder than the other instances, despite its comparable size.
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Figure 2: Performance comparison of (CUT) for different budget values (as specified by α) with uniform
(left) and random profits (right). The percentage of instances solved within a certain time is shown.
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In contrast, formulation (MTZ) only manages to achieve results comparable to (CUT) on instances with
up to 30 nodes. For larger instances, the framework fails to solve to optimality in most cases due hitting
the memory or time limit, and the gap upon termination is still relatively large. We conclude that although
model (MTZ) enables the quick enumeration of a vast number of B&B nodes, the provided bounds are too
weak to be competitive with formulation (CUT). Formulation (MTZ) is thus excluded from all subsequent
experiments on instances having |V | > 100.

4.2 Results on instance group TSPLIB

Tables 3–5 list results using formulation (CUT) for α ∈ {0.25, 0.5, 0.75} on instances from group TSPLIB for
|V | > 100. The columns of each table report information in the following order: the name of the associated
TSPLIB instance (instance), the budget computed from α (B), and the number of clusters (|C|). For uniform
and random profits, the meaning of the shown columns is as follows: the best lower bound (LB, marked in
bold if optimal), the number of separated inequalities (GSEC.1) and (GSEC.2) (G1, G2 ), the number of
times an inequality could be strengthened due to the prize-based lifting (Lift.), and the number of separated
inequalities (CYCLECOVER) (CC ). The remaining columns carry the same meaning as for the previous
table. The column (GSEC) has been omitted due to the fact that no inequalities of this type have been
separated. This last fact is attributable mainly to the effective prize-based lifting procedure and to the
careful selection of the GSEC-defining set S for each identified violated inequality. In general, instances with
random profits appear to be computationally more difficult than those with uniform profits. Their structure
also causes much more inequalities of type (CYCLECOVER) to be separated and the prize-based lifting is
also more effective. Naturally, the lifting was most effective on the instances with α = 0.75, as the revenue
that can be collected is higher.

Concerning performance differences with respect to different values of α, Figure 2 summarizes the perfor-
mance of formulation (CUT) on all instances from group TSPLIB. The percentage of instances solved within
a certain time limit is shown for uniform and random profits. On average, uniform instances are clearly
easier to solve than random profit ones. In addition, instances tend to be most difficult for α = 0.5. This
behavior is most noticeable for random profits, where almost 10% less instances can be solved to optimality
within the given time limit.
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(a) Instance Budapest (b) Optimal tour for |C| = 5, B = 10

Figure 3: Instance Budapest and an optimal tour (|C| = 5, B = 10).

4.3 Results on instance group Pokémon

Table 6 reports results on the Pokémon instances where budgets and profits are defined as for the TSPLIB

instances. The column meaning is equivalent to the one detailed at the beginning of the previous subsection.
The results suggest performance similar to the largest TSPLIB instances. Note that the budgets considered
in the instances associated to Table 6 are rather high, and may not be suitable for travel by foot or bike.
Therefore Table 7 list results on smaller budgets and where only a random subset of all clusters has been
selected. In addition, nodes within the same cluster have equal profit. Instances proven infeasible contain
“-” in column LB. For each city clusters are chosen in a way such that the cluster collection of an instance
with few clusters is a subset of the cluster collection of an instance with more clusters. If an instance is
infeasible for a given number of clusters, then the next higher number of clusters is skipped.

Results suggest that the problem becomes much easier for this type of instances, as all but one instance
could be solved to optimality for both uniform and random profits. However, note that the number of
enumerated B&B nodes is in general much higher for random profits. In addition, a much higher number
of inequalities (GSEC.2) is separated, mainly attributable due to the fact that many nodes are now purely
optional, i.e., not contained in any cluster. Preliminary experiments have shown that proper cut management
is crucial for solving these instances efficiently. This includes the use of separation thresholds and the selection
of the minimum cardinality nodeset S.

Figure 3 shows a zoomed-out view of the real-world instance Budapest for five clusters, Figure 3(a), and
a distance budget of ten kilometers. This distance can be traversed by foot in about two hours. Small blue
circles denote nodes not associated to any cluster, while large colored circles denote locations associated to
a specific cluster identified by the corresponding color. An optimal tour is shown as red line in Figure 3(b).
Note that each of the five colors is visited at least once, and clusters of blue nodes are visited preferably.
For the purpose of rendering the tour, the selected edges have been mapped back to the associated shortest
paths in the street network. Note that due to the street map layout, circles and backtracking may appear
in an optimal solution. The figure shows that the top-right corner is rich in profit, but nonetheless is not
visited by the optimal tour due to providing only few nearby cluster nodes. Instead, the tour focuses on
the lower part of the map, from which nodes from all clusters can be reached, and which still provides a
reasonable amount of profit. However, long parts of the tour are traversed where no location is encountered
for some time.
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(a) Optimal tour for |C| = 5, B = 10 (b) Optimal tour for |C| = 10, B = 15

Figure 4: Zoomed-in view of instance Vienna and optimal tours for (|C| = 5, B = 10) and (|C| = 10, B = 15).

Figure 4 shows a zoomed-in view of instance Vienna for two configurations of clusters and budgets. Note
that for the same city cluster collections have been generated in order to form subsets. Thus the images
show how the instance changes when additional clusters are added. Figure 4(a) shows an extreme case in
which the only nearby node from the orange cluster is far away. Figure 4(b) shows the same instance with
an enlarged budget and five additional clusters. We see that with the larger budget, the optimal tour focuses
on the profit-rich city center. The Donau channel is traversed in order to reach a node from the blue cluster.
Figure 5 shows another zoomed-in view of the third instance, London. The view highlights the fact that
an optimal solution might frequently require backtracking in the form of short side-trips for the purpose of
collecting profit aside the main-tour.
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Figure 5: Zoomed-in view of instance London and an optimal tour for (|C| = 5, B = 15).
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5 Conclusions and Future Work

The Pokémon GO game is a prime example of augmented reality games, in which players have to perform
tasks in the real world in order to progress in the game. The enormous success of the game has allowed
the growth of many side business and has enhanced other industries as well; for instance, in cities such
as Edinburgh, taxi drivers offer tourists trips not only to visit the main sights of the city, but also to the
locations of valuable Pokémon [see,e.g., 5]; and companies have offered the service to play the game for their
customers in order to assist them at enlarging their Pokémon collections [10].

In this paper, we introduce the Generalized Clustered Orienteering Problem (GCOP), which is motivated
by the Pokémon GO game. The proposed problem is a generalization of the Orienteering Problem and also
possesses elements of the Generalized Travelling Salesman Problem. Aside from the motivating example of
the Pokémon GO game, it also has applications in more traditional transportation settings.

We present an algorithmic framework for the exact solution of the GCOP. The framework is based
on Mixed-Integer Programming (MIP) models for the problem. Two MIP formulations, one based on the
Miller-Tucker-Zemlin (MTZ) constraints, and the other based on generalized subtour elimination constraints
(GSECs) are devised. The framework is enhanced by valid inequalities, lifting of inequalities, an initialization
heuristic and a primal heuristic.

In order to evaluate the performance of our proposed framework, an extensive computational study is
presented using instances of the well-known TSPLIB data-set, as well as real-life instances based on crowd-
sourced data from the Pokémon GO game for the cities of Vienna, Budapest and London. The results show
that our approach allows to solve real-life instances to optimality within reasonable time.

For further work, it could be interesting to extend the prize-collecting aspect of the problem also to the
clusters, i.e., visiting a cluster is optional, but yields a profit. Moreover, considering a stochastic or robust
version of the problem appears promising as the real-world data may be uncertain due to its crowd-sourced
nature.
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