Gotta (efficiently) catch them all: Pokémon GO meets Orienteering Problems

Eduardo Álvarez-Miranda^{*1}, Martin Luipersbeck^{†2}, and Markus Sinnl^{‡2}

¹DIE, University of Talca, Curico, Chile. ²ISOR, University of Vienna, Vienna, Austria.

Abstract

In this paper a new routing problem referred to as the Generalized Clustered Orienteering Problem (GCOP) is studied. The problem is motivated by the mobile phone game Pokémon GO, an augmented reality game for mobile devices holding a record-breaking reception: within the first month of its release, more than 100 million users have installed the game on their device. The game's immense popularity has spawned several side businesses, including taxi-tours visiting locations where the game can be played, as well as companies offering to play the game for users during times when they cannot. The GCOP applies – but is not limited to – these business cases.

Additional applications arise naturally in typical operative transportation problems which necessitate the availability of tours that are both time-effective and profitable. The studied problem combines aspects from several well-known routing problems, including the Traveling Salesman Problem (TSP), the Generalized TSP, and the Orienteering Problem.

In order to solve the GCOP to optimality, a polynomial-sized Mixed-Integer Linear Programming (MIP) formulation and an exponential-sized MIP formulation are presented. Based on these formulations, branch-and-bound (B&B) and branch-and-cut (B&C) algorithms are developed. The framework is further enhanced with valid inequalities, a lifting procedure for strengthening inequalities, as well as initialization and primal heuristics.

The computational performance of the proposed approaches is assessed in an extensive computational study, using real-world instances that combine crowd-sourced data associated with the Pokémon GO game with street maps of three European cities, as well as instances derived from the TSPLIB testbed.

1 Introduction and Motivation

The industry of mobile video games is a thriving sector, with revenues expected to be nearly USD 100 billion in 2016, surpassing revenues from more traditional gaming platforms such as consoles and PCs [33]. Augmented reality games are a growing subcategory in this area. In this type of game, the players are required to perform tasks in the real-world in order to gain points or move to the next game level. The most prominent example is Pokémon GO; however, many games of the same type exist [8]. Pokémon GO was released in July 2016 in several zones of the world, holding a record-breaking reception from the mobile phone users; within the first month of its release, more than 100 millions of users installed the game on their devices [see 3], leading to more than USD 250 millions in revenues [see 6]. Roughly speaking, the mobile device of a player (or *trainer*) is used to capture, battle, and train virtual creatures, known as *Pokémon*, who appear in the player's mobile in augmented reality, i.e., as if they were in the same real-world location as the player. Among the player's main goals is the collection of one member from each Pokémon species, as

ealvarez@utalca.cl

[†]martin.luipersbeck@univie.ac.at

[‡]markus.sinnl@univie.ac.at

well as to catch as many Pokémon as possible. These tasks can be performed by wandering around a city, aiming to encounter and subsequently catch Pokémon.

The enormous success of the game has allowed the growth of many side business and has enhanced other industries as well; for instance, in cities such as Edinburgh, taxi drivers offer tourists trips not only to visit the main sights of the city, but also to the locations of valuable Pokémon [see,e.g., 5]; there are organized meet-ups to catch Pokémon together with a large group people [9]; moreover, companies have offered the service to play the game for their customers in order to assist them at enlarging their Pokémon collections [10]. Note that due to crowd-sourcing activities performed by the game's users, there exist several online maps providing real-world locations at which various Pokémon species have been sighted [see, e.g., 2].

In this paper, we show how to model the main task of the Pokémon GO game, i.e., traveling between locations with the aim of encountering Pokémon, which is also the core of the three real-world business applications mentioned above, as an optimization problem. The result is a routing problem that combines features of the Orienteering Problem (OP) [see 31, 45] and the Generalized (or Clustered) Traveling Salesman Problem (GTSP) [41]. This problem will be denoted as *Generalized Clustered Orienteering Problem (GCOP)*.

In the OP, we are given a root node and the goal is to find a tour which maximizes the (weighted) number of visited locations, while a budget-constraint for the length of the tour needs to be respected. In the GTSP, nodes are divided into clusters and the goal is to find a minimum distance tour that visits at least one element of each cluster.

The Generalized Clustered Orienteering Problem (GCOP) is defined as follows: Besides the typical traveling distances associated with the transportation links, we also have prizes or revenues associated with the nodes, i.e., a reward that is collected if a node is visited. Additionally, K node subsets (clusters) are given and we are given a budget B for the length of the tour. The optimization task addressed by the GCOP is to find an unrooted tour that maximizes the total collected prize while ensuring that (i) at least one node of each cluster is visited, and (ii) the total distance of the tour does not exceed the budget B.

Note that considering the context of the addressed application, in this work we will focus on the case where all clusters are disjoint as in the GTSP, but do not require them to form a partition of V, i.e., there may be some nodes, which are not in any cluster. These nodes may be visited as intermediary nodes to shorten the length of the tour or to increase the revenue collected by the tour. However, in our problem definition we do not incorporate these assumptions, as all of the methods presented in this work are also valid in the more general context.

The GCOP is motivated by the following aspects of the Pokémon GO game: A player aims to complete his/her Pokémon collection, thus he/she likely wants to plan a Pokémon-catching tour in such a way that for some Pokémon species of his/her choosing, at least one location where this species is occurring, is visited, while also maximizing the total number of visited Pokémon locations. Moreover, a player is likely to be constrained with respect to the effort that can be spent for hunting Pokémon. Such a limitation might be associated with the amount of time that the user is willing to play, the autonomy of the device battery, or a maximum quota of data traffic associated with the user's mobile contract.

Finally, note that we do not impose a fixed root node (as is the case in the OP), since an important aspect of the game is that certain mechanisms only work if the player travels at walking speed. Thus, our goal is also to find some starting location in the city, which allows the most efficient tour with respect to collecting Pokémon. This point is further motivated by the fact that, sometimes, not a single person, but a group of people wants to walk together, so there is no clear location, e.g., the home of the player, which can be taken as root node. Note that the GCOP, however, allows for taking into account a fixed root node, since this can be implicitly imposed by defining a cluster of size one. It follows that the OP is a special case of the GCOP. As the OP is NP-hard, NP-hardness of the GCOP follows.

In Figure 1(a) an instance of the GCOP with disjoint clusters is shown; clusters are denoted by different nodes with particular color and shape, while prizes are indicated within each node. A solution for the problem is shown in Figure 1(b); as can be seen, nodes of each cluster are visited by a partial tour of the instance.

Aside from the motivating example given above, the GCOP is suitable in transportation settings where customers (retailers) can be divided into clusters or classes (e.g., shop locations, type of client, geographical

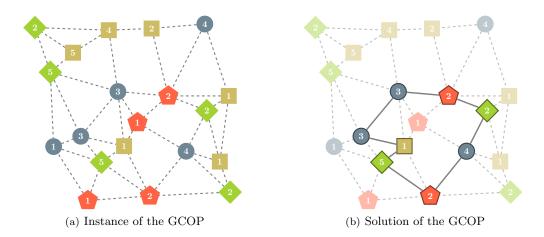


Figure 1: An exemplary instance and a feasible solution for the GCOP. Prizes are given as numbers of the nodes; all nodes of a color/shape form a cluster. In this example, all the travel distances associated to the edges are assumed to be one, and the budget B for the length of the tour is eight.

area, end user stratum, etc.) and different revenues are associated to each of them. In such a setting, it seems natural to seek for distance-effective routes enabling the collection of as much revenue as possible while ensuring presence within each of the customer classes. Moreover, the GCOP might appear in applications where a manufacturer wants to distribute its production to a set of retailers that have not only one, but many shops or selling points (the set of locations of these shops corresponds to the clusters). The manufacturer assumes that if a single selling point of a retailer is served, then the retailer will thereafter distribute the product among the remaining shops. However, if the manufacturer transportation policy allows it, it is also desirable to visit other selling points of the same retailer; this could make his relation with such retailer more beneficial (as it saves the retailer transportation cost). In this sense, the prize of the selling point embodies, for instance, its relative importance with respect to the other shops of the same retailer.

Literature Review on Related Problems As said before, the GCOP combines the Orienteering Problem (OP), and the Generalized TSP (GTSP).

The first problem, the OP, was proposed in the early eighties [see 44, for one of the earliest references to the problem]. The problem is motivated by the family of sports with the same name [see 17, and the references therein]. Generally speaking, in the orienteering problem a competitor starts from an specific obligatory location (root) and tries to visit as many *stations* as possible while ensuring to return to the starting point within a given time bound. Each station has a certain prize so the goal of the competitor is to maximize the total collected prize. As pointed out in [45], the OP can be regarded as a combination between the Knapsack Problem and the TSP. Exact algorithms for the OP have been proposed, for instance, in [24, 28, 29]; likewise, heuristics schemes have been investigated in, e.g., [30, 40, 43]. The reader is referred to [31] and [45] for thorough reviews on the OP and its variants. Note that, aside of course from the cluster-requirements, a difference between the OP and the GCOP is that in the latter there is no predefined starting point; this adds an additional level of generality to the GCOP. Moreover, the GCOP differs from the Clustered OP, recently proposed in [11], since it is not required to visit *all* nodes of a cluster to gain its prize, and there is no fixed starting point.

The second problem, the GTSP, was first proposed back in the late sixties [41]. In the GTSP, nodes are partitioned into clusters and the goal is to find a minimum distance tour that visits at least one element from each cluster. Exact approaches have been proposed for the symmetric counterpart of the problem in [27] and [35], and also for the asymmetric counterpart [36]. Applications of the GTSP are discussed in [34].

Another related problem is the Prize-Collecting TSP, which was originally proposed by [13]; it corresponds to finding a tour that minimizes the sum of the travel costs and the non-collected prizes, while visiting enough cities to collect a prescribed amount of the prizes (a *quota*). The author studied structural properties of the corresponding Mixed Integer Programming (MIP) polytope, and provided several families of facet-defining inequalities for it. From the algorithmic point of view, the problem has been approached by approximation algorithms [see, e.g., 12, 16], relaxations and bounding procedures [see 21, 26], heuristic schemes [see, e.g., 22], and exact algorithms [see 15].

Our Contribution and Paper Outline Although the GCOP shares common aspects with other problems, the presence of clusters and the lack of an obligatory starting node make the problem much more general than the previously proposed models. The main contribution of this paper is the formulation of the GCOP using two MIP models and the design of corresponding branch-and-bound (B&B) and branch-and-cut (B&C) algorithms based on these two MIP formulations. Concretely, we provide a polynomial-sized MIP formulation and an exponential-sized MIP formulation. The framework is enhanced with valid inequalities, and initialization and construction heuristics. The heuristics are employed in both algorithms.

By using instances based on crowd-sourced data for the Pokémon GO game in Vienna, Budapest and London, as well as instances generated from the TSPLIB, the state-of-the-art TSP testbed, we show the effectiveness of our proposed schemes to solve large-scale, real-world-based instances.

The paper is organized as follows. A formal definition of the problem and two MIP formulations are given in Section 2. Section 3 lists implementation details of our solution framework. In Section 4 we report computational results attained by the proposed algorithms on synthetic and real-world instances. Finally, conclusions and paths for future research are drawn in Section 5.

2 MIP Formulations for the GCOP

2.1 Problem Definition and Notation

Let G = (V, E) be an undirected transportation network with node set V(|V| = n) and edge set E(|E| = m). Moreover, let $\mathcal{C} = \{C_1, \ldots, C_K\}$ denote a (not necessarily disjoint) collection of K node subsets $C_k \subset V$ referred to as *clusters*. The prize function $\mathbf{p}: V \to \mathbb{R}^n_{\geq 0}$ defines the prize collected if node $i \in V$ is visited. The distance function $\mathbf{d}: E \to \mathbb{R}^m_{\geq 0}$, associates a travel distance to each edge $e \in E$. The GCOP is defined as the problem of finding a *tour* $T = (E_T, V_T) \subset G$ such that (i) at least one element of each cluster is visited, (ii) its traveled distance does not exceed a given bound B (i.e., $\sum_{e \in E_T} d_e \leq B$), (iii) and the amount of collected prizes, $\sum_{i \in V_T} p_i$, is maximized.

For modeling the GCOP as MIP problem, the following notation is used. Let $\mathbf{y} \in \{0,1\}^n$ be a vector of binary variables such that $y_i = 1$ if node $i \in V$ is visited by the solution, and $y_i = 0$ otherwise; complementary, let $\mathbf{x} \in \{0,1\}^m$ be a vector of binary variables such that $x_e = 1$ if edge $e \in E$ is used in the solution, and $x_e = 0$ otherwise. A vector $(\mathbf{y}, \mathbf{x}) \in \{0,1\}^{n+m}$ defines a feasible solution if the following constraints are fulfilled:

$$\sum_{e \in \delta(i)} x_e = 2y_i, \qquad \forall i \in V \qquad (\text{DEGREE})$$

$$\sum_{i \in C_k} y_i \ge 1, \qquad \qquad \forall k = \{1, \dots, K\}$$
(CLUSTER)

$$\sum_{e \in E} d_e x_e \le B \tag{BUDGET}$$

$$(\mathbf{y}, \mathbf{x})$$
 contains no subtour. (NO-SUBTOUR)

Constraints (DEGREE) ensure that the number of solution edges incident to a node *i* is exactly two $(\sum_{e \in \delta(i)} x_e = 2)$ if the node is visited $(y_i = 1)$, or zero $(\sum_{e \in \delta(i)} x_e = 0)$ if not $(y_i = 0)$. The condition that at least one node of every cluster must be visited is modeled by (CLUSTER). Constraint (BUDGET) ensures that the tour satisfies the given budget. Finally, (NO-SUBTOUR) states in a generic way that the

solution is not allowed to contain subtours. Hence, with these constraints the GCOP can be modeled as

$$\mathbf{p}^* = \max\left\{ \sum_{i \in V} p_i y_i \middle| (\text{DEGREE}) - (\text{NO-SUBTOUR}), (\mathbf{y}, \mathbf{x}) \in \{0, 1\}^{n+m} \right\}.$$
(MIP)

There are several MIP alternatives to model (NO-SUBTOUR). In this paper we will consider two modeling alternatives; one based on the so-called Miller-Tucker-Zemlin (MTZ) constraints [see 38], and one based on (generalized) subtour elimination constraints (GSECS) [see 37]. On the one hand, a MTZ-based formulation has polynomial size, i.e., it can be directly given to a state-of-the-art black-box MIP solver to tackle it, but usually gives rather poor bounds. On the other hand, a formulation using GSECs has an exponential number of constraints and thus requires on-the-fly cut-separation, i.e., branch-and-cut (B&C), but usually gives much better bounds compared to a MTZ formulation. In the remainder of this section, these two alternatives are studied.

Regardless of the chosen formulation, we observe that constraints (CLUSTER) can be lifted to

$$\sum_{i \in C_k} y_i \ge 1 + \sum_{e:\{i,j\} \in E|_{i,j \in C_k}} x_e, \ \forall \ k = \{1, \dots, K\}.$$
 (CLUSTER+)

The correctness of these constraints follows from this observation: if an edge, say $e : \{i, j\} \in E$, is part of the tour $(x_e = 1)$ and both endpoints belong to the same C_k cluster $(i, j \in C_k)$, then at least two nodes in C_k are visited $(\sum_{i \in C_k} y_i \ge 2)$. These lifted constraints are a special case of the GSECs which are discussed in §(2.2).

Finally, due to the budget-type of constraint (BUDGET), the family of so-called cover inequalities are valid for the (MIP) formulation. Let C be a set of edges whose total distance exceeds the bound B (i.e., $\sum_{e \in C} d_e > B$); clearly, the inequality

$$\sum_{e \in C} x_e \le |C| - 1, \tag{COVER}$$

must hold. A strengthened variant of inequalities (COVER) can be formulated based on the fact that any feasible solution forms a tour. Given a tour $T = (V_T, E_T)$ whose length exceeds B, the so-called *cycle-cover* inequalities, given by

$$\sum_{e \in E_T} x_e \le \sum_{i \in V_T} y_i - 1, \qquad (CYCLECOVER)$$

have been derived for the OP by [27]. (CYCLECOVER) excludes the cycle in E_T and is valid since T is infeasible due to the budget constraint. In the case of the OP, it is assumed that T contains the root node. Clearly, these inequalities are also valid for the GCOP if at least one cluster is a subset of V_T . This condition can be relaxed via a prize-based argument; let $P(S) = \sum_{i \in S} p_i$ be the amount of revenue contained in $S \subseteq V$, and LB the objective value of the current incumbent solution. If $P(V \setminus V_T) \leq LB$, then a feasible subtour of strictly better value than LB cannot exist in $V \setminus V_T$ alone. The consequence is that any improving solution contains at least one node from V_T . Note that (CYCLECOVER) may cut off feasible solutions, but only those with objective value lesser or equal to the incumbent's, which is acceptable in a B&C context.

2.2 A Polynomial-Sized MIP Formulation for the GCOP

We first give a *compact*, i.e., polynomial-sized model extending the well-known MTZ constraints [see 38] to our unrooted, prize-collecting setting. Note that MTZ constraints are often used for modeling the TSP and related problems. As said before, such a compact formulation allows the direct use of any off-the-shelf MIP solver without the need of implementing cutting plane separation procedures. This may be preferable if a practitioner wants to solve the GCOP without too much effort. However, note that formulations using MTZ constraints are usually (much) weaker than formulations using GSECs, and thus are typically effective only on instances of limited size [see, e.g., 14].

The proposed MTZ-based formulation is an extended formulation, i.e., besides \mathbf{y} and \mathbf{x} , additional variables are required. First, let us consider the bi-directed counterpart of G, $G_A = (V, A)$, where $A = \{(i, j), (j, i) \mid \forall e : \{i, j\} \in E\}$; likewise, for a given $S \subseteq V$, let $\delta^+(S) = \{(i, j) \in A \mid i \in S, j \in V \setminus S\}$ (outgoing arcs from S) and $\delta^-(S) = \{(i, j) \in A \mid i \in V \setminus S, j \in S\}$ (incoming arcs to S). Since the tour must visit every cluster, one can state that the tour shall start from an arbitrary cluster, say C_1 ; hence, let $\mathbf{z} \in \{0, 1\}^{|C_1|}$ be a vector of binary variables such that $z_i = 1$ if node $i \in C_1$ is the starting node of the tour, and $z_i = 0$ otherwise. Moreover, let $\mathbf{u} \in \mathbb{Z}_{\geq 0}^n$ be a vector of integer variables such that u_i indicates the position in which node i is visited by the tour, starting at zero. Nodes not in the solution, i.e., with $y_i = 0$ will also get position zero. Since the underlying graph is now bidirected, let $\mathbf{t} \in \{0, 1\}^{|A|}$ be a vector of binary variables so that $t_{ij} = 1$ if arc $(i, j) \in A$ is part of the tour, and $t_{ij} = 0$ otherwise. The tour structure of a pair (\mathbf{y}, \mathbf{x}) can be ensured by

$$(MTZ)\sum_{(k,i)\in\delta^{-}(i)}t_{ki}=y_i,\qquad\qquad\forall i\in V\qquad(MTZ.1)$$

$$\sum_{(i,j)\in\delta^+(i)} t_{ij} = y_i, \qquad \forall i \in V \qquad (MTZ.2)$$

$$z_i \le y_i, \qquad \forall i \in C_1 \qquad (MTZ.3)$$

$$\sum z_i = 1 \qquad (MTZ.4)$$

$$V_{i_{i}} \leq (n-1)(1-z_{i}), \qquad \forall i \in C_{1}$$
(MTZ.6)

$$u_i < n-1,$$
 $\forall i \in V$ (MTZ.7)

$$u_i - u_j + nt_{ij} \le n - 1, \qquad \forall (i,j) \in A \mid_{j \notin C_1} \tag{MTZ.8}$$

$$u_i - u_j + n(t_{ij} - z_j) \le n - 1, \qquad \forall (i, j) \in A \mid_{j \in C_1}$$
(MTZ.9)

$$x_e = t_{ij} + t_{ji}, \qquad \forall e : \{i, j\} \in E.$$
 (MTZ.10)

Constraints (MTZ.1) and (MTZ.2) are the so-called in- and out-degree constraints, they ensure that if a node, say $i \in V$, is part of the tour $(y_i = 1)$, then one incoming and one outgoing arc must be part of the tour. Constraints (MTZ.3) model the fact that if node $i \in C_1$ is selected as starting node of the tour $(z_i = 1)$, then it must be part of the tour $(y_i = 1)$. The fact that only one node can serve as starting point of the tour is embodied by constraint (MTZ.4). Constraints (MTZ.6) ensure that the node selected as starting node has position zero. The adapted MTZ constraints correspond to (MTZ.7)-(MTZ.9); they ensure that variables **t** and **y** build a tour (whose order is embodied by **u**) that starts from the node selected as starting node. Finally, constraints (MTZ.10) translate variables from the arc (**t**) to the edge space (**x**).

Additional Valid Inequalities for (MTZ) In the following, lifted variants of some of the inequalities of formulation (MTZ) are given. Besides, additional valid inequalities which strengthen the formulation (i.e., improve the value of its linear programming (LP)-relaxation) or cut off symmetric solutions, are presented.

First, we present a simple-lifting for (MTZ.7) inequalities. Validity follows from the fact that a node i can only have a position greater than zero if the node i is in the solution; moreover, it can only be in position n-1 if an arc from i to the starting node (which must be in C_1) is in the solution.

Theorem 1. Inequalities

$$u_i \le (n-2)y_i + \sum_{(i,j)\in A|_{j\in C_1}} t_{ij}, \ \forall \in V$$
 (MTZ.7+)

are valid for (MTZ).

The validity of the next constraints relies on the following observation: A node $i \in V \setminus C_1$ can only be the second node in the tour (i.e., $u_i = 1$), if it is visited from a node in C_1 , since the starting node is a node in C_1 .

Theorem 2. Inequalities

$$2y_i \le u_i + \sum_{(j,i) \in A|_{j \in C_1}} x_{ji}, \ \forall i \in V \setminus C_1$$
(MTZ.11)

are valid for (MTZ).

Next, we present variants of inequalities (MTZ.8) and (MTZ.9)

Theorem 3. Inequalities

$$u_i - u_j + nt_{ij} + (n-2)t_{ji} \le (n-1)y_i, \ \forall (i,j) \in A \mid_{j \notin C_1}$$
(MTZ.8+)

and

$$u_i - u_j + n(t_{ij} - z_j) + (n - 2)t_{ji} \le (n - 1)y_i, \ \forall (i, j) \in A \mid_{j \in C_1}$$
(MTZ.9+)

are valid for (MTZ).

Proof. The validity of the introduction of the $(n-2)t_{ji}$ -term follows from the observation that in case arc (j,i) is taken in the solution, node j must be on the position strictly before i in the tour. Observe that a similar lifting has been proposed for the original MTZ constraints for the TSP in [23]. Regarding the right-hand side of the inequalities, if $y_i = 0$, i.e., node i does not occur in the solution, per design it gets assigned $u_i = 0$ and clearly all arcs associated with it must be zero.

The following set of constraints, (ASYM), helps to get rid of symmetric solutions, i.e., different feasible vectors $(\mathbf{y}, \mathbf{x}, \mathbf{t}, \mathbf{z}, \mathbf{u})$ which correspond to the same solution when projected back to the original space (\mathbf{y}, \mathbf{x}) . This situation can occur because different choices of the starting node can give the same tour in the original space, just with a different ordering \mathbf{u} , as we have $u_i = 0$, if $z_i = 1$, i.e., *i* is chosen as starting node. The following constraints,

$$y_i + \sum_{j \in V|_{j>i}} z_j \le 1, \quad \forall i \in C_1,$$
 (ASYM)

ensure that of all nodes visited in C_1 , the one with the smallest index is chosen as root node. Finally, the following (directed) GSECs of size two,

$$x_{ij} + x_{ji} \le y_i, \ \forall (i,j) \in A, \tag{GSEC-2}$$

are also valid, since they prevent subtours of size 2.

2.3 An Exponential-Sized MIP Formulation for the GCOP

We now present a different alternative for modeling the tour-structure of the solution; although exponentially large, this formulation enables the design of more effective algorithmic strategies. For a given subset of nodes $S \subset V$, let $\delta(S) = \{\{i, j\} \in E | i \in S, j \in V \setminus S\}$, i.e., $\delta(S)$ corresponds to the *cut-set* associated to the *cut S*. The constraints

$$\sum_{e \in \delta(S)} x_e \ge 2 \left(y_i + y_j - 1 \right), \qquad \forall i \in S, \ j \in V \setminus S, \ S \subset V \mid_{2 \le |S| \le n-1}, \qquad (GSEC)$$

known as generalized subtour elimination constraints (GSECs) ensure that a pair (\mathbf{y}, \mathbf{x}) defines a tour on G. These constraints guarantee that the cut-set $\delta(S)$ separating two visited nodes (*i* from S and *j* from $V \setminus S$) must be crossed at least twice. We denote the formulation resulting from modeling the generic constraints (NO-SUBTOUR) by (GSEC) as (*CUT*). Note that these constraints are equivalent to those used by [27] for the generalized TSP. Constraints (GSEC) are exponential in number, meaning that the formulation (*CUT*) cannot be solved directly even for small-sized instances. This calls for a more advanced algorithmic strategy. A natural option is the dynamic management of the GSECs in a B&C framework, in which these constraints are separated on-the-fly [see 15, 24, 27, 28, 29, 35, 36, for implementations of this idea for related problems]. The separation of these, and similar, inequalities corresponds to the main component of our algorithmic framework (see Section 3).

Lifting Inequalities (GSEC) For a given $S \subseteq V$, let $\mu(S) = |\{k \mid C_k \subseteq S, \forall k = \{1, \ldots, K\}\}|$ (the number of clusters *contained* in S). Clearly, if $\mu(S) \neq 0$, at least one node in the set S must be in the solution. Thus, if for a cut S, S and $V \setminus S$ have $\mu(S) \neq 0$ and $\mu(V \setminus S) \neq 0$ a least a node in S and $V \setminus S$ must be visited in any feasible solution, which leads to the following lifted GSECs (see [27])

$$\sum_{e \in \delta(S)} x_e \ge 2, \ \forall S \subset V \mid_{2 \le |S| \le n-2} \text{ so that } \mu(S) \ne 0 \text{ and } \mu(V \setminus S) \ne 0.$$
 (GSEC.1)

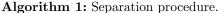
Similar arguments for $\mu(S) = 0$ and $\mu(V \setminus S) \neq 0$ lead to the lifted GSECs

$$\sum_{e \in \delta(S)} x_e \ge 2y_i, \ \forall i \in S, \ \forall S \subset V \mid_{2 \le |S| \le n-2} \ \text{ so that } \mu(S) = 0 \ \text{and} \ \mu(V \setminus S) \ne 0.$$
 (GSEC.2)

The separation of inequalities (GSEC), (GSEC.1) and (GSEC.2) is discussed in the next section. In contrast to the GTSP, for the GCOP, constraints (GSEC) and (GSEC.2) can be lifted by a prize-based argument similar to the one used for inequalities (CYCLECOVER) in §2.1. In particular, the condition $\mu(S) \neq 0, S \subset V$ can be relaxed to $P(V \setminus S) \leq LB$, with LB being the objective value of the incumbent solution, since at least one node in S must be in any solution better than the incumbent due to $P(V \setminus S) \leq LB$. Let $E(S) = \{e : \{i, j\} \in E \mid i, j \in S\}$. Following [27], in computations we use

$$\begin{split} \sum_{e \in E(S)} x_e &\leq \sum_{i \in S \setminus \{i\}} y_i - y_j + 1, \\ &\forall i \in S, \ \forall j \in V \setminus S, \ \forall S \subset V \mid_{2 \leq |S| \leq n-2}, \\ \sum_{e \in E(S)} x_e &\leq \sum_{i \in S} y_i - 1, \ \forall S \subset V \mid_{2 \leq |S| \leq n-2} \text{ so that } \mu(S) \neq 0 \text{ and } \mu(V \setminus S) \neq 0, \\ \sum_{e \in E(S)} x_e &\leq \sum_{i \in S \setminus \{i\}} y_i, \\ &\forall i \in S, \ \forall S \subset V \mid_{2 \leq |S| \leq n-2} \text{ so that } \mu(S) = 0 \text{ and } \mu(V \setminus S) \neq 0. \end{split}$$

as equivalent forms of (GSEC), (GSEC.1) and (GSEC.2), respectively, which have less nonzero coefficients.


3 An Algorithmic Framework for the GCOP

We now provide the main elements of the algorithmic framework designed for the GCOP. First we describe the separation procedures devised for the identification of violated GSECs (GSEC),(GSEC.1), (GSEC.2) and cycle-cover inequalities (CYCLECOVER). (Note that separation of inequalities (COVER) has been left to the general-purpose cutting-plane generation procedure of the used MIP-solver.) Afterwards, we outline the primal heuristic and the initialization heuristic.

GSEC Separation Let $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ be the LP solution obtained at some node of the B&C tree, and $\tilde{G} = (V, E, \tilde{\mathbf{x}})$ an edge-capacitated graph, where the capacity c_e of every $e \in E$ corresponds to \tilde{x}_e . The GSECs (GSEC), (GSEC.1) and (GSEC.2) can be separated exactly by using max-flow computations on \tilde{G} (and slightly modified versions of \tilde{G}) [see 27, for details]. However, in preliminary computations, exact separation (for non-integer solutions) turned out to be too time consuming. Thus, following [27], our implementation handles the separation of inequalities (GSEC), (GSEC.1) and (GSEC.2) via a simple scheme that

Data: An optimal LP solution $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$, best incumbent objective value *LB*. **Result**: A set of violated inequalities *Q*.

```
1 (G, \tilde{G}) \leftarrow \texttt{constructFlowGraphs}(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})
  2 s \leftarrow \texttt{chooseRandomElement}(\arg \max_{i \in V} \tilde{y}_i)
     foreach \varepsilon \in \{0.1, 0.01, 0.001\} do
  3
             foreach i \in V \setminus \{s\}, 2(y_s + y_i - 1) > \varepsilon do
  4
                    (f^*, (S, V \setminus S), (S', V \setminus S')) \leftarrow \max flow(s, i, \hat{G})
  5
                   \begin{array}{l} \text{if } f^* + \varepsilon < 2(y_s + y_i - 1) \text{ then} \\ \mid \quad Q \leftarrow Q \cup \text{chooseGSEC}(S, V \setminus S, S', V \setminus S', LB) \end{array}
  6
  7
                        c_{s,i} \leftarrow 2
  8
             foreach k \in \{1, \ldots, K\} \setminus C(s) do
  9
                   (f^*, (S, V \setminus S), (S', V \setminus S')) \leftarrow \max flow(s, t, \tilde{G}_k)
10
                   if f^* + \varepsilon < 2y_s then
11
                         Q \leftarrow Q \cup 	extsf{chooseGSEC}(S, V \setminus S, S', V \setminus S', LB)
12
                        c_{s,t} \leftarrow 2
13
            if Q \neq \emptyset then break
14
     if Q = \emptyset then
15
           Q \leftarrow Q \cup \texttt{separateCycleCover}(	ilde{\mathbf{x}}, 	ilde{\mathbf{y}})
16
```


is exact under the mild condition that $\max{\{\tilde{y}_i : i \in V\}} = 1$, and heuristic otherwise. Note that for integer $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$, this procedure is exact (and thus correctness of our approach is ensured), since at least one node must be in any feasible solution due to the cluster constraints (CLUSTER). It requires at most n+m-2 maximum flow computations, as in this case it can be argued that in order to identify a most violated inequality, it suffices to consider a node $s \in V$ with $\tilde{y}_s = 1$ as fixed source.

For this claim, first note that for each violated inequality (GSEC.1), $C_k \subseteq S$ and $C_{k'} \subseteq V \setminus S$, the inequality (GSEC.2), $C_k \subseteq V \setminus S$ and i = s, must have the same degree of violation. A similar argument can be applied for each inequality (GSEC.2), $C_k \subseteq V \setminus S$ and $i \neq s$. Two cases need to be distinguished. If $s \in S$, then an inequality (GSEC.2) with i = s exists for the same S that is at least as violated. Otherwise if $s \in V \setminus S$, there exists an inequality (GSEC) with j = s with the same degree of violation.

Algorithm 1 shows the implemented separation procedure. Notation C(i) is used to denote the set of cluster indices where node $i \in V$ is contained in. In Step 1, capacitated graphs are constructed from the LP solution. Since the support is usually much smaller than the complete graph, it pays off to consider for separation only the induced subgraph. Next, the source s is chosen at random from $\max_{i \in V} \tilde{y}_i$.

To limit the number of inequalities added during each cutting plane iteration, we begin by only separating those cuts whose degree of violation exceeds a certain threshold $\epsilon \in \{0.1, 0.01, 0.001\}$. Initially setting $\epsilon = 0.1$, the threshold is lowered to the next smaller value only if no inequality with the given degree of violation exists.

The maximum-flow f^* is computed by procedure maxflow on \tilde{G} between each pair $(s, j), j \in V \setminus \{s\}$. Clearly, all nodes j having $2(\tilde{y}_s + \tilde{y}_j - 1) < \varepsilon$ can be skipped. Our framework applies the preflow-push maximum-flow algorithm [18]. In addition to the maximum-flow f^* , the used implementation returns two associated minimum cuts, denoted by $(S, V \setminus S)$ and $(S', V \setminus S')$. If $f^* + \varepsilon < 2(\tilde{y}_s + \tilde{y}_j - 1)$, procedure chooseGSEC selects between (GSEC), (GSEC.1), and (GSEC.2) based on the contained clusters. It also takes into account the objective value LB of the incumbent solution to apply the prize-based lifting detailed in §2.3. If multiple cuts of the same type are identified, the one induced by the minimum cardinality subset S is added. A similar approach is followed for separation of cuts between s and each cluster that does not contain s. For each cluster $C_k \in C$, the maximum flow is computed on a modified graph \tilde{G}_k which contains an additional artificial node t as sink that is connected to each node in cluster C_k . Each time a violated cut is identified, the capacity of the edge connecting source and sink is set to 2, which prevents the same cut from being separated multiple times. If no violated GSEC inequality has been identified, we try to identify violated inequalities (CYCLECOVER) as described in the next paragraph. The complexity of the total separation procedure (including separation of (CYCLECOVER)) is $O(n^4)$.

A special case of (GSEC.2) arises when $S = \{i, j\}$, in which the inequalities take the following form:

$$x_e \leq y_j \qquad \forall e \in \delta(j), j \in S.$$

In order to decrease the number of cutting plane iterations, the LP is initialized with a subset of these inequalities which are likely to be tight in an optimal solution. In our implementation, the inequalities associated to the five cheapest edges incident to each node are added at the beginning of the B&C procedure.

Separation of Inequalities (CYCLECOVER) Inequalities (CYCLECOVER) are separated heuristically as suggested in [28]. The procedure consists of two steps. First, a maximum spanning tree $T_{MST} \subset E$ is computed based on $\tilde{\mathbf{x}}$. Next, each edge $e \notin T_{MST}$ that induces a cycle when added to T_{MST} is considered. If the length of the cycle exceeds the budget, and if one of the two conditions detailed in §2.1 is satisfied, the inequality associated with the cycle is checked for violation.

Primal Heuristic The procedure consists of two steps: (i) construction and (ii) refinement/repair. In Step (i), given an LP solution $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$, an attempt is made to construct a feasible tour on the subgraph induced by the node set $\tilde{V} = \{i \in V : \tilde{y}_i \ge 0.5\}$. Step (ii) is then executed on the whole graph.

For the construction step three complementary schemes have been devised:

- 1. Farthest/nearest insertion. Adaptations of the TSP construction heuristics to the GTSP have been proposed in [27]. Applying the same scheme to the GCOP is likely to yield a feasible solution as the set of visited nodes is minimal, but usually requires additional refinement as the amount of collected profit is low.
- 2. Steiner-tree-based construction. The given scheme generalizes the MST-heuristic for the TSP [39]. First, an extended auxiliary graph is constructed from G by adding for each cluster an artificial terminal node and connecting it to all its members. On the resulting graph a heuristic Steiner tree is computed using the *path-based construction heuristic* [42] and modified travel distances d' scaled by the current LP solution, i.e., $d'_e = d_e(1 - \tilde{x}_e), e \in E$. A tour is then defined by choosing a root node at random and performing a pre-order traversal of the tree. Clearly, the constructed tour visits all clusters and is likely to satisfy the budget constraint.
- 3. TSP-based construction. The procedure follows a more aggressive approach than the previous schemes by computing an optimal TSP tour visiting each node in \tilde{V} . For this task the state-of-the-art TSP solver Concorde [see 20] is employed, which finds an optimal tour on the considered benchmark instances and subgraphs within seconds. If \tilde{V} is already a good approximation of the nodes visited in the optimal GCOP tour, this strategy is likely to yield a near-optimal solution. However, both the budget and cluster constraints may possibly be violated.

The shortcomings of the constructed tours are addressed in Step (ii), in which *insertion*, *deletion* and *swap* moves are applied exhaustively in order to attain a more profitable and (hopefully) feasible tour. Let $T = (V_T, E_T)$ be the (potentially infeasible) tour constructed in Step (i) and $D(V_T)$ its length. For each node $i \in V$, a score $\sigma_i = \min_{j \in V_T \setminus \{i\}} d_{ij}/p_i$ is computed. Then the following steps (a)-(e) are applied exhaustively (ties are broken arbitrarily):

- (a) Insert $i^* = \arg \min_{i \in C_k} \sigma_i$ for each $C_k \cap V_T = \emptyset$.
- (b) Insert $i^* = \arg \min_{i \in V \setminus V_T} \sigma_i$ while $D(V_T \cup \{i^*\}) \leq B$.
- (c) Delete $i^* = \arg \max_{i \in V_T} \sigma_i$ while $D(V_T) > B$.
- (d) Swap $i \in V_T$ and $j \notin V_T$ whenever $\sigma_i < \sigma_j$.

(e) Perform 2-opt and 3-opt.

The insertion of node $i \notin V_T$ is always performed via *cheapest insertion*, i.e., the resulting tour visits i between $j, k \in V_T$ such that $c_{ij} + c_{ik} - c_{jk}$ is minimal. The swap move simultaneously performs an insertion and deletion. Note that these moves alter the set V_T , but not the sequence in which nodes are visited. Although the collected profit is invariant with respect to the order of visits, finding a short tour may possibly enable further insertion or swap moves. For this purpose the 2-opt and 3-opt improvement heuristics for the TSP are applied to T.

Construction, and a subsequent refinement, is executed after each cutting plane iteration at the root node, and thereafter at every tenth (1000th for the MTZ formulation) node of the search tree. In preliminary experiments, neither construction scheme 1 nor 2 has been found to dominate the other, so in each call to the heuristic one of these two schemes is selected at random. Since construction scheme 3 has been found to be relatively time-consuming in some cases, it is only applied after every fifth cutting plane iteration. This decision is also supported by the fact that a near-optimal set \tilde{V} is most likely only available during the final cutting plane iterations.

Initialization Heuristic In order to compute a high quality starting solution for initializing the B&C, ten iterations of the implemented construction and improvement heuristics are performed. In each iteration, perturbed distances $\tilde{d}_e, e \in E$, chosen uniformly from the interval $[d_e, 1.2 d_e]$, are used for construction. Afterwards, *local branching* [25] is applied to the best solution found as an additional refinement procedure, in which the presented MIP framework is used to successively explore local neighborhoods defined by the current incumbent solution via a *local branching constraint*. Let $T = (V_T, E_T)$ be the current incumbent solution; the constraint

$$\sum_{i \notin V_T} y_i + \sum_{i \in V_T} (1 - y_i) \le k,$$
(LB)

is added to the MIP model which restricts the search space to solutions that differ by at most k nodes from the incumbent. In our implementation, we initially set k = 2. If no improving solution is found for the resulting neighborhood within a time limit of 20 seconds, the neighborhood is successively enlarged in steps of two, up to k = 6. Each time an improving solution is found, the MIP solver is terminated and restarted with the neighborhood defined by the new solution and k reset to its initial size. The procedure is repeated until no improving solution can be found for k = 6 within the time limit. Note that solutions constructed by the primal heuristic during the B&C are still accepted even if they lie outside the current neighborhood.

Finally, the cutting planes separated in each local branching iteration are globally valid and are thus stored within a cut pool to be reused in each subsequent iteration. The cut pool is also used to initialize the final B&C.

4 Computational Results

The algorithmic scheme described in Section 3 has been implemented in C++ and compiled using GCC 4.9, CPLEX 12.6.3 has been used as a MIP solver, and OGDF [19] has been used for graph data structures. For solving TSP instances the release 03.12.19 of the Concorde TSP Solver [available in 20] has been used. All experiments have been performed single-threaded on an Intel Xeon CPU with 2.5 GHz. For each test run a time limit of one hour and memory limit of 8 GB has been set. Figures displaying maps have been rendered using Open Street Map [32] and the "Terrain" map tiles by Stamen Design [7]. Unless noted otherwise, relative optimality gaps listed in all tables are computed as (UB - LB)/LB and given in percent. If a test run terminated due to the time or memory limit, the cell usually listing the running time contains TL or ML instead. For computing averages of running times, all runs that terminated due to reaching the memory limit before the time limit are counted using the full time limit.

Benchmark Instances Two sets of instances have been generated in order to assess the proposed framework's effectiveness: • TSPLIB: The instances have been created based on an adaptation of the CLUSTERING procedure applied in [27], originally used to generate instances for the GTSP from the TSPLIB [4] testbed. Given an instance of the symmetric TSP, the procedure can be sketched as follows: First, $\lceil |V|/5 \rceil$ centers are chosen iteratively from V such that each newly selected center maximizes the distance to each already selected center. Next, each non-center is assigned to its closest center. We adapt this scheme by enforcing an additional lower bound of 2 on the cluster size in order to cover the most general case of the GCOP, in which no single starting point can be identified. In total 64 TSPLIB instances for the symmetric TSP with $|V| \leq 500$ have been selected for conversion to GCOP instances. For almost all of these instances the distance function is Euclidean.

Note that for any given instance of the GCOP, the range of budget values B worth considering lies between the optimal objective values of the GTSP and TSP for said instance. For the GCOP, smaller values of B lead to infeasibility, while larger ones will not change the optimal objective value. We choose B for each instance as combination between the objective value of a feasible GTSP solution $(GTSP_{FEAS})$ visiting the node with the smallest index of each cluster, and the optimal TSP solution (TSP_{OPT}) , i.e., $B = \alpha \cdot TSP_{OPT} + (1 - \alpha) \cdot GTSP_{FEAS}$, $\alpha \in \{0.25, 0.5, 0.75\}$. Two different schemes for assigning profits are considered which have been proposed in [28] for the OP: (i) uniform profits and (ii) pseudo-random profits between 1 and 100, computed as $p_i = 1 + 7213 \cdot i \mod 100, i \in V$.

• Pokémon: These instances have been derived from location data associated with the Pokémon GO game. The original data can be viewed online on the website *PokeMapper* [1], a global crowd-sourced map that allows its visitors to display and report locations at which certain Pokémon species have been sighted. We focus on the set of sightings present within the areas of three European cities: *Vienna*, *London* and *Budapest*. These cities have been selected based on the property that a large number of sightings was available within walking distance from the city center.

Per city a complete graph has been generated in which nodes correspond to sighting locations and travel distances are set to the shortest path distances between locations based on the city's street network graph (as obtained from Open Street Map [32]). Note that in general, the resulting distance function does not satisfy the triangle inequality. In order to make the data suitable for a routing application, the location information displayed on the website had to be manually curated, as some sightings were located at coordinates inaccessible from the street network (e.g., within buildings). More specifically, all sighting locations have been mapped manually to suitably close nodes within the street network graphs. Finally, concerning the cluster sets necessary to define an instance of the GCOP, note that a natural clustering is already present within the data, since each sighting location is associated with a Pokémon type.

			#loca	tions per d	cluster	
city	locations	clusters	min	avg	max	$TSP_{OPT}[\text{km}]$
Budapest	468	100	1	5.09	29	75.134
London	437	102	1	4.28	35	104.920
Vienna	484	99	1	4.89	21	212.474

Table 1: Pokémon GO data sets.

Table 1 summarizes the data obtained through this procedure for each city. Although the number of clusters and their average distribution may appear similar, the data differs significantly with respect to the spatial distribution of Pokémon sightings and the topological properties of the street network. Due to the same reasons as detailed for the TSPLIB, an additional post-processing step has been applied in which all clusters of size one have been eliminated. Nodes belonging to an eliminated cluster remain part of the instance, but their visit is optional. Column TSP_{OPT} lists the optimal travel distance in

kilometers for the TSP on the generated graphs. The magnitude of the computed distances makes apparent that visiting all clusters is likely to be infeasible for a Pokémon GO player traveling by foot.

Therefore, in our computational experiments we consider two scenarios: In the first we define budgets and profits as for the TSPLIB instances. In the second scenario, which aims to model a more realistic setting in terms of the Pokémon GO game, we consider variants of each city instance in which only a subset of all clusters is selected, while all remaining clusters are eliminated, i.e., visiting nodes in these clusters becomes optional. For the resulting instances, budget B has been chosen based on distances (in [km]) considered suitable for travel by foot or bike, i.e., $B \in \{10, 15, 20\}$. As for the TSPLIB instances, both the uniform and random profit scheme have been considered. However, due to the fact that in the game's setting the value of a Pokémon to a player is only determined by its species, random profits are assigned such that each node within a cluster is of equal profit.

4.1 Comparing (MTZ) and (CUT)

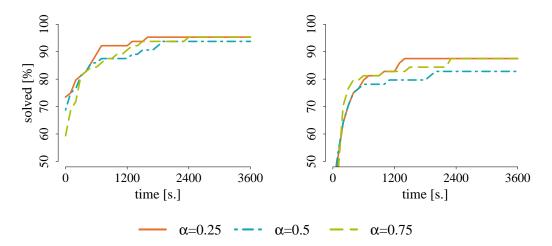

We begin by comparing the performance of formulations (MTZ) and (CUT) within the implemented algorithmic framework. Table 2 shows results on the TSPLIB instances having $|V| \leq 100$ for uniform and random profits. For this class of small-scale instances the performance is similar for each tested α , and thus only the results for $\alpha = 0.5$ are shown. Per formulation and instance, the number of B&B nodes (#BBn.), the relative optimality gap in percent (g[%]) and the running time until proven optimality (t[s.]) are reported.

Table 2: Performance comparison for formulations (MTZ) and (CUT) based on instances generated from the TSPLIB ($\alpha = 0.5$) having $|V| \leq 100$.

$= \frac{\omega}{\omega}$	0.0) 1141	0 '	1									
		u	niforr	n profits				r_{c}	indom	profits		
	$(\mathbf{C}$	CUT)		(1	MTZ)			(CUT)		(MTZ)	
instance	#BBn.	g[%]	t[s.]	#BBn.	g[%]	t[s.]	#BBn	. $g[\%]$	t[s.]	#BBn.	g[%]	t[s.]
burma14	0	0.00	1	0	0.00	1		0.00	2	0	0.00	1
ulysses16	0	0.00	1	0	0.00	1		0.00	6	0	0.00	1
gr17	0	0.00	1	10	0.00	1		0.00	1	154	0.00	1
gr21	0	0.00	1	0	0.00	1		0.00	7	0	0.00	1
ulysses22	0	0.00	1	0	0.00	1		0.00	3	0	0.00	2
gr24	0	0.00	2	0	0.00	1		0.00	51	65	0.00	3
fri26	0	0.00	1	0	0.00	1		0.00	26	233	0.00	15
bayg29	0	0.00	2	9	0.00	1		0.00	66	1964	0.00	22
bays29	0	0.00	2	0	0.00	1		0.00	12	80	0.00	3
dantzig42	0	0.00	1	0	0.00	9		0.00	43	2607	0.00	66
swiss42	0	0.00	1	7	0.00	13	4	0.00	69	1552	0.00	60
att48	0	0.00	1	13768	0.00	164		0.00	26	919012	0.32	TL
gr48	0	0.00	1	3	0.00	13		0.00	30	112771	0.00	680
hk48	0	0.00	1	133001	0.00	570		0.00	30	411933	1.01	TL
eil51	0	0.00	1	0	0.00	6	4	3 0.00	127	2077	0.00	64
berlin52	0	0.00	7	4112	0.00	97		0.00	19	17566	0.00	260
brazil58	0	0.00	2	142655	3.57	ML		0.00	9	354682	0.14	ML
st70	0	0.00	17	15707	0.00	167	16	2 0.00	219	92167	4.27	ML
eil76	0	0.00	2	0	0.00	25		0.00	42	3467	0.00	117
pr76	18563	1.56	TL	347543	6.25	TL	1372	5 0.00	1929	358909	5.85	TL
gr96	0	0.00	33	79851	1.10	TL		0.00	38	143113	0.87	TL
rat99	0	0.00	15	127959	1.23	ML	10	2 0.00	142	318955	0.77	TL
kroA100	0	0.00	11	207556	3.49	TL	2	5 0.00	213	234948	5.81	TL
kroB100	0	0.00	11	214600	5.88	TL	5	0.00	156	49763	5.69	ML
kroC100	0	0.00	4	215818	3.41	TL		0.00	166	40866	6.59	ML
kroD100	0	0.00	52	79659	5.88	ML	2	2 0.00	58	300417	3.42	TL
kroE100	0	0.00	129	184395	3.53	TL	17	8 0.00	219	51831	4.37	ML
(average)	688	0.06	145	65432	1.27	1240	53	3 0.00	137	126635	1.45	1648

The obtained results clearly indicate the strength of formulation (CUT), which solves to optimality almost all considered instances within seconds, with little or no branching necessary. The only exception forms instance pr76, which appears to be much harder than the other instances, despite its comparable size.

Figure 2: Performance comparison of (CUT) for different budget values (as specified by α) with uniform (left) and random profits (right). The percentage of instances solved within a certain time is shown.

In contrast, formulation (MTZ) only manages to achieve results comparable to (CUT) on instances with up to 30 nodes. For larger instances, the framework fails to solve to optimality in most cases due hitting the memory or time limit, and the gap upon termination is still relatively large. We conclude that although model (MTZ) enables the quick enumeration of a vast number of B&B nodes, the provided bounds are too weak to be competitive with formulation (CUT). Formulation (MTZ) is thus excluded from all subsequent experiments on instances having |V| > 100.

4.2 Results on instance group TSPLIB

Tables 3–5 list results using formulation (CUT) for $\alpha \in \{0.25, 0.5, 0.75\}$ on instances from group TSPLIB for |V| > 100. The columns of each table report information in the following order: the name of the associated TSPLIB instance (*instance*), the budget computed from α (*B*), and the number of clusters (|C|). For uniform and random profits, the meaning of the shown columns is as follows: the best lower bound (*LB*, marked in bold if optimal), the number of separated inequalities (GSEC.1) and (GSEC.2) (*G1*, *G2*), the number of times an inequality could be strengthened due to the prize-based lifting (*Lift.*), and the number of separated inequalities (CYCLECOVER) (*CC*). The remaining columns carry the same meaning as for the previous table. The column (GSEC) has been omitted due to the fact that no inequalities of this type have been separated. This last fact is attributable mainly to the effective prize-based lifting procedure and to the careful selection of the GSEC-defining set *S* for each identified violated inequality. In general, instances with random profits appear to be computationally more difficult than those with uniform profits. Their structure also causes much more inequalities of type (CYCLECOVER) to be separated and the prize-based lifting is also more effective. Naturally, the lifting was most effective on the instances with $\alpha = 0.75$, as the revenue that can be collected is higher.

Concerning performance differences with respect to different values of α , Figure 2 summarizes the performance of formulation (CUT) on all instances from group TSPLIB. The percentage of instances solved within a certain time limit is shown for uniform and random profits. On average, uniform instances are clearly easier to solve than random profit ones. In addition, instances tend to be most difficult for $\alpha = 0.5$. This behavior is most noticeable for random profits, where almost 10% less instances can be solved to optimality within the given time limit.

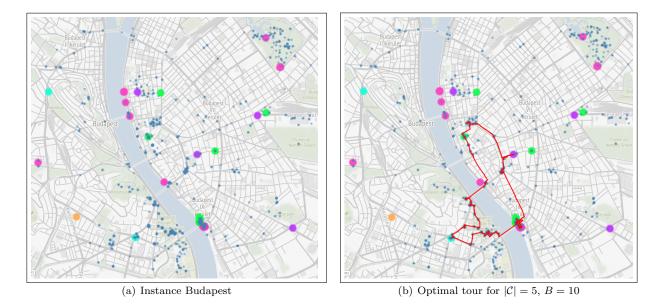


Figure 3: Instance Budapest and an optimal tour $(|\mathcal{C}| = 5, B = 10)$.

4.3 Results on instance group Pokémon

Table 6 reports results on the Pokémon instances where budgets and profits are defined as for the TSPLIB instances. The column meaning is equivalent to the one detailed at the beginning of the previous subsection. The results suggest performance similar to the largest TSPLIB instances. Note that the budgets considered in the instances associated to Table 6 are rather high, and may not be suitable for travel by foot or bike. Therefore Table 7 list results on smaller budgets and where only a random subset of all clusters has been selected. In addition, nodes within the same cluster have equal profit. Instances proven infeasible contain "-" in column *LB*. For each city clusters are chosen in a way such that the cluster collection of an instance with few clusters is a subset of the cluster collection of an instance with more clusters. If an instance is infeasible for a given number of clusters, then the next higher number of clusters is skipped.

Results suggest that the problem becomes much easier for this type of instances, as all but one instance could be solved to optimality for both uniform and random profits. However, note that the number of enumerated B&B nodes is in general much higher for random profits. In addition, a much higher number of inequalities (GSEC.2) is separated, mainly attributable due to the fact that many nodes are now purely optional, i.e., not contained in any cluster. Preliminary experiments have shown that proper cut management is crucial for solving these instances efficiently. This includes the use of separation thresholds and the selection of the minimum cardinality nodeset S.

Figure 3 shows a zoomed-out view of the real-world instance Budapest for five clusters, Figure 3(a), and a distance budget of ten kilometers. This distance can be traversed by foot in about two hours. Small blue circles denote nodes not associated to any cluster, while large colored circles denote locations associated to a specific cluster identified by the corresponding color. An optimal tour is shown as red line in Figure 3(b). Note that each of the five colors is visited at least once, and clusters of blue nodes are visited preferably. For the purpose of rendering the tour, the selected edges have been mapped back to the associated shortest paths in the street network. Note that due to the street map layout, circles and backtracking may appear in an optimal solution. The figure shows that the top-right corner is rich in profit, but nonetheless is not visited by the optimal tour due to providing only few nearby cluster nodes. Instead, the tour focuses on the lower part of the map, from which nodes from all clusters can be reached, and which still provides a reasonable amount of profit. However, long parts of the tour are traversed where no location is encountered for some time.

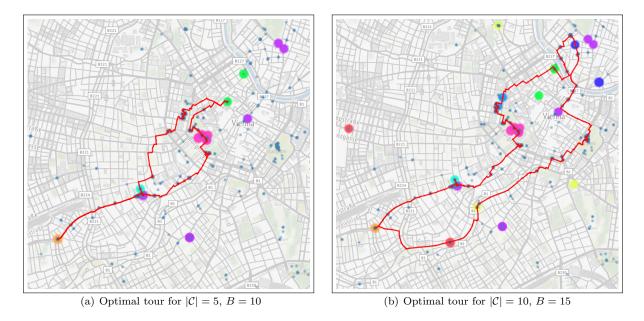


Figure 4: Zoomed-in view of instance Vienna and optimal tours for $(|\mathcal{C}| = 5, B = 10)$ and $(|\mathcal{C}| = 10, B = 15)$.

Figure 4 shows a zoomed-in view of instance Vienna for two configurations of clusters and budgets. Note that for the same city cluster collections have been generated in order to form subsets. Thus the images show how the instance changes when additional clusters are added. Figure 4(a) shows an extreme case in which the only nearby node from the orange cluster is far away. Figure 4(b) shows the same instance with an enlarged budget and five additional clusters. We see that with the larger budget, the optimal tour focuses on the profit-rich city center. The Donau channel is traversed in order to reach a node from the blue cluster. Figure 5 shows another zoomed-in view of the third instance, London. The view highlights the fact that an optimal solution might frequently require backtracking in the form of short side-trips for the purpose of collecting profit aside the main-tour.

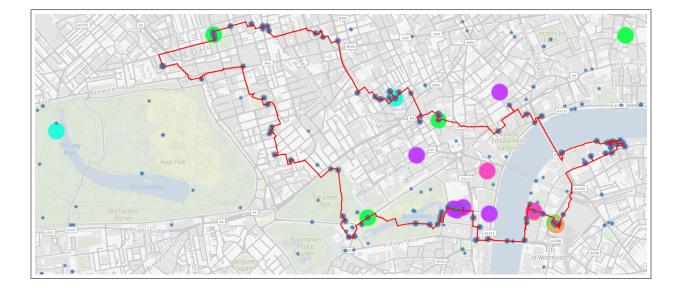


Figure 5: Zoomed-in view of instance London and an optimal tour for $(|\mathcal{C}| = 5, B = 15)$.

	Tab	le 3:	Result	s obté	ained	using	form	latior	ו (CU	I') on i	instance	group	TSPL	IB $(\alpha$	= 0	25).		
-	Ĺ	2		5	n	niforn	n profits	fts	5	-	ŗ	č	random		profits	ت ۲	[4]	- -
instance	В		ΓB	61	62	Lift.	 	BBn.	g[%]	t[s.]	ΓB	61	62	Lift.	CC.	BBn.	g[%]	t[s.]
eil101	405	22	75	27	30	0	0	0	0.00	6	4095	155	58	9	25	7	0.00	107
lin105	10634	22	77	62	81	0	0	0	0.00	19	4196	107	139	9	131	12	0.00	206
pr107	34262	23	69	23	12	0	0	0	0.00	က	4213	46	27	0	ю	0	0.00	11
gr120	4656	25	94	19	29	0	0	0	0.00	က	5290	52	57	14	-	0	0.00	54
pr124	47480	26	103	58	58	0	0	0	0.00	11	5334	73	75	0	6		0.00	32
bier127	82049	27	111	71	48	က		0	0.00	25	5888	74	64	×	9	0	0.00	42
ch130	4298	27	97	44	00	0	0	0	0.00	39	5311	188	183	2	20	153	0.00	639
pr136	61852	29	91	246	193	0	14	0	0.00	83	5322	101	128	0	87	43	0.00	157
gr137	50773	29	111	40	26	0	0	0	0.00	9	5889	117	107	0	71	35	0.00	220
pr144	53431	30	120	101	06	0	0	0	0.00	66	6380	102	135	0	22	45	0.00	282
ch150	4337	31	108	48	69	0		0	0.00	17	6096	132	109	0	26	0	0.00	149
kroA150	17492	31	107	239	192	0		174	0.00	500	5884	409	233	က	71	189	0.00	310
kroB150	18212	31	118	37	53		0	0	0.00	18	6411	136	91		40	69	0.00	364
pr152	60537	32	116	233	215		0	360	0.00	316	6220	308	291	0	40	470	0.00	753
$_{ m u159}$	30937	33 3	121	535	213	0		0	0.00	125	6514	381	174	0	37	50	0.00	477
si175	10058	36	83	225	274	0	0	0	0.00	27	5605	218	472	53	86	976	0.00	653
brg180	45525	37	180	0	0	0	0	0	0.00	9	9030	0	0	0	0	0	0.00	ņ
rat195	1485	40	129	155	58	0	0	0	0.00	57	7278	284	112	0	14	0	0.00	204
d198	12686	41	189	119	64	7	0	0	0.00	82	9684	280	58	28	15	0	0.00	418
kroA200	20470	41	147	618	415	0	0	1169	0.00	1383	8283	1024	815	က	0	5438	1.26	TL
kroB200	20245	41	154	130	129	0	က	0	0.00	37	8140	240	229	0	39	166	0.00	546
gr202	28498	42	192	122	78	10	0	21	0.00	631	9848	136	61	18	က	36	0.00	382
ts225	92219	46	176	755	396	0	0	1822	1.70	TL	9359	393	266	0	21	1511	0.00	1482
tsp225	2512	46	155	239	179	0	0	0	0.00	214	8512	169	215	0	15	0	0.00	204
pr226	69104	47	218	117	48	က	0	0	0.00	16	11192	167	57	13	0	0	0.00	20
gr229	82684	47	184	137	134	0	0	0	0.00	39	9719	584	$248 \\ 248 \\ 228 \\ 228 \\ 228 \\ 228 \\ 238 $	10	$^{26}_{0}$	99 0	0.00	391
gi1262	1574	54	193	$\frac{92}{5}$	128	0	0	0	0.00	51	10347	235	237	0	0	32	0.00	474
pr264	36863	54	184	263	108	0	÷	0	0.00	89	10467	230	133	0	344	1292	0.00	1394
a280	1688	57	187	1408	262	0		က	0.00	519	10623	1001	525	0	93	880	0.00	1370
pr299	33373	61	213	470	415	0		242	0.00	762	11773	1642	940	-	0	1652	0.90	TT
lin318	29029	65	234	373	396	0	0	41	0.00	485	12472	1805	654	0	20	1312	0.32	TL
rd400	9875	81	284	425	437	0	0	241	0.00	1664	15416	1210	904	-	2	654	1.26	TL
fl417	10105	85	400	363	221	·	0	31	0.00	740	20305	778	301	13	0	300	0.15	ΪĹ
gr431	107744	88	381	353	226	0	0	0	0.00	670	19860	591	263	111	0	483	0.03	TL
pr439	78628	89	318	266	304	0	0	0	0.00	297	16885	406	366	0	18	160	0.00	1011
pcb442 d493	33447 25303	$^{00}_{100}$	$301 \\ 446$	$2987 \\ 601$	$732 \\ 459$	0 ო	00	$\frac{1}{175}$	$2.66 \\ 0.45$	$_{TL}^{TL}$	$17275 \\ 23412$	$1518 \\ 605$	$551 \\ 489$	$03 \\ 03 \\ 03 \\ 03 \\ 03 \\ 03 \\ 03 \\ 03 \\$	00	$322 \\ 171$	$1.59 \\ 0.39$	$_{TL}^{TL}$
(average)			175	324	185	-	-	116	0.13	535		430	264	10	35	447	0.16	1114
~ ~																		

TEDITE $(\alpha=0.95)$ ۶ Table 3. Results obtained using formulation (CUT) on instan

inotomoo	a	2		Č	e c	uniform profits	u pro	fits	[20] 6	[]+	1 12	5	ran	$random_{I,24}$	profits	$_{PPm}^{s}$	[20]	[]+
monuce		2		5	- 1	-16-17	2	יווחח	$g_{[/0]}$	[.e] ³	77	5	25	-1617		-11 11 11	g[20]	.e] ³
eil101	480	22	87	20	13	0	0	0	0.00	ŝ	4630	88	31		11	0	0.00	227
lin105	11882	22	91	43	39		0	0	0.00	4	4785	67	58	0	42	n	0.00	145
pr107	37609	23	83	62	22	0	0	0	0.00	16	4827	57	16	0	9	0	0.00	37
$\operatorname{gr}120$	5418	25	106	16	21	0	0	0	0.00	5 C	5681	24	30	က	9	0	0.00	29
mr124	51330	26	112	40	32	-	C	C	000	19	5802	65	5		10	c.	0 00	079
bier197	04197	-1 C	121	36	270	н VC			0.00	15	6284	84	5.5	- 66 - 66	o ⊂		0.00	
01011771	17176	- 1 7 0		25	1 t 7 7	~ <			8.0	10	#070	516 16	35	10	000	950	00.0	100
cn130	4902	77		5 7	41	0 0	⊃•		0.00	פֿו	0343	017	171	0,	000	000	0.00	400
pr136	73492	67	110	41	62	0	4		0.00	37	6180	× x	54	-	.70	23	0.00	146
gr137	57133	29	124	ŝ	53	0	0	0	0.00	31	6489	84	51	12	ഹ	0	0.00	153
pr144	55133	30	129	82	103	0	0	0	0.00	85	6727	136	132	0	31	991	0.00	697
$\dot{c}h150$	5067	31	126	66	73	0	0	0	0.00	26	6824	115	123	2	1	250	0.00	428
kroA150	20503	5	126	137	118	C	С	C	0.00	7	6816	277	165	9	17	176	0.00	537
kroB150	20851	5	131	1	20	с С			0.00	12	7014	165	120	, .	с С	74	0.00	103
nr159	64010	58	133	100	272	1 C		111	0.00	308	6018	163	160	- C	371	9575	0.00	1109
150 150	01020	100	101	202					800	240		001 076	01	<i>े</i> थ		0 H C H C H C	0.00	1010
2175 2175	10040	00 00	1110/	0.07	417 111			0 - 20	0.0	100	8071	040	174 174	⊃ ¬	777 777	01	0.00	010
0111S	14001	000		080	4411			107	0.00	60 <i>1</i>	0000	011	0 17 0	1 0	9 9 9	077	0.00	755
brg180	31000	27	180		⊃ ç	0	0.	\supset	0.00	900	9030	⊃ ç	⊃ 8		⊃ ∘		0.00	0,
rat195	1764	40	153	273	99		4	0	0.00	289	8477	4	.70		0	0	0.00	20
d198	13717	41	197	63 63	13	30	0	0	0.00	46	9901	127	က	42	0	0	0.00	109
kroA200	23436	41	169	424	295		0	2470	0.59	TL	9297	491	359	വ	0	4365	0.43	TL
kroB200	23309	41	173	124	120		0	0	0.00	187	9168	134	121	0	20	34	0.00	390
gr202	32385	42	198	65	36	4	0	0	0.00	28	10043	93	31	25	0	0	0.00	36
ts225	103694	46	197	583	221	0	0	1815	0.51	TL	10312	513	235	0	Ŋ	2526	0.34	TL
tsp225	2981	46	184	209	126	0	0	0	0.00	185	9896	142	154	Ŋ	33	64	0.00	337
pr226	72859	47	222	181	19	56	0	0	0.00	15	11316	210	12	70	0	n	0.00	326
gr229	06666	47	212	61	54	0	0	0	0.00	64	10853	216	98	S	0	43	0.00	281
\overline{g} il262	1842	54	221	104	136	0	0	က	0.00	168	11722	992	367	0	45	1144	0.00	2048
pr264	40954	54	225	186	116	0	0	0	0.00	390	12007	124	53	4	2	0	0.00	271
a280	1985	57	224	325	158		0	11	0.00	344	12301	1105	364	က	6	1825	0.52	TL
pr299	38312	61	248	421	439	0	0	559	0.00	1841	13485	731	477		0	1198	0.85	TL
lin318	33362	65	274	249	201	0	0	31	0.00	564	14312	692	426	က	19	968	0.31	TL
rd400	11677	81	336	269	256	0	Ч	121	0.00	1307	17910	791	494	0	0	431	1.28	TL
fi417	10690	85	409	367	167	က	0	0	0.00	413	20660	624	256	45	0	272	0.11	TL
gr431	128967	88	410	208	144	44	0	5 C	0.00	528	20968	579	189	51	0	311	0.05	TL
pr439	88158	89	375	388	213	0	7	120	0.00	1568	19776	678	290	30	77	406	0.03	TL
pcb442	39224	06	366	596	365	0	ы С	190	0.00	1912	20149	834	313	2	9	340	0.22	TT
d493	28536	100	478	260	242	15	0	161	0.21	TL	24495	413	265	81	0	155	0.15	TL
(average)			197	191	126	4	-	158	0.04	598		314	161	12	26	1	508	
r																		

ŝ
ö
Я
S
р
PLIB
H.
SPL
Ω
Ε
q
р
0
50
0
instance
ă
a
sti
ns
n.
Ц
0
Η
Ď
5
\leq
Ч
ormulation
· H
ati
÷
Ы
H
OL
£
60
$\cdot \mathbf{S}$
usin
tained
ă
•H
t_{a}
bta
obta
qo
qo
ults ob
ults ob
ults ob
ults ob
Results ob
4: Results ob
4: Results ob
4: Results ob
4: Results ob
4: Results ob

						unifor	m prc	$_{ofts}$					ran	random	profits	s		
instance	В	C	LB	G1	G_2^{2}	Lift. CC BBn	CC	BBn.	g[%]	t[s.]	LB	G1	G_2	Lift.	CC	BBn.	g[%]	t[s.]
eil101	554	22	95	2	4	1	0	0	0.00	2	4998	124	5	18	30	9	0.00	127
lin105	13130	22	66	20	16	4	0	0	0.00	2	5145	35	29	1-	41	10	0.00	127
nr107	40956	23	95	49	800	C	C	C	0.00	34	5266	202	36	10	24	C	0.00	296
or120	6180	1 C		5	36	° c				; x	2007	153	91	30	57	р Г	0.00	020
51150	1000	200		36		1 -				011	1000		25	000	15	2 C		
pr124	02100	070	TTR	21	ŝ	- 2			000	011	70T0	Do 0	77	070	<u>5</u>	ς Υ	000	607
bier127	106204	27	125	74	0	30	0	0	0.00	43	6387	69	n	35		0	0.00	
ch130	5506	27	122	26	23	0	0	0	0.00	56	6372	$\frac{98}{2}$	52	12	27	91	0.00	281
pr136	85132	29	125	45	35	7	0	0	0.00	105	6670	97	11	23	66	0	0.00	436
er137	63493	29	132	57	16	9	С	C	0.00	171	6814	142	2	45	34	16	0.00	288
or 144	56835	000	136	50	101			14	0.00	303	7046	15	106	, <u>F</u>	52	138	0.00	302
ch150	5797	8 .	139	57	50			; c:	0.00	315	7302	96	46	a m	17	0	0.00	221
kroA150	23513	5	140	5.5	40	C	C		0.00	47	7417	170	47	2.5	-1-	149	0.00	399
kroB150	23490	5	142	84	48	94	0	0	0.00	197	7463	168	20	62	• 4	36	0.00	316
nr152	69300	32	144	62	12		0	0	0.00	206	7440	2 2 2 2	67	1		0	0.00	289
n159	38365		151	88	40	C	C	C	0.00	10	7767	565	116	91	23	5556	0.00	2395
si175	17624	36	147	114	109) 	0	0	0.00	115	8407	36	26) x	0	0.00	110
brg 180	16475	37	180	0	0	0	0	0	0.00	2	9030	0	0	0	0	0	0.00	ŝ
rat195	2043	40	176	195	52	0	0	0	0.00	320	9374	152	43	9	4	6	0.00	277
d198	14748	41	197	62	0	32	0	0	0.00	13	9901	121	-	51	0	0	0.00	55
kroA200	26402	41	187	186	167		0	736	0.00	1532	9890	278	78	57	6	3618	0.00	2309
kroB200	26373	41	188	69	74	0	0	0	0.00	412	9827	129	75	×	20	64	0.00	429
gr202	36272	42	200	117	0	63	0	0	0.00	74	10132	140	0	51	0	0	0.00	249
$\tilde{ts}225$	115168	46	212	726	329	0	0	1700	1.42	TL	11061	491	161	10	ы	2419	0.13	TL
tsp225	3450	46	207	147	$\overline{2}$	0	0	0	0.00	302	10845	380	132	28	58	809	0.00	1038
pr226	76614	47	224	166	0	68	0	0	0.00	18	11404	236	0	92	4	0	0.00	243
gr229	117296	47	222	194	83	29	0	0	0.00	364	11407	178	75	22		18	0.00	251
gil262	2110	54	244	114	116	0	0	9	0.00	324	12705	331	163	4	0	192	0.00	604
pr264	45044	54	254	226	110	0		260	0.00	1035	12979	168	54	10	×	25	0.00	292
a280	2282	57	256	275	108	0	0	725	0.00	1328	13567	177	93	6	2	57	0.00	354
pr299	43251	61	276	306	270	0	0	931	0.72	TL	14637	474	202	22	0	943	0.36	TL
lin318	37695	65	299	237	139		0	630	0.00	2412	15498	315	183	4	ŝ	340	0.00	1582
rd400	13479	81	374	120	140	0	0	0	0.00	249	19661	391	212	6	0	353	0.22	TL
A417	11275	85	414	410	142	64	0	0	0.00	578	20936	655	110	184	0	270	0.17	TL
gr431	150190	88	423	245	132	30	0	11	0.00	729	21542	560	127	130	0	261	0.03	TL
pr439	97687	89	417	414	198		0	<u>66</u>	0.00	1287	21536	404	219	24	14	311	0.33	TL
pcb442 d493	$45001 \\ 31769$	$100 \\ 100$	414 487	$324 \\ 399$	$168 \\ 167$	$^{0}_{162}$	10	$11\\168$	$0.00 \\ 1.03$	$_{TL}^{804}$	$21841 \\ 24803$	$502 \\ 447$	$\begin{array}{c} 141 \\ 44 \end{array}$	$35 \\ 243$	0 1	$237 \\ 168$	$0.01 \\ 0.06$	1L
(average)				156	85	14	0	142	0.09	657		234	73	39	15	436	0.04	1150

.75
0
رق
IB
TSPLIB
roup
50
instance
on instan
ш.
on
Ĥ
CG
C
mulation
ıla
2
o G
using
ined 1
obtained
obt
\mathbf{lts}
Resu
le E
Lable

group	t[s.]		$_{TL}^{TL}$	TL		$_{TL}^{TL}$	TL		TL	TL	TL
O OTTOO	g[%]		$\begin{array}{c} 0.01 \\ 0.66 \\ 0.42 \end{array}$	0.36		$\begin{array}{c} 0.20 \\ 0.09 \\ 0.27 \end{array}$	0.19		$0.06 \\ 0.05$	0.24	0.12
	BBn.		$ \begin{array}{c} 161 \\ 222 \\ 148 \\ 148 \end{array} $	177		$ \begin{array}{c} 172 \\ 266 \\ 191 \end{array} $	210		$169 \\ 252$	130	184
	CC		$\begin{array}{c} 16\\0\\0\end{array}$	5		13.5	9		00	0	0
	random profits 2 Lift. CC		$^{106}_{25}$	62		$^{96}_{96}$	107		$169 \\ 154$	192	172
n nord .	$G_{\mathcal{Z}}^{ran}$		$1202 \\ 1246 \\ 1101$	1183		$\begin{array}{c} 808 \\ 896 \\ 616 \end{array}$	773		$461 \\ 431$	360	417
	G1		513 475 166	385		$^{232}_{206}$	280		$\frac{311}{275}$	270	285
-gnng	LB		$\begin{array}{c} 20565 \\ 17931 \\ 21404 \end{array}$			$22249 \\ 20110 \\ 23264$			$23248 \\ 21571$	24092	
	t[s.]		$\begin{array}{c} 1804 \\ TL \\ 752 \end{array}$	2052		$651 \\ 1808 \\ 2269$	1576		$^{476}_{848}$	TL	1641
	g[%]		$\begin{array}{c} 0.00 \\ 1.18 \\ 0.00 \end{array}$	0.39		0.00 0.00 0.00	0.00		0.00	0.21	0.07
gruup	its BBn.		$\begin{smallmatrix} 115\\250\\0\end{smallmatrix}$	122		$^{90}_{25}$	58		30	129	53
OOTTOO	n profi		000	0		000	0		00	0	0
	uniform profits Lift. CC BI		$13 \\ 12 \\ 13$	10		$33 \\ 35 \\ 67 $	45		60 50	194	101
(+ ^ ^	G_{2}		892 1101 621	871		$\begin{array}{c} 679\\791\\579\end{array}$	683		$417 \\ 454$	369	413
	GI		$ \begin{array}{c} 190 \\ 253 \\ 52 \end{array} $	165		$130 \\ 120 \\ 123$	124		$^{121}_{87}$	232	147
	LB		393 340 417			$\begin{array}{c} 430\\ 386\\ 453\end{array}$			$\frac{455}{418}$	475	
1 91110	$ \mathcal{C} $		72 75 72			$\begin{array}{c} 72\\75\\72\end{array}$			72 75	72	
n norman	$B[\mathrm{km}] \mathcal{C} $		$\begin{array}{c} 47.523 \\ 60.924 \\ 115.927 \end{array}$			56.727 75.589 148.109			65.930 90.254	180.291	
o. Income obtained april of the start of the measure group I over and prove and proves a	instance	lpha=0.25	Budapest London Vienna	(average)	lpha=0.50	Budapest London Vienna	(average)	lpha=0.75	Budapest London	Vienna	(average)

Table 6: Results obtained using formulation (CUT) on instance group Pokémon with budgets and profits defined as for instance group TSPLIB.

Table 7: Results obtained using formulation (CUT) on Pokémon instances with budgets, profits and clusters chosen according to the real-world problem setting. Proven infeasibility is denoted by ' 2 ' in column LB (lower bound), while optimality is denoted bold.

	I 1	l																															1
	t[s.]		617	329	212	880	623	522	944	7.L	907 949	2803		399	386	404	286	211	224	175 175	317	372	55U 1050	312 757	447 447		920	130	1220	388 110	1015	804 534	754
	g[%]		0.00	0.00	I	0.00	0.00	0.00	0.00	0.30	0.00	0.00		0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00		0.00	1	0.00	00.00	000	0.00	0.01
denoted bold	species) BBn.		592	19	0	099	325	137	390	960	151	1125		108	82	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	0	20	20	17.	37	139 200	290	0.00	221		1292	0	1009	040	673	676 0	322
denote	CC		0	×	0	0	27	$^{42}_{-}$	101	⊃ ¬	4 m	33		0	0	0	0	0	0	0	0	0		⊃ç	7 -	I	0	0	0		2 L	$^{0.6}_{2.4}$	16
	profits ($Lift.$		2	0	0	5 C		0		162	00	0		9	0	0	0	0	0	0	0	⊃ ç	- L	-	ი —	I	Ч	0	Π		30	90	7
while optimality is	random 1 1 G2		2546	1762	1641	2489	1789	2260	2018	3790	$1344 \\ 2332$	2392		2040	1931	1976	1828	1599	1516	1274	1432	1562	2244	1098	1860		2488	1390	3045	2079	3177	$2285 \\ 2048 \\ $	2067
while o	G_{I}^{ra}		216	439	449	190	411	488	428	241	548 548	568		97	$298_{0.0}$	358	332	42	s o S o	103	145	169	07.0	00 00 00	127		345	395	297	408 976	2000	$434 \\ 479$	306
bound), ¹	LB		6752	4229	ı	9801	9039	8346	8279	12257	11425	11358		5374	4741	4031		7508	7488	7209	6768	6756	9288	9205	8893		2878	1	5394	4970	7918	6984	
(lower b	$t[\mathbf{s}.]$		679	218	154	743	583	462	521	1149	1608	1392		$\frac{313}{2}$	354	242	156	85	161	166	335	207	202	505 000	227	•	668	89	250	348 79	776	310^{-10}	495
LB	g[%]		0.00	0.00	ı	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00 0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	000	0.00		0.00	1	0.00	0.00	000	0.00	0.00
in column	its BBn.		12	0	0	20	21	0	0	105	13 43	0		12	$\frac{27}{2}$	0	0	0	0 0	⊃ :	5	Ξ3	10	717	17		34	0	0 ;	10	36	300	14
,-, in	n profits CC BE		0	0	0	0		0	0	00	00	0		0	0	0	0	0	0 0	0.	4	0	00		>	I	0	0	00	າ⊂		000	0
ted by	uniforr Lift.		0	0	0	4	0	0	0 2	5 C 7	0 ہ	0		5	0	0	0	€ C		0	0)	ດເ	າ ⊂)	0	0	- 0		с С	000	1
sibility is denoted by	G_{2}^{i}		2707	1717	1494	2308	2031	2084	2153	2539	2124	2152		1768	1756	1861	1700	1079	1185	1240	1847	1622	1541	1/100	1464		2025	1218	1885	1044	9190	$1551 \\ 1812 \\ $	1788
bility	G1		218	382	382	131	329	426	387	132 132	354 354	418		60	$235_{0.0}$	340	301	52	54		187	197	77	0,0	102		277	254	167	342 208	144	$279 \\ 362$	234
	LB		113	75	'	167	156	147	147	213	202	202		$\overline{96}$	80 1 2 2	74	• 1	137	137	133	119	119	167 167	101 166	160		52	1	101	90°	139	131	
ven	$ \mathcal{C} $	t	5 L	10	15	ы	10	15	, 20	с С	15	20		n S	10	15	$\overline{20}$	ເດ	2;	L5	50	22 72	0 ç	Ξμ	20		5	10	<u>ہ</u> م	с Ц	р Ч	10^{-10}	
etting. Proven infea	$B[\mathrm{km}]$	Budapest	10			15			0	20			London	10			1	15				000	20			Vienna	10	1	15		90	2	(average)

5 Conclusions and Future Work

The Pokémon GO game is a prime example of *augmented reality games*, in which players have to perform tasks in the real world in order to progress in the game. The enormous success of the game has allowed the growth of many side business and has enhanced other industries as well; for instance, in cities such as Edinburgh, taxi drivers offer tourists trips not only to visit the main sights of the city, but also to the locations of valuable Pokémon [see,e.g., 5]; and companies have offered the service to play the game for their customers in order to assist them at enlarging their Pokémon collections [10].

In this paper, we introduce the Generalized Clustered Orienteering Problem (GCOP), which is motivated by the Pokémon GO game. The proposed problem is a generalization of the Orienteering Problem and also possesses elements of the Generalized Travelling Salesman Problem. Aside from the motivating example of the Pokémon GO game, it also has applications in more traditional transportation settings.

We present an algorithmic framework for the exact solution of the GCOP. The framework is based on Mixed-Integer Programming (MIP) models for the problem. Two MIP formulations, one based on the Miller-Tucker-Zemlin (MTZ) constraints, and the other based on generalized subtour elimination constraints (GSECs) are devised. The framework is enhanced by valid inequalities, lifting of inequalities, an initialization heuristic and a primal heuristic.

In order to evaluate the performance of our proposed framework, an extensive computational study is presented using instances of the well-known TSPLIB data-set, as well as real-life instances based on crowdsourced data from the Pokémon GO game for the cities of Vienna, Budapest and London. The results show that our approach allows to solve real-life instances to optimality within reasonable time.

For further work, it could be interesting to extend the prize-collecting aspect of the problem also to the clusters, i.e., visiting a cluster is optional, but yields a profit. Moreover, considering a stochastic or robust version of the problem appears promising as the real-world data may be uncertain due to its crowd-sourced nature.

Acknowledgments

E. Alvarez-Miranda acknowledges the support of the Chilean Council of Scientific and Technological Research, CONICYT, through the grant FONDECYT N.11140060 and through the Complex Engineering Systems Institute (ICM-FIC:P-05-004-F, CONICYT:FB0816). The research of M. Sinnl was supported by the Austrian Research Fund (FWF, Project P 26755-N19). M. Luipersbeck acknowledges the support of the University of Vienna through the uni:docs fellowship programme.

References

References

- [1] PokeMapper. http://www.pokemapper.co, Accessed: 2016-07-27.
- [2] Pokémon GO Official Website. http://www.pokemongo.com/, Accessed: 2016-08-03.
- [3] Pokémon GO Wikipedia Article. https://en.wikipedia.org/wiki/Pok%C3%A9mon_Go, Accessed: 2016-08-03.
- [4] Library of sample instances for the TSP (and related problems). http://comopt.ifi.uni-heidelberg. de/software/TSPLIB95/, Accessed: 2016-08-03.
- [5] Head to Edinburgh if youd like to try a Pokémon Go taxi tour (Lonely Planet). http://www. lonelyplanet.com/news/2016/07/27/try-pokemon-go-taxi-tour/, Accessed: 2016-08-12.
- [6] Pokémon Go crosses USD 250 millions in revenues since launch. http://www.ft.com/cms/s/0/ 2dd63522-5fdf-11e6-ae3f-77baadeb1c93.html, Accessed: 2016-08-13.

- [7] Stamen design. http://www.stamen.com, Accessed: 2016-08-13.
- [8] 10 Best Augmented Reality Games Like Pokemon GO. http://www.mobipicker.com/ games-like-pokemon-go/, Accessed: 2016-08-13.
- [9] Austria's first PokeWalk. http://www.pokewalk.at/, Accessed: 2016-08-16.
- [10] PokeWalk. http://www.pokewalk.com/, Accessed: 2016-08-16.
- [11] E. Angelelli, C. Archetti, and M. Vindigni. The clustered orienteering problem. European Journal of Operational Research, 238(2):404–414, 2014.
- [12] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. New approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM Journal on Computing, 28(1):254–262, 1998.
- [13] E. Balas. The prize-collecting traveling salesman problem. Networks, 19(6):621–636, 1989.
- [14] T. Bektas and L. Gouveia. Requiem for the millertuckerzemlin subtour elimination constraints? European Journal of Operational Research, 236(3):820–832, 2014.
- [15] J. Bérubé, M. Gendrau, and J. Potvin. A branch-and-cut algorithm for the undirected prize collecting traveling salesman problem. *Networks*, 54:56–67, 2009.
- [16] D. Bienstock, M. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize collecting traveling salesman problem. *Mathematical Programming*, 59(1-3):413–420, 1993.
- [17] I. Chao, B. Golden, and E. Wasil. Theory and methodology the team orienteering problem. European Journal of Operational Research, 88:464–474, 1996.
- [18] B. Cherkassky and A. Goldberg. On implementing push-relabel method for the maximum flow problem. In E. Balas and J. Clausen, editors, *Proceedings of IPCO IV*, volume 920 of *LNCS*, pages 157–171. Springer, 1995.
- [19] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, and P. Mutzel. The open graph drawing framework (OGDF). In R. Tamassia, editor, *Handbook of Graph Drawing and Visualization*. CRC Press, 2014. Chapter 17.
- [20] W. Cook. Concorde TSP Solver Website. http://www.math.uwaterloo.ca/tsp/concorde/index. html.
- [21] M. Dell'Amico, F. Maffioli, and P. Väbrand. On prize-collecting tours and the asymmetric travelling salesman problem. *International Transactions in Operational Research*, 2:297–308, 1995.
- [22] M. Dell'Amico, F. Maffioli, and A. Sciomachen. A lagrangian heuristic for the prize collecting travelling salesman problem. Annals of Operations Research, 81:289–306, 1998.
- [23] Martin Desrochers and Gilbert Laporte. Improvements and extensions to the miller-tucker-zemlin subtour elimination constraints. Operations Research Letters, 10(1):27–36, 1991.
- [24] D. Feillet, P. Dejax, and M. Gendreau. Travelling salesman problems with profits. Transportation Science, 39:188–205, 2005.
- [25] M. Fischetti and A. Lodi. Local branching. *Mathematical Programming*, 98(1-3):23-47, 2003.
- [26] M. Fischetti and P. Toth. An additive approach for the optimal solution of the prize-collecting traveling salesman problem. In B. Golden and A. Assad, editors, *Vehicle Routing: Methods and Studies*, pages 319–343. North Holland, 1988.
- [27] M. Fischetti, J. Salazar-González, and P. Toth. A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Operations Research, 45(3):378–394, 1997.
- [28] M. Fischetti, J. Salazar-González, and P. Toth. Solving the orienteering problem through branch-andcut. INFORMS Journal on Computing, 10:133–148, 1999.

- [29] M. Gendreau, G. Laporte, and F. Semet. A branch-and-cut algorithm for the undirected selective travelling salesman problem. *Networks*, 32:263–273, 1998.
- [30] B. Golden, L. Levy, and R. Vohra. The orienteering problem. Naval Research Logistics, 34:307–318, 1987.
- [31] A. Gunawan, H. Chuin Lau, and P. Vansteenwegen. Orienteering problem: A survey of recent variants, solution approaches and applications. *To appear in European Journal of Operational Research*, 2016.
- [32] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4):12–18, 2008.
- [33] A. Kharpal. Mobile game revenue to pass console, PC for first time. http://www.cnbc.com/2016/04/ 22/mobile-game-revenue-to-pass-console-pc-for-first-time.html, Accessed: 2016-08-13.
- [34] A. Laporte, G. Asef-Vaziri and C. Sriskandarajah. Some applications of the generalized travelling salesman problem. The Journal of the Operational Research Society, 47(12):1461–1467, 1996.
- [35] G. Laporte and Y. Nobert. Generalized travelling salesman problem through n sets of nodes: an integer programming approach. INFOR, 21:61–75, 1983.
- [36] G. Laporte, H. Mercure, and Y. Nobert. Generalized travelling salesman problem through n sets of nodes: the asymmetrical case. Discrete Applied Mathematics, 18(2):185–197, 1987.
- [37] E. Lawler, J. Lenstra, H. Rinnoy Kan, and D. Shmoys, editors. The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, 1st edition, 1985.
- [38] C. Miller, A. Tucker, and R. Zemlin. Integer programming formulation of traveling salesman problems. Journal of the ACM, 7(4):326–329, 1960.
- [39] Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several heuristics for the traveling salesman problem. *SIAM journal on computing*, 6(3):563–581, 1977.
- [40] M. Schilde, K. Doerner, R. Hartl, and G. Kiechle. Metaheuristics for the bi-objective orienteering problem. Swarm Intelligence, 3:179–201, 2009.
- [41] S. Srivastava, S. Kumar, R. Garg, and P. Sen. Generalized travelling salesman problem through n sets of nodes. CORS Journal, 7:97–101, 1969.
- [42] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Math. Japonica, 24(6):573–577, 1980.
- [43] M. Tasgetiren. A genetic algorithm with an adaptive penalty function for the orienteering problem. Journal of Economic and Social Research, 4(2):1–26, 2001.
- [44] T. Tsiligirides. Heuristic methods applied to orienteering. Journal of the Operational Research Society, 35(9):797–809, 1984.
- [45] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden. The orienteering problem: A survey. European Journal of Operational Research, 209(1):1–10, 2011.