
Algorithmic expedients for the S-labeling problem

Markus Sinnl∗1

1Department of Statistics and Operations Research, Faculty of Business, Economics and
Statistics, University of Vienna, Vienna, Austria

Abstract

Graph labeling problems have been widely studied in the last decades and have a vast area of applica-
tion. In this work, we study the recently introduced S-labeling problem, in which the nodes get labeled
using labels from 1 to |V | and for each edge the contribution to the objective function, called S-labeling
number of the graph, is the minimum label of its end-nodes. The goal is to find a labeling with minimum
value. The problem is NP-hard for planar subcubic graphs, although for many other graph classes the
complexity status is still unknown.

In this paper, we present different algorithmic approaches for tackling this problem: We develop an
exact solution framework based on Mixed-Integer Programming (MIP) which is enhanced with valid
inequalities, starting and primal heuristics and specialized branching rules. We show that our MIP
formulation has no integrality gap for paths, cycles and perfect n-ary trees, and, to the best of our
knowledge, we give the first polynomial-time algorithm for the problem on n-ary trees as well as a closed
formula for the S-labeling number for such trees. Moreover, we also present a Lagrangian heuristic and a
constraint programming approach. A computational study is carried out in order to (i) investigate if there
may be other special graph classes, where our MIP formulation has no integrality gap, and (ii) assess
the effectiveness of the proposed solution approaches for solving the problem on a dataset consisting of
general graphs.

1. Introduction and motivation

Graph labeling problems have been widely studied in the last decades and they have a vast area of ap-
plication, e.g., coding theory Bloom and Golomb (1977), computational biology Karp (1993), computer
networks Jin and Yeh (2005), design of error-correcting codes Rodriguez-Tello et al. (2008) radio channel
assignment Van den Heuvel et al. (1998) and more (we refer the reader to the surveys Dı́az et al. (2002);
Dehghan et al. (2013); Gallian (2009) for further details). In such problems, we are typically interested
in assigning distinct positive integers (i.e., labels) to the nodes and/or edges of the graph subject to some
constraints, such that a given objective function is optimized. In this work, we concentrate on the S-labeling
problem, which is defined as follows.

Definition 1 (The S-labeling problem (S-LP)). Let G = (V,E) be a graph and φ : V → {1, . . . , |V |}
be a labeling of the nodes. The S-labeling number SLφ(G) with respect to the labeling φ(G) is defined as∑
{u,v}∈E min{φ(u), φ(v)}. The goal of the S-labeling problem (S-LP) is to find a labeling φ∗(G), such that

SLφ∗(G) has minimum value amongst all possible labelings for G.

In the remainder of this paper, we simply write φ∗ and SLφ∗ , when the graph is clear from the context.
The S-LP was introduced in Vialette (2006) in the context of packing (0, 1)-matrices, where it was shown to
be NP-complete for planar subcubic graphs. It is studied in detail in a series of papers Fertin and Vialette
(2009); Fertin et al. (2015, 2017), which focused on deriving properties of optimal labelings. Based on these

∗markus.sinnl@univie.ac.at

1

properties, exact and approximation algorithms for some graph classes are developed: Polynomial-time exact
algorithms are given for caterpillar graphs (trees, where all nodes are at most distance one from the central
path) and split graphs (graphs which can be partitioned into a clique and an independent set). Moreover, a

greedy approximation algorithm, which gives a labeling φ with SLφ <
|E|(|V |+1)

3 (resp., |E|(|V |+1)
4 if the graph

is acyclic with the maximum degree of a node at least three) is presented. This algorithm is shown to be a
4|E|∆
3|V | approximation algorithm for general graphs, where ∆ is the maximum degree of a node in the graph,

and a 4/3 approximation algorithm for regular graphs; for some other special graphs, the approximation
factor is further refined. Additionally, a fixed-point parameter tractable algorithm is also presented; this
approach is based on partial enumeration, where the parameters is a positive integer k and the question is
whether there is a labeling with SLφ < |E|+k. Finally, closed formulas for SLφ∗ for complete graphs, paths
and cycles are given, but without proof. We note that one result of Fertin et al. (2015) (Lemma 3) claims
that in any optimal labeling φ∗, the node i with label one is a node with maximum degree in the graph. We
have a counter-example to this result, see Section 3.

Contribution and paper outline In this paper, we develop different modeling and algorithmic ap-
proaches to characterize and solve the S-LP. The paper is organized as follows. In Section 2, we describe an
exact solution framework based on Mixed-Integer Programming (MIP), which includes starting and primal
heuristics to construct high-quality feasible solutions during the solution process as well as a specialized
branching-scheme. In Section 3 we investigate the Linear Programming (LP) relaxation of the MIPs pre-
sented in Section 2, and show that for paths, cycles and perfect n-ary trees the LP-relaxation exhibits
no integrality gap. This is done by presenting a combinatorial procedure for solving the dual of the LP-
relaxation and ad-hoc polynomial-time primal algorithms. To the best of our knowledge, we present the first
polynomial-time algorithm for solving the S-LP on perfect n-ary trees. We also give a closed formula to com-
pute SLφ∗ for perfect n-ary trees. In Section 4, we present further solution methods, namely a Lagrangian
heuristic and a constraint programming approach. Section 5 contains a computational study. The purpose
of this study is twofold: (i) to computationally investigate, if there are additional classes of graphs, where
the LP-relaxation of our MIP formulation may have no integrality gap; and (ii) to assess the performance
of the presented approaches for solving the S-LP on general graphs. Finally, Section 6 concludes the paper.

2. Mixed-Integer Programming approaches for the S-LP

In this section, we present MIP (exact) approaches for solving the S-LP. We first provide two MIP formu-
lations for the problem and show that one of them is the projection of the other. After this, we describe
branch-and-cut schemes based on these MIPs.

For the proposed formulations, let xki , with i, k ∈ {1, . . . , |V |}, be a binary variable such that xki = 1, if
node i (or, more formally, the node with index i) gets labeled with the number k, and xki = 0, otherwise.
The following constraints (UNIQUE) and (ONELABEL) ensure that each label gets used exactly once, and
that each node gets one label,∑

i∈{1,...,|V |}

xki = 1 ∀k ∈ {1, . . . , |V |} (UNIQUE)

∑
k∈{1,...,|V |}

xki = 1 ∀i ∈ {1, . . . , |V |}. (ONELABEL)

To define the first formulation, for each edge e ∈ E we introduce continuous variables θe ≥ 0, which are
used to measure the contribution of edge e to the objective. Using these variables, our first formulation (F1)

2

for the S-LP is given by

(F1) SLφ∗ = min
∑
e∈E

θe (F1.1)

(UNIQUE), (ONELABEL)

θe ≥ k −
∑
l<k

(k − l)(xli + xli′) ∀k ∈ {1, . . . , |V |}|, ∀e = {i, i′} ∈ E (F1.2)

xki ∈ {0, 1} ∀i, k ∈ {1, . . . , |V |}.

Constraints (F1.2) ensure that for each edge e the correct contribution is counted in the objective function:
For an edge e = {i, i′}, let k1 and k2 (assume wlog k1 < k2) be the labels of the two end-nodes i and i′ for a
given solution encoded by x̄. For each k ≤ k1, the right-hand-side (rhs) of (F1.2) is k, for k1 < k < k2, the
rhs is k1, and for k ≥ k2, the rhs is k1 − k2 < k1. Thus, θe takes the value k1.

For the second model (F2), instead of using continuous variables θe ≥ 0 to measure the contribution of
edge e, we introduce binary variables dke , with k ∈ {1, . . . , |V | − 1}, such that dke = 1 iff the contribution
of edge e to the objective is k, dke = 0 otherwise. With these variables, we can formulate the problem as
follows,

(F2) SLφ∗ = min
∑
e∈E

∑
k∈{1,...,|V |−1}

kdke (F2.1)

(UNIQUE), (ONELABEL)∑
k∈{1,...,|V |}

dke = 1 ∀e ∈ E (F2.2)

dke ≤ xki + xki′ k ∈ {1, . . . , |V |},∀e = {i, i′} ∈ E (F2.3)

xki ∈ {0, 1} i, k ∈ {1, . . . , |V |}
dke ∈ {0, 1} ∀e ∈ E, k ∈ {1, . . . , |V |}.

Constraints (F2.2) ensure that exactly one of the variables dke is taken for each edge e, and constraints (F2.3)
make sure that one of the two end nodes of edge e has label k, if the associated dke -variable is chosen as one
(and thus the contribution of the edge in the objective is k).

We observe that (F1) has O(|V |2) variables, and O(|V ||E|) constraints, while (F2) has O(|V |2 + |V ||E|)
variables, and O(|V ||E|) constraints. Thus (F2) has considerably more variables, on the other hand, con-
straints (F2.3) are much sparser than their counterpart (F1.2). Note that the integrality of the variables dke
can be relaxed, as for fixed variables x ∈ {0, 1}|V |×|V | the remaining coefficient matrix in dke becomes totally
unimodular.

Finally, the following family of inequalities is valid for (F2);

Theorem 1. Suppose the three nodes i, i′, i′′ ∈ V form a triangle e = {i, i′}, e′ = {i, i′′}, e′′ = {i′, i′′} in G
and let V ′ ⊂ {1, . . . , |V |} be a subset of labels. Then∑

k∈V ′

(
dke + dke′ + dke′′

)
≤ 1 +

∑
k∈V ′

(
xki + xki′ + xki′′

)
(TRIANGLE)

is valid for (F2).

Proof. Clearly, the sum on the left-hand-side (lhs) can be at most three. If the sum is zero or one, validity
is trivial and validity for two follows easily due to constraints (F2.3). Thus, suppose the sum on the lhs is
three, this means all three edges of the triangle are in some of the label-levels given in V ′. However, in this
case, at least two of the variables on the right-hand-side must be one, as clearly not all three edges can be
on the same labeling-level in any feasible solution.

3

As there is an exponential number of (TRIANGLE) inequalities, we do not add them in the beginning,
but separate them on-the-fly, i.e., we embed their separation in an branch-and-cut scheme; the separation is
described in Section 2.3. The computational results in Section 5.2 reveal that these inequalities can be quite
helpful in some instances.

2.1 Comparison between (F1) and (F2)

In this section, we show that formulation (F1) can be obtained from (F2) by using Benders decomposition to
project out the dke -variables using Benders optimality cuts, i.e., consider a Benders master problem consisting
of (UNIQUE), (ONELABEL) and variables θe that account for the contribution of edge e to the objective
function, the obtained optimality cuts are exactly inequalities (F1.2).

In order to show this equivalence, we relax the integrality of the dke -variables, and consider the dual of
(F2) for a fixed solution encoded by vector x̄ ∈ {0, 1}|V |×|V |. In the following, for ease of readability, when
we refer to dual of some formulation, we mean the dual of the corresponding LP-relaxation (with possible
some subset of the variables fixed as mentioned). Observe that for fixed solution given by x̄, the problem
decomposes into one problem for each edge e. Let γe be the dual-variables associated with constraint (F2.2),
and let δke be the dual variables associated with constraints (F2.3). The dual (D(F2)(x̄,i,i′)) of (F2), for a
given x̄ and an edge e = {i, i′}, then reads as

(D(F2)(x̄,i,i′)) max γe −
∑

k∈{1,...,|V |−1}

(x̄ki + x̄ki′)δ
k
e (D(F2)(x̄,i,i′).1)

γe − δke ≤ k ∀k ∈ {1, . . . , |V |} (D(F2)(x̄,i,i′).2)

δke ≥ 0 ∀k ∈ {1, . . . , |V |} (D(F2)(x̄,i,i′).3)

Note that using standard duality rules, we would obtain δke ≤ 0 and positive coefficients associated with
these variables in the objective and constraints. For ease of exposition, we write these dual variables as
δke ≥ 0 by changing the objective function coefficients accordingly.

The optimal solution of (D(F2)(x̄,i,i′)) can be derived as follows. It is easy to see that in order to maximize
the objective function (D(F2)(x̄,i,i′).1), γe needs to be increased. However, due to constraints (D(F2)(x̄,i,i′).2),

if γe is increased to k, to ensure feasibility we need to compensate this, by setting δle = k − l, whenever
l < k. Due to constraints (UNIQUE) and (ONELABEL), the coefficients (x̄ki + x̄ki′), of dual variable δke , take
value of one only for two values of k, say l1, l2 with l1 < l2, and value of zero for the remaining values of
k. Thus, as long as k is at most k1 = l1 + 1, setting δle = k − l does not influence the objective function,
since the coefficients of the corresponding δle variables are zero, and the objective value obtained is k1. For
k ∈ [k1, . . . , l2], the objective function also has the value k1: If the value of γe is increased by one within

this interval, then the value of δk
1

e , whose objective function coefficient is minus one must also be increased

by one. Finally, starting from k2 = l2 + 1, also δk
2

e would need to be increased by one to ensure feasibility,
i.e., for each increase of γe by one, two variables with coefficient minus one in the objective must also be
increased by one. Thus, the optimal solution value of the dual for the given x̄ is k1, and it is achieved by
applying above procedure for any k with k1 ≤ k < k2. The values of the dual variables in an optimal solution
are γe = k and δle = k − l for l < k and zero otherwise. Thus, the associated Benders optimality cuts are
inequalities (F1.2).

2.2 Starting and primal heuristic

In order to construct a feasible starting solution to initialize the branch-and-bound, we use the greedy
algorithm proposed in Fertin et al. (2017), which works as follows. We pick any unlabeled node, say i,
with maximum degree (ties broken randomly), and we label it with the smallest available label; then, we
remove i from the graph and repeat the procedure until all nodes are labeled. After this, we try to improve
the obtained solution with a local search-phase which is based on exchanging the label of pairs of nodes.
The complete scheme is described in Algorithm 1. In the algorithm, φ−1

H (k) denotes the node with label

4

k. In the local search-phase (lines 10-35), we exploit the fact that an exchange of labels between pairs of
nodes i, i′ does not require to recalculate the labeling number from scratch, as it is enough to recalculate the
contribution of the edges e ∈ E such that e : {i, ·} or e : {i′, ·}. We also do not try all label-pair-exchanges,
but for a given label k limit the change to labels k′ ≤ min(k,maxContribLabel), where maxContribLabel
is the maximum contribution to the objective of any edge, where one end-node is labeled with k.

input : instance G = (V,E) of the S-LP
output: feasible labeling φH with labeling number zH = SLφH

1 G′ ← G

2 zH ← 0
/* greedy algorithm phase */

3 for 1 ≤ k ≤ |V | do
4 i← node with maximal degree in G′

5 φH(i)← k
6 G′ ← G′ \ i
7 for {i, i′} ∈ E with i′ unlabeled do
8 zH ← zH + k

/* local-search phase */

9 improve← true
10 repeat
11 improve← false
12 for 1 ≤ k ≤ |V | do
13 i← φ−1

H (k)
14 costi ← 0
15 maxContribLabel← 0
16 for {i, i′′} ∈ E do
17 costi ← costi + min(φH(i), φH(i′′))
18 maxContribLabel← max(maxContribLabel,min(φH(i), φH(i′′)))

19 for 1 ≤ k′ ≤ min(k,maxContribLabel) do
20 i′ ← φ−1

H (k′)

21 costi
′ ← 0

22 for {i′, i′′} ∈ E do

23 costi
′ ← costi

′
+ min(φH(i′), φH(i′′))

24 costExchange← 0
25 for {i, i′′} ∈ E do
26 costExchange← costExchange+ min(k′, φH(i′′))
27 for {i′, i′′} ∈ E do
28 costExchange← costExchange+ min(k, φH(i′′))

29 if costExchange < costi + costi
′

then

30 zH ← zH − costi − costi′ + costExchange
31 φH(i)← k′

32 φH(i′)← k
33 improve← true
34 break

35 until improve = false
Algorithm 1: Starting heuristic

Based on this algorithm, we also designed a primal heuristic, guided by the LP-relaxation, which is
embedded within the branch-and-bound search framework. Let x̃ be the value of the x-variables of the
LP-relaxation at a branch-and-bound node. We solve the minimum assignment problem induced by con-
straints (UNIQUE) and (ONELABEL), setting the coefficient of variable xki in the objective to x̃ki , the

5

obtained solution gives a feasible labeling. Afterwards, we attempt to improve the obtained solution by
applying the local search-part of the heuristic described in Algorithm 1.

2.3 Further enhancements

We now describe the additional ingredients that are part of the developed branch-and-cut algorithm, namely
a branching strategy, an initialization procedure and separation procedures for violated inequalities.

Branching Constraints (ONELABEL) (and also (UNIQUE) and (F2.2)) are generalized-upper-bound (GUB)
constraints (also known as special-ordered-sets). It is well-known that in presence of such constraints, branch-
ing on a single variable xki may not be very efficient, as it will often lead to an ”unbalanced” search tree: in

one part of the search tree, one variable xki is fixed to zero and in the other part, all other variables xk
′

i , k
′ 6= k

are fixed to zero. Instead, branching on a subset of the variables appearing in such a constraint could be
more efficient, this strategy is often called GUB-branching (see, e.g., Conforti et al. (2014); Nemhauser and
Wolsey (1988); Wolsey (1998) or also Cho and Linderoth (2015) for more details on implementing such a
branching-scheme). In our case, we implemented GUB-branching based on constraints (ONELABEL), i.e.,
at every branch-and-bound-node, we select a node i to branch on, and then make two children-nodes where
we enforce ∑

k∈K

xki = 0 or
∑

k∈{1,...,|V |}\K

xki = 0, (1)

where K ⊂ {1, . . . , |V |}. This is a valid branching scheme, as in one child, node i must take a label in
{1, . . . , |V |} \K, and in the other it must take a label in K. Let x̃ be the value of the LP-relaxation at a
branch-and-bound node and suppose we already selected a node i. The partition K is found by calculating
B = b

∑
k∈{1,...,|V |} kx̃

k
i c and putting every k ≤ B in K. To select node i to branch on, for each node

i, with fractional variables x̃ki , we calculate the following score sci based on up-pseudocosts ψ+(i, k) and
down-pseudocosts ψ−(i, k): sci =

∑
k∈{1,...,|V |}:x̃k

i>0 ψ
+(i, k)(1− x̃ki) + ψ−(i, k)x̃ki , and select the node with

the maximum score. If the maximum score is under 0.001, we then proceed with the default branching
of the branch-and-cut solver (in preliminary tests, we also tried other scores, and this one was the most
effective). Pseudocosts are a concept often used for branching decisions and are provided by CPLEX, which
is the branch-and-cut solver we use (see, e.g., Achterberg et al. (2005); Conforti et al. (2014) for more on
pseudocosts).

Initialization While both (F1) and (F2) have polynomially many constraints, for some instances, the size
of the resulting models may still become prohibitive for efficient solving. Removing constraints initially, and
only adding them on the fly when needed (i.e., using branch-and-cut) could be an useful option in such a
case. However, in preliminary computations, for formulation (F2), such a strategy did not turn out to be
computationally successful. This may be explained in the structure of the constraints. Suppose that for some
edge e, only a subset of the constraints (F2.3) is added. Then the dke -variable with the smallest k, for which
no constraint was added will be take value of one in the resulting relaxation. Thus, to ensure that the correct
variable dk

′

e is set to one, all constraints (F2.3) with k ≤ k′ must be present. On the contrary, for formulation
(F1), a branch-and-cut approach was more useful. In this case, adding a single constraint (F1.2), for each
edge e, is enough for having an effect on the objective value of the resulting relaxation. In our initialization
approach for (F1), the set of initial constraints consists of all constraints (ONELABEL) and (UNIQUE), and
a single-constraint (F1.2) for each e. The latter are determined by heuristically solving the dual problem of
(F2) with the algorithm described in the next section. For each edge e, we add the constraint (F1.2) for
the largest k, for which the dual multiplier for dke ≤ xki + xki′ is non-zero. Separation of constraints (F1.2) is
done by enumeration. During each separation round, we add one violated inequality (if there is any) for each
e; if there is more than one violated, we add the one with the largest violation. By checking the potential
violation of (F1.2) for each e increasingly by k, we do not need to re-calculate it from scratch for each k.

6

Separation of inequalities (TRIANGLE) We do not separate the inequalities for all subsets of labels
V ′ ⊂ {1, . . . , |V |}, but simply check for all increasing subsets, starting with {1, 2} until {1, 2, . . . |V | − 1}.
The separation is then done by enumeration, i.e., we enumerate all triangles in the beginning and store
them; afterwards, during a separation round at a given node of the branch-and-bound tree, we check the
inequalities for each of the above mentioned subsets of V ′. By performing this in an increasing order, we do
not need to re-separate from scratch, but just need to add the contribution from the current label. For each
triangle, we stop either when a violated inequality is found, or when the sum of fractional variables on the
right-hand-side of the inequality has reached the value of three (since it cannot grow larger than that).

3. Analyzing the MIP-formulation for special classes of graphs

Clearly, any feasible solution to the dual of an LP-relaxation of a MIP gives a lower bound, which can
be used in, e.g., a branch-and-bound algorithm to solve the MIP. Depending on the structure and size of
the resulting dual, a high-quality dual solution can potentially be found using a combinatorial procedure
instead of solving the corresponding LP model directly using, e.g., the simplex-algorithm. For example,
for the facility location problem Erlenkotter (1978), the Steiner tree problem Wong (1984), or the network
design problem Balakrishnan et al. (1989), there exist so-called dual ascent algorithms, which (heuristically)
solve the dual by starting with a solution, where all variables are zero (such a solution is feasible for these
problems), and then systematically increase the dual variables in order to get a good dual solution. In this
section we present a combinatorial algorithm for solving (D(F2)), which is inspired by these approaches. We
show that for paths, cycles and perfect n-ary trees, the dual solution produced by our heuristic algorithm is
in fact optimal.

3.1 A heuristic algorithm for solving the dual of formulation (F2)

In addition to the dual multipliers defined in the previous section, let αk be the dual multipliers associated
with (UNIQUE), and let βi be the dual multipliers associated with (ONELABEL). The dual of (F2) denoted
as (D(F2)), is as follows (again changing the coefficients of δke to get δke ≥ 0);

(D(F2)) max
∑

k∈{1,...,|V |}

αk +
∑
i∈V

βi +
∑
e∈E

γe (D(F2).1)

αk + βi +
∑

e:{i,·}∈E

δke ≤ 0 k ∈ {1, . . . , |V |},∀i ∈ V (D(F2).2)

γe − δke ≤ k ∀e ∈ E, k ∈ {1, . . . , |V |} (D(F2).3)

δke ≥ 0 ∀e ∈ E, k ∈ {1, . . . , |V |} (D(F2).4)

Algorithm 2 outlines a (greedy) heuristic to solve (D(F2)). We denote the degree of a node i with δ(i).
While Algorithm 2 is a heuristic for general graphs, it gives the optimal dual solution for paths, cycles and
perfect n-ary trees due to the particular structure of these graphs. At the end of the section, we discuss an
extended version of the algorithm, which can produce better dual bounds for other graphs and also give a
small example of this. Note that in both variants of our algorithm the dual variables are always kept integral,
so in case the optimal dual solution has fractional values, it cannot be achieved with our algorithms.

We start with (α, β, δ) set to zero, and all γe set to one, which is a feasible solution, and we iteratively
try to increase the values of some γe (which appear with coefficient one in the objective function (D(F2).1))
by one. Due to constraints (D(F2).2) and (D(F2).3), increasing some γe by one implies the increase of some

δke and also the decrease of αk or βi to preserve feasibility of the solution. In our algorithm, we only decrease
αk and keep βi at zero. As αk appears with a coefficient of minus one in the objective function, our goal is
to iteratively set the variables in such a way, that the net-change in the objective is positive at each step,
and we stop, when the change is non-positive.

7

input : instance G = (V,E) of the S-LP
output: feasible solution (α, β, γ, δ) of (D(F2)) with value zD

1 (α, β, δ)← 0, (γ)← 1, zD ← |E|
2 ∆ = maxi∈V δ(i)
3 for k̄ ∈ {1, . . . , |V |} do
4 if |E| − k̄ ·∆ > 0 then
5 zD ← zD + |E| −∆
6 for k ≤ k̄ do
7 αk ← αk + ∆
8 for e ∈ E do
9 δke ← δke + 1

10 for e ∈ E do
11 γe ← γe + 1

12 else
13 break

Algorithm 2: Heuristic solution procedure for the dual (D(F2))

The key observations used in the design of the algorithm are the following: i) when we want to increase
some γe from k̄ to k̄ + 1, all δke with 1 ≤ k ≤ k̄ + 1 need to be increased by one to keep feasibility, which in
turn implies decreasing by one all αk with 1 ≤ k ≤ k̄+1; ii) when αk is set to some value ᾱk, for all adjacent
edges e of any node i we can set ᾱk variables δke to one and the solution remains feasible.

In our algorithm, we start with k̄ = 1 and a step consists of setting αk, δke and γe for all k ≤ k̄ and some
or all e ∈ E, then we proceed to the next step with k̄ = k̄+ 1. In the simplified version, we set αk always to
the maximum degree ∆ of a node in the graph. Thus, we can always increase all γe at a step (as all δke can
be increased), i.e., the positive change in the objective due to γe is |E| at every step. Moreover, the negative
change in the objective at every step due to setting the αk is ∆ · k̄, as all αk up to k̄ need to be increased
by ∆ to keep the feasibility. Thus, the algorithm stops, when k̄ ·∆ ≥ |E|, and at each step before, the dual
objective gets increased by |E| − k̄ · ∆ > 0. Observe that the increase gets smaller at every step, as ∆ · k̄
grows with every step. The runtime of Algorithm 2 is O(|V |2|E|)

In the extended version of the algorithm, we do not just increase by ∆ at a step, but try all the values up
to ∆. If αk is set to a value ᾱk lower than ∆, for some i ∈ V , not all δke with i ∈ e can be increased, which
in turn means not all γe can be increased. Thus, a subset of e to increase needs to be chosen in these cases.
We do this in a heuristic fashion: A list active of active edges is kept, and only such edges are considered
for the remaining steps (i.e., increasing γe, δ

k
e and calculation of ∆ which is re-calculated before every step

considering only active edges). For each ᾱk < ∆, we do the following: Make a temporary copy active(ᾱk) of
active. Let δa(i) be the degree of node i considering only edges in active(ᾱk). We sort the nodes by δa(i),
and then for each node i, we sort the adjacent active edges e = {i, i′} ∈ active(ᾱk) by decreasing δa(i′).
We iterate through this list and set edges to be inactive in active(ᾱk) until δa(i) ≤ ᾱk and then proceed to
the next node. After this procedure, increasing all γe in active(ᾱk) (and also increasing resp., decreasing
the associated δke , resp., αk, k ≤ k̄) by one gives a feasible solution with a net-change |active(ᾱk)| − k̄ · ᾱk
in the objective. At each step, we choose the value ᾱk giving the largest positive net-change and set the
dual variables and active accordingly (in case of ties, we take the smallest ᾱk among the values giving the
largest positive net-change). We stop, when there is no ᾱk giving positive net-change at a step k̄ (observe
that as in the simplified variant, the net-change gets smaller in every step). The runtime of the extended
version is O(∆|V |2|E|).

The following example illustrates both versions of the algorithm and also is a counter-example to Lemma
3 in Fertin et al. (2015), which claims that a node with maximum degree gets label one in any optimal
labeling.

Example 1. Consider the grid graph given in Figure 1a. The graph has |V | = 9, |E| = 12 and ∆ is four
and achieved by the node ”E”. An optimal labeling φ∗ is given in Figure 1b with SLφ∗ = 30. Note that only

8

the nodes with label one, two, three and four contribute to the objective and node ”E” does not have label
one. Moreover, for this instance, when solving the LP-relaxation of (F2) we do not obtain SLφ∗ but 29.6667,
i.e., (F2) has an integrality gap for this instance.

A B C

D E F

G H I

(a) Instance

5 1 6

2 7 3

8 4 9

(b) Optimal labeling

Figure 1: Grid-graph instance and an optimal labeling φ∗ for it, SLφ∗ = 3 · 1 + 3 · 2 + 3 · 3 + 3 · 4 = 30.

The simplified variant of our algorithm proceeds as follows:

1. α1 = 4, zD = 20 (as |E| − k̄ ·∆ = 12− 1 · 4 = 8)

2. α2 = 4, α1 = 8, zD = 24 (as |E| − k̄ ·∆ = 12− 2 · 4 = 4)

3. try α3 = 4, α2 = 8, α1 = 12, terminate as |E| − k̄ ·∆ = 12− 3 · 4 = 0

The extended variant of our algorithm proceeds as follows:

1. α1 = 3, activeBE = false, zD = 20 (as |active| − k̄ · δa = 11− 1 · 3 = 8)

2. α2 = 3, α1 = 6, activeBE = false, zD = 25 (as |active| − k̄ · δa = 11− 2 · 3 = 5)

3. α3 = 3, α2 = 6, α1 = 9, activeBE = false, zD = 27 (as |active| − k̄ · δa = 11− 3 · 3 = 2)

Thus, the extended variant gives a better objective value of the dual solution.

3.2 Paths and Cycles

In Fertin and Vialette (2009); Fertin et al. (2015, 2017), the following closed formulas for SLφ∗ for paths Pn

and cycles Cn with n nodes are given without proof: SLφ∗(Cn) = SLφ∗(Pn+1) = n2

4 + n
2 if n is even and

SLφ∗(Cn) = SLφ∗(Pn+1) = (n+1)2

4 if n is odd. We observe that paths are a special variant of caterpillar
graphs, thus Fertin et al. (2015, 2017) give a polynomial-time algorithm for paths. In Algorithm 3, we give
a linear-time algorithm for paths and in Algorithm 4 we do the same for cycles. We show that the objective
value of the solution obtained by the respective algorithm (which is of course feasible for (F2) since it is a
labeling) is the same value as the objective value of the solution for D(F2) produced by Algorithm 2. By
strong duality this implies, that the solution is optimal and also means, that for paths and cycles, (F2) has
no integrality gap.

input : instance G = (V,E) of the S-LP, with G being a path
output: optimal labeling φ∗(G)

1 start from an end of the path and label each even node with the smallest unused label
2 label the odd nodes arbitrarily

Algorithm 3: Optimal solution algorithm for the S-LP when the instance is a path

9

Theorem 2. Suppose G is a path. Let zP be the solution value obtained by Algorithm 3 and zD be the
solution value of (D(F2)) for the dual solution obtained by Algorithm 2. We have zP = zD.

Proof. We first calculate the value for zP and then the value for zD, and in both cases make a case distinction
whether |V | is even or odd.

• zP

– |V | is odd

By labeling every even node, we need |V |−1
2 labels to cover every edge, and each label covers two

edges (the remaining labels do not contribute to the objective). Thus, φ = zP for this labeling is

2 ·

|V |−1
2∑

k=1

k =
|V | − 1

2
·
(|V | − 1

2
+ 1
)

=
(|V | − 1)2

4
+
|V | − 1

2

– |V | is even

By labeling every even node, we need |V |2 labels to cover every edge, and each label except the
last covers two edges, and the last one covers one edge (the remaining labels do not contribute to
the objective). Thus, φ = zP for this labeling is

|V |
2

+ 2 ·

|V |
2 −1∑
k=1

k =
|V |
2

+
(|V |

2
− 1
)
· |V |

2
=
|V |2

4

• zD
In paths, we have ∆ = 2 and |V | = |E|+1. Thus, Algorithm 2 stops at step k̄, when (|V |−1)−2 · k̄ ≤ 0

– |V | is odd

(|V | − 1)− 2 · k̄ ≤ 0 when k̄ = |V |−1
2 . As at each step k before termination, the net-change in zD

was (|V | − 1)− 2 · k and the initial dual solution has value |E|, we obtain

zD =

|V |−1
2 −1∑
k=0

(
(|V | − 1)− 2 · k

)

= (|V | − 1) · |V | − 1

2
− 2 ·

|V |−1
2 −1∑
k=0

k

=
(|V | − 1)2

2
− |V | − 1

2
· (|V | − 1

2
− 1) =

(|V | − 1)2

4
+
|V | − 1

2
.

– |V | is even

(|V | − 1) − 2 · k̄ ≤ 0 when k̄ = |V |
2 . As at each step k before termination, the net-change in zD

was (|V | − 1)− 2 · k̄ and the initial dual solution has value |E|, we obtain

zD =

|V |
2 −1∑
k=0

(
(|V | − 1)− 2 · k

)

= (|V | − 1) · |V |
2
− 2 ·

|V |
2 −1∑
k=0

k

=
|V |2 − |V |

2
− |V |

2
· (|V |

2
− 1) =

|V |2

4
.

10

input : instance G = (V,E) of the S-LP, with G being a cycle
output: optimal labeling φ∗(G)

1 start with an arbitrary node and label each even node with the smallest unused label
2 label the odd nodes arbitrarily

Algorithm 4: Optimal solution algorithm for the S-LP when the instance is a cycle

Theorem 3. Suppose G is a cycle. Let zP be the solution value obtained by Algorithm 4 and zD be the
solution value of (D(F2)) for the dual solution obtained by Algorithm 2. We have zP = zD.

Proof. Similar to the proof for paths.

3.3 Perfect n-ary trees

A perfect n-ary tree is a rooted tree, where all internal (i.e., non-leaf) nodes have k children and all leaf nodes
are at the same depth d Black. Algorithm 5 gives a linear-time algorithm to solve the S-LP to optimality,

and Theorem 4 shows that (F2) has no integrality gap for such trees and that SLφ∗ = (|V |−1)2

2·(n+1) + |V |−1
2 in

case d is odd, and SLφ∗ = (|V |−1−n)2

2·(n+1) + n·(|V |−1−n)
n+1 + |V |−1+n

2 in case d is even.

input : instance G = (V,E) of the S-LP, with G being a perfect n-ary tree with depth d
output: optimal solution φ∗(G) of the S-LP

1 if d is odd then
2 take the nodes at even depths and label them with the smallest unused labels
3 arbitrarily label the remaining nodes

4 else
5 take the nodes at odd depths except the root node and label them with the smallest unused labels
6 label the root node with the smallest unused label
7 arbitrarily label the remaining nodes

Algorithm 5: Optimal solution algorithm for the S-LP when the instance is a perfect n-ary tree

Theorem 4. Suppose G is a perfect n-ary tree with depth d. Let zP be the solution value obtained by
Algorithm 5 and zD be the solution value of (D(F2)) for the dual solution obtained by Algorithm 2. We have
zP = zD.

Proof. We first calculate the value for zP and then the value for zD, and in both cases make a case distinction
whether d is even or odd.

• zP

– d is odd
The nodes on the even depths cover every edge in the graph exactly once and each node covers
n+ 1 edges (the edges going to its n children nodes, and the edge going to its parent node). Thus
only these nodes contribute to the objective function and φ = zP for this labeling is

(n+ 1) ·

|V |−1
n+1∑
k=1

k =
(n+ 1)

2

|V | − 1

n+ 1
·
(|V | − 1

n+ 1
+ 1
)

=
(|V | − 1)2

2 · (n+ 1)
+
|V | − 1

2

11

– d is even
The nodes on the odd depths cover every edge in the graph exactly once and each node except
the root node covers n+1 edges (the edges going to its n children nodes, and the edge going to its
parent node), while the root node covers n edges (the edges going to its n children nodes). Thus
only these nodes contribute to the objective function and φ = zP for this labeling is

(n+ 1) ·

|V |−1−n
n+1∑
k=1

k + n ·
(|V | − 1− n

n+ 1
+ 1
)

=
n+ 1

2
· |V | − 1− n

n+ 1
·
(|V | − 1− n

n+ 1
+ 1
)

+ n ·
(|V | − 1− n

n+ 1
+ 1
)

=
(|V | − 1− n)2

2 · (n+ 1)
+
|V | − 1− n

2
+
n · (|V | − 1− n)

n+ 1
+ n =

(|V | − 1− n)2

2 · (n+ 1)
+
n · (|V | − 1− n)

n+ 1
+
|V | − 1 + n

2

• zD
We have ∆ = n+1 and |V | = |E|+1. Thus, Algorithm 2 stops at step k̄, when (|V |−1)−(n+1) · k̄ ≤ 0

– d is odd
(|V | − 1)− (n+ 1) · k̄ ≤ 0 when k̄ = |V |−1

n+1 . As at each step k before termination, the net-change

in zD was (|V | − 1)− (n+ 1) · k and the initial dual solution has value |E|, we obtain

zD =

|V |−1
n+1 −1∑
k=0

(
(|V | − 1)− (n+ 1) · k

)

= (|V | − 1) · |V | − 1

n+ 1
− (n+ 1)

|V |−1
n+1 −1∑
k=0

k

=
(|V | − 1)2

n+ 1
− n+ 1

2

(|V | − 1

n+ 1
− 1
)
· |V | − 1

n+ 1

=
(|V | − 1)2

2 · (n+ 1)
+
|V | − 1

2

– d is even
(|V | − 1) − (n + 1) · k̄ ≤ 0 when k̄ = |V |−1−n

n+1 + 1. As at each step k before termination, the

net-change in zD was (|V | − 1)− (n+ 1) · k and the initial dual solution has value |E|, we obtain

zD =

|V |−1−n
n+1∑
k=0

(
(|V | − 1)− (n+ 1) · k

)

= (|V | − n+ n− 1) ·
(|V | − 1− n

n+ 1
+ 1
)
− (n+ 1)

|V |−1−n
n+1∑
k=0

k

=
(|V | − 1− n)2

n+ 1
+
n · (|V | − 1− n)

n+ 1
+ |V | − 1− n+ 1

2
·
(|V | − 1− n

n+ 1
+ 1
)
· |V | − 1− n

n+ 1

=
(|V | − 1− n)2

2 · (n+ 1)
+
n · (|V | − 1− n)

n+ 1
+ |V | − 1− |V | − 1− n

2

=
(|V | − 1− n)2

2 · (n+ 1)
+
n · (|V | − 1− n)

n+ 1
+
|V | − 1 + n

2

4. Additional solution approaches

In this section, we describe a Lagrangian heuristic and a constraint programming formulation for the S-LP.

12

4.1 Lagrangian heuristic

Let

z∗ = min
{
cTx | Ax ≤ b, Hx ≤ h and x ∈ Zn

}
, (COP)

be combinatorial optimization problem (COP), which can be formulated as MIP with a set of easy
constraints Ax ≤ b and complicating constraints Hx ≤ h. Easy and complicating constraints means, that
the problem (COP) without constraints Hx ≤ h is easy to solve, e.g., using a combinatorial algorithm.
Lagrangian relaxation (see, e.g., (Fisher, 1981; Wolsey, 1998)) is an attractive way to solve solve such
problems.

Let λ ≥ 0 be a vector of dual multipliers for Hx ≤ h. The Lagrangian relaxation of (COP) for a given
λ is defined as

zR(λ) = min
{(

cT + λTH
)

x− λTh | Ax ≤ b and x ∈ Zn
}
. (LR)

The value zR(λ) gives a lower bound for the objective of (COP), i.e., z∗ ≥ zR(λ), and to find the best lower
bound, a maximization problem in λ, called the Lagrangian dual problem,

max
λ≥0

zR(λ) (LD)

is solved. We use a subgradient method to solve (LD). Within the subgradient method, the Lagrangian
relaxation (LR) gets iteratively solved for different multipliers λ and the best value of zR(λ) is taken as lower
bound zLB . The value of λt+1 at iteration t + 1 of the subgradient method, is obtained from the current
solution xt with the help of a subgradient gt, which is calculated as gt = h−Hxt. We use a standard variant
for updating the multipliers, which we describe in the following (see, e.g., (Conforti et al., 2014; Wolsey,
1998) for more details): The value of λt+1 is calculated as λt+1 = max{0,λt − µtgt}, with the step-size

µt = β
zI−zR(λt)
‖gt‖ , where zI is the value of the best feasible solution found so far, and β a given parameter in

(0, 2]. We initialize β with two, and if there are τ = 7 iterations without an improvement of zR(λt), we set
β = β/2. We have an iteration limit of 500 iterations as stopping criterion, moreover, we stop when either
zI − zLB < 1, µt < 10−5 or ||gt|| < 10−6.

To apply Lagrangian relaxation to the S-LP, we take formulation (F2), and relax constraints (F2.3), let
δke ≥ 0 be the associated dual multipliers. We obtain the following relaxed problem (LR(F2)).

(LR(F2)) min
∑
e∈E

∑
1≤k≤|V |−1

(k + δke)dke −
∑
i∈V

∑
1≤k≤|V |−1

(∑
e∈E:i∈e

δke

)
xki ((LR(F2)).1)

(UNIQUE), (ONELABEL)∑
1≤k≤|V |

dke = 1 ∀e ∈ E ((LR(F2)).1)

xki ∈ {0, 1} 1 ≤ i, k ≤ V
dke ∈ {0, 1} ∀e ∈ E, 1 ≤ k ≤ V
δke ≥ 0 ∀e ∈ E, 1 ≤ k ≤ V

For a fixed set of multipliers δ̄ke , it is easy to see, that the problem decomposes into a maximum assignment
problem in the x-variables, i.e.,

max
∑
i∈V

∑
1≤k≤|V |−1

(∑
e∈E:i∈e

δ̄ke

)
xki

(UNIQUE), (ONELABEL)

xki ∈ {0, 1} 1 ≤ i, k ≤ V

13

and for each edge e ∈ E into a simple problem, where the index k with minimum objective coefficient needs
to be selected, i.e.,

min
∑

1≤k≤|V |−1

(k + δ̄ke)dke∑
1≤k≤|V |

dke = 1

dke ∈ {0, 1} 1 ≤ k ≤ V

Every solution of the assignment problem during the course of the subgradient algorithm gives a feasible
labeling φH and we use the local-search phase of Algorithm 1 and try to improve the obtained φH . We
initialize the multipliers δke with the values obtained by the extended version of the dual heuristic described
in Algorithm 2. We also use inequalities (TRIANGLE), by adding and relaxing all of them for the increasing
subsets of the labels up to {1, 2, . . . , |V | − 1}. To generate an initial starting solution, we use Algorithm 1.

4.2 A Constraint Programming formulation

Let yi be an integer variable denoting the label of node i ∈ V . Using themin-constraint and the alldifferent-
constraint, S-LP can be formulated as constraint programming problem as follows

min
∑

e={i,i′}∈E

min{yi, yi′} (C.1)

alldifferent(y) (C.2)

yi ∈ {1, 2, . . . , |V |}, ∀i ∈ V (C.3)

5. Computational results

All approaches were implemented in C++, the branch-and-bound/cut frameworks were implemented using
CPLEX 12.7, and the constraint programming solver was also implemented using the same CPLEX version.
To solve the assignment problems arising as subproblems in the Lagrangian relaxation, and also in the primal
heuristic of the branch-and-bound framework, we used the algorithm available at http://dlib.net/, which
implements the Hungarian method Kuhn (1955). The runs were made an Intel Xeon E5 v4 CPU with 2.2
GHz and 3GB memory and using a single thread. The timelimit for a run was set to 600 seconds and all
CPLEX-settings were left at default, except when solving (F1), details of the changed settings in this case
are given in Section 5.2.

5.1 Computational tests for special graph classes

First, we are interested, if there may be additional graph classes, for which the LP-relaxation of our MIPs
exhibits no integrality gap. Thus we generated the following sets of graphs using the graph generators of the
NetworkX-package Hagberg et al. (2008).

• grid: We generated |V | × |V | grid graphs for |V | ∈ {3, 4, . . . , 12} using the grid graph-function.

• bipartite graphs: We generated (n,m) bipartite graphs, with edge probability p, for (n,m) ∈
{(5, 5), (10, 10), (15, 15), (20, 20), (25, 25)} and p ∈ {0.25, 0.5} using the random graph-function of the
bipartite-module.

• caterpillar: A caterpillar is a tree, which reduces to a path, when all leaf nodes are deleted. In
Fertin et al. (2015, 2017) a polynomial-time algorithm for the S-LP on caterpillar graphs is given. We

14

http://dlib.net/

generated caterpillars with the expected number of nodes in the path in {10, 20, 30, 40, 50} and the
probability of adding edges to the underlying path in {0.25, 0.5} using the random lobster-function
(and setting the probability of adding a second level edges to zero).

• lobster: A lobster graph is a tree, which reduces to a caterpillar, when all leaf nodes are deleted.
We generated lobsters with the expected number of nodes in the path in {10, 20, 30, 40, 50} and the
probability of adding edges to the underlying path in {0.25, 0.5} and also the same probability of adding
a second level of edges using the random lobster-function

• tree: We generated trees with |V | = {10, 15, 20, 25, 30, 35, 40, 50, 75, 100} using the random tree-
function

Tables 1a to 1e show the value of the LP-relaxation (columns zLP) of (F2) (recall that both formulations
have the same strength, as shown in Section 2.1) and the value of the optimal solution (columns z∗), obtained
by solving the MIP, a bold entry in zLP means there is no gap. Only for three of the tested graphs, there is
a gap. Two of these three are grid graphs, and one is a lobster graph. Hence, for grid graphs and trees (as
a lobster is a special case of a tree), (F2) has an integrality gap. Interestingly, while for a lobster there is a
gap, for the instances in tree, there is no gap. Thus, clearly caution is advised when drawing conclusions
from these results regarding the integrality gap of (F2). However, for caterpillars, these results plus the fact,
that for these graphs, the problem is known to be polynomial-time solvable, this may suggest, that (F2)
gives no integrality gap. For bipartite graphs, it is also interesting to see that for the tested instances, there
is no gap, as the complexity of the S-LP is still unknown for these graphs. Unfortunately, we were unable
to prove results regarding the integrality gap for both graph types.

Table 1: Values of LP-relaxation and optimal solution for special graphs

name z∗ zLP

gridgraph3 30 29.67
gridgraph4 96 96
gridgraph5 242 241.67
gridgraph6 514 514
gridgraph7 972 972
gridgraph8 1692 1692
gridgraph9 2750 2750
gridgraph10 4254 4254
gridgraph11 6296 6296
gridgraph12 9016 9016

(a) Grid graphs

name z∗ zLP

bipartite5-5-0.25 6 6
bipartite5-5-0.5 19 19
bipartite10-10-0.25 85 85
bipartite10-10-0.5 211 211
bipartite15-15-0.25 254 254
bipartite15-15-0.5 707 707
bipartite20-20-0.25 880 880
bipartite20-20-0.5 1893 1893
bipartite25-25-0.25 1837 1837
bipartite25-25-0.5 3641 3641

(b) Bipartite graphs

name z∗ zLP

caterpillar10-0.25 41 41
caterpillar10-0.5 57 57
caterpillar20-0.25 434 434
caterpillar20-0.5 503 503
caterpillar30-0.25 306 306
caterpillar30-0.5 397 397
caterpillar40-0.25 508 508
caterpillar40-0.5 583 583
caterpillar50-0.25 682 682
caterpillar50-0.5 932 932

(c) Caterpillar graphs

name z∗ zLP

lobster10-0.25-0.25 41 41
lobster10-0.5-0.5 72 72
lobster20-0.25-0.25 492 492
lobster20-0.5-0.5 793 793
lobster30-0.25-0.25 361 361
lobster30-0.5-0.5 551 551
lobster40-0.25-0.25 533 533
lobster40-0.5-0.5 766 766
lobster50-0.25-0.25 737 737
lobster50-0.5-0.5 1267 1266.5

(d) Lobster graphs

name z∗ zLP

tree10 19 19
tree15 40 40
tree20 77 77
tree25 129 129
tree30 152 152
tree35 186 186
tree40 235 235
tree50 386 386
tree75 943 943
tree100 1692 1692

(e) Tree graphs

5.2 Computational tests on general graphs

In this section, we are interested in investigating the computational effectiveness of the proposed solution
approaches for the S-LP when dealing with general graphs. The considered graphs are as follows:

15

• HB: Graphs from the Harwell-Boeing Sparse Matrix Collection, which is a ”is a set of standard test
matrices arising from problems in linear systems, least squares, and eigenvalue calculations from a
wide variety of scientific and engineering disciplines”, see https://math.nist.gov/MatrixMarket/

collections/hb.html. These graphs have for example be used when testing approaches for graph
bandwidth problems, which are another type of labeling problem Duarte et al. (2011); Rodriguez-Tello
et al. (2015). Details of the number of nodes and edges of the individual graphs are given in the
results-tables in columns |V | and |E|. For testing, we partitioned the set into small and large graphs,
denoted by the suffixes sm and lg in the names of the set. Graphs with |V | ≤ 118 are considered as
small, and all others are considered as large. There are 28 graphs, and 12 are large.

• RND: Random graphs with |V | nodes and |E| edges, generated using the gnm random graph-function
of the NetworkX-package. We generated five graphs each for the following (|V |, |E|)-pairs: (|V |, |E|) ∈
{(50, 100), (50, 150), (50, 200), (500, 1000), (500, 1500), (500, 2000)}, the graphs with 50 nodes are con-
sidered as small (sm) and the ones with 500 nodes as large (lg).

We first tested different configurations of our MIP approaches:

• F1: The branch-and-bound based on (F1) with the starting and primal heuristic described in Section
2.2; without the branching-scheme and initialization-scheme described in Section 2.3

• F1I: Setting F1 and the initialization-scheme as described in Section 2.3

• F1IB: Setting F1I and the branching-scheme as described in Section 2.3

• F2: The branch-and-bound based on (F2) with the starting and primal heuristic described in Section
2.2; without the branching-scheme described in Section 2.3 and the valid inequalities (TRIANGLE)

• F2V: Setting F2 and the valid inequalities (TRIANGLE)

• F2VB: Setting F2V and the branching-scheme as described in Section 2.3

Figures 2a and 2b show the runtime and optimality gap for these settings and the small instances (i.e.,
HB-sm and RND-sm). The optimality gap g[%] is calculated as 100 · (zD − z∗)/z∗, where zD the value of the
dual bound and z∗ is the value of the best solution found by the setting.

●
●
●

●
●

●
●

●
●

●

●

0

25

50

75

100

1 10 50 100 300 600
runtime [s]

#
in

st
an

ce
s

[%
]

Setting
● F1

F1I
F1IB
F2
F2V
F2VB

(a) Runtime

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0
optimality gap [%]

#
in

st
an

ce
s

[%
]

Setting
● F1

F1I
F1IB
F2
F2V
F2VB

(b) Optimality gap

Figure 2: Runtime and optimality gap for the small instances and different settings

In the figures, we see that F2VB is the most effective setting, managing to solve about 75% of the instances
within the given timelimit, and the maximum gap is under 2.5%. Settings F2V and F1IB also manage to
solve over 50% of the instances. In terms of optimality gap, F2VB and F2V are quite similar, while F1IBhas
gaps up to 7.5%. The remaining settings are also quite similar, with about 37.5% of solved instances and gap
of up to 10%. Thus, the valid inequalities (TRIANGLE) (used in F2VBand F2V) and the branching-scheme
(used in F2VB and F1IB) seem to be quite helpful for solving the problem.

Tables 2 and 3 give detailed results for approaches F1IB, F2VB, LAG and HEUR and instance sets HB-sm
and RND-sm, the performance of the extended version of Algorithm 2 is also reported denoted as DUAL. We

16

https://math.nist.gov/MatrixMarket/collections/hb.html
https://math.nist.gov/MatrixMarket/collections/hb.html

note that the values zD of DUAL and z∗ of HEUR are always worse than the corresponding values obtained by
F1IB, F2VB, LAG as the latter are initialized based on DUAL and HEUR (see Sections 2.2,2.3,4.1). For F1IB and
F2VB we also report the LP-bound at the root node in column zR. Bold entries in the columns mean that
the method found the best values of zD and z∗ amongst all considered methods. We see that on the primal
side (i.e., z∗), F1IB, F2VB, LAG all find the best solution value for all instances, while CP and the stand-alone
heuristic HEUR only find the best solution value for some instances. Looking at the runtime, LAG takes at
most five seconds, compared with the MIP-based methods F1IB and F2VB, which sometimes run until the
timelimit, thus LAG can be a good option, if one wants to find a good solution value quickly. Looking at
the dual side, we see that F2VB provides the best lower bound for all instances and the root-bound zR is
better than the root-bound of F1IB for nearly all instances, so the valid inequalities (TRIANGLE) seem
quite helpful. LAG, which also uses (TRIANGLE) sometimes has better bounds than zR of F1IB(the MIP-
approaches also benefit from the general-purpose cuts of CPLEXs). The bounds provided by DUAL are about
10% worse than zR of F1IB for most of the instances, however, for some they are also considerably smaller
(e.g., instance D-bcsstk01), and for instance rgg010 DUAL even manages to find the LP-bound. Regarding
the runtime for the MIP-approaches, the size of the instance seems to be important, as for all except one
of the largest instances (i.e., the ones with |E| = 200) of RND-sm, both F1IB and F2VB terminate due to the
timelimit, and also for HB-sm, there is a connection between termination due to timelimit and number of
edge of an instance.

17

Table 2: Results for instances class HB-sm

F1IB F2VB LAG CP HEUR DUAL
name |V | |E| zD z∗ g[%] t[s] zR zD z∗ g[%] t[s] zR zD z∗ g[%] t[s] z∗ t[s] z∗ t[s] zD t[s]

A-pores-1 30 103 811.4 818 0.81 TL 744.00 818 818 0.00 14 807.77 756.27 818 7.55 0 818 TL 832 0 723 0
B-ibm32 32 90 651 651 0.00 2 626.50 651 651 0.00 2 651.00 613.16 651 5.81 0 651 TL 651 0 584 0
can-24 24 68 418.5 425 1.53 TL 374.50 425 425 0.00 12 417.48 390.88 425 8.03 0 425 TL 425 0 359 0
C-bcspwr01 39 46 332 332 0.00 0 332.00 332 332 0.00 0 332.00 328.06 332 1.19 0 332 TL 332 0 328 0
D-bcsstk01 48 176 2037.39 2225 8.43 TL 1986.34 2220.05 2225 0.22 TL 2210.31 2047.87 2225 7.96 1 2226 TL 2244 0 1936 0
E-bcspwr02 49 59 471 471 0.00 0 471.00 471 471 0.00 0 471.00 457.87 471 2.79 0 471 TL 471 0 452 0
F-curtis54 54 124 1341 1342 0.07 TL 1295.13 1342 1342 0.00 15 1341.00 1292.06 1342 3.72 1 1347 TL 1347 0 1233 0
G-will57 57 127 1361.25 1369 0.57 TL 1296.83 1369 1369 0.00 11 1369.00 1254.20 1369 8.39 1 1375 TL 1379 0 1211 0
H-impcol-b 59 281 3222.25 3363 4.19 TL 3162.00 3349.33 3363 0.41 TL 3346.62 3071.46 3363 8.67 4 3387 TL 3378 0 3001 0
I-ash85 85 219 4114.28 4412 6.75 TL 4071.16 4412 4412 0.00 185 4412.00 4093.26 4412 7.22 5 4600 TL 4444 0 3890 0
jgl009 9 32 95 95 0.00 0 84.75 95 95 0.00 1 92.17 85.86 95 9.62 0 95 52 95 0 83 0
jgl011 11 49 175 175 0.00 4 150.75 175 175 0.00 5 165.73 151.47 175 13.45 0 175 TL 175 0 147 0
J-nos4 100 247 5455 5658 3.59 TL 5416.00 5539.5 5658 2.09 TL 5523.50 5285.67 5658 6.58 3 5996 TL 5667 0 5218 0
K-dwt–234 117 162 2169 2169 0.00 3 2169.00 2169 2169 0.00 2 2169.00 2108.79 2169 2.78 2 2172 TL 2169 0 2105 0
L-bcspwr03 118 179 3557 3557 0.00 28 3546.25 3557 3557 0.00 13 3557.00 3440.42 3557 3.28 3 3695 TL 3557 0 3418 0
rgg010 10 45 165 165 0.00 93 135.00 165 165 0.00 193 145.29 139.21 165 15.63 0 165 TL 165 0 135 0

Table 3: Results for instances class RND-sm

F1IB F2VB LAG CP HEUR DUAL
name |V | |E| zD z∗ g[%] t[s] zR zD z∗ g[%] t[s] zR zD z∗ g[%] t[s] z∗ t[s] z∗ t[s] zD t[s]

random50-100-1 50 100 911 911 0.00 1 911.00 911 911 0.00 1 911.00 871.84 911 4.30 0 911 TL 911 0 858 0
random50-100-2 50 100 1053 1053 0.00 4 1033.00 1053 1053 0.00 4 1053.00 971.08 1053 7.78 0 1053 TL 1062 0 956 0
random50-100-3 50 100 994 994 0.00 2 987.00 994 994 0.00 3 994.00 946.17 994 4.81 0 996 TL 999 0 923 0
random50-100-4 50 100 1039 1039 0.00 50 1000.00 1039 1039 0.00 22 1023.50 962.79 1039 7.33 0 1039 TL 1048 0 933 0
random50-100-5 50 100 978 978 0.00 7 960.00 978 978 0.00 14 972.50 909.90 978 6.96 0 985 TL 990 0 887 0
random50-150-1 50 150 1599 1599 0.00 44 1543.50 1599 1599 0.00 9 1599.00 1487.13 1599 7.00 1 1610 TL 1611 0 1447 0
random50-150-2 50 150 1674 1736 3.57 TL 1606.00 1736 1736 0.00 250 1711.00 1554.26 1736 10.47 1 1739 TL 1741 0 1520 0
random50-150-3 50 150 1593 1593 0.00 12 1553.70 1593 1593 0.00 9 1593.00 1484.96 1593 6.78 1 1598 TL 1593 0 1469 0
random50-150-4 50 150 1612 1612 0.00 145 1532.50 1612 1612 0.00 21 1608.22 1461.63 1612 9.33 1 1623 TL 1628 0 1421 0
random50-150-5 50 150 1618 1618 0.00 188 1543.00 1618 1618 0.00 13 1618.00 1510.53 1618 6.64 1 1621 TL 1621 0 1473 0
random50-200-1 50 200 2236.5 2326 3.85 TL 2181.53 2323 2326 0.13 TL 2308.88 2131.75 2326 8.35 1 2331 TL 2340 0 2059 0
random50-200-2 50 200 2314 2470 6.32 TL 2254.00 2438.06 2470 1.29 TL 2424.60 2233.40 2470 9.58 1 2484 TL 2478 0 2152 0
random50-200-3 50 200 2276.5 2374 4.11 TL 2209.50 2365.31 2374 0.37 TL 2344.50 2153.92 2374 9.27 1 2386 TL 2374 0 2089 0
random50-200-4 50 200 2213 2373 6.74 TL 2128.00 2339.81 2373 1.40 TL 2318.12 2078.76 2373 12.40 1 2381 TL 2381 0 2000 0
random50-200-5 50 200 2244 2324 3.44 TL 2155.50 2324 2324 0.00 74 2317.47 2136.98 2324 8.05 1 2332 TL 2364 0 2056 0

18

Finally, we turn our attention to the larger instances, i.e., HB-lg and RND-lg. For these instances, we
tested LAG, F1I (due to the size of the instances, the LP-solving time becomes prohibitive for any setting
based on (F2)), HEUR and also report on the performance of DUAL. For dealing with these larger instances
with F1I, instead of the default CPLEX setting for the LP-algorithm and pricing-strategy, we explicitly set
the primal simplex algorithm with reduced-cost pricing. This turned out to be beneficial in preliminary
runs and is motivated by the fact, that there are many more columns than rows in the formulation and the
formulation is very dense. Note that for these larger instances and the given timelimit F1I and F1IBare the
same, as the root node of the branch-and-bound tree is not finished within the timelimit for any instance.
Table 4 gives the results for HB-lg and Table 5 for RND-lg.

We see, that regarding primal solutions, LAG find the best solution value for all instances, while HEUR

for none and F1I only for one, so the Lagrangian approach seems to be quite helpful for finding good
primal solutions. However, compared to the small instances, LAG now becomes more time consuming and
for instances of HB-lg some runs terminate due to the timelimit. Regarding dual bounds, for instance class
HB-lg F1I finds the best bound for five instances, and LAG for seven, on the other hand, for RND-lg F1I

finds the best bound for all instances, while LAG for none. The gaps provided by both F1I and LAG are
comparable and between 3% and 18%, for HB-lg, LAG seems slightly better and for RND-lg F1I. The dual
bounds provided by DUAL are not far from the bounds provided by F1I and LAG, while the runtime is much
faster (i.e., at most one second). Thus, a branch-and-bound based on a dual heuristic like DUAL could be
interesting to explore in further work.

Table 4: Results for instances class HB-lg

F1I LAG HEUR DUAL
name |V | |E| zD z∗ g[%] zD z∗ g[%] t[s] z∗ t[s] zD t[s]

M-bcsstk06.mtx 420 3720 309263.31 377439 18.06 323231.00 376169 14.07 TL 383166 0 306337 2
N-bcsstk07.mtx 420 3720 309263.31 377439 18.06 323231.00 376169 14.07 TL 383166 0 306337 2
O-impcol-d.mtx 425 1267 97924.49 103300 5.20 94650.20 102501 7.66 277 103312 0 93511 0
P-can–445.mtx 445 1682 170217.77 197273 13.71 178140.00 196762 9.46 TL 198158 0 169953 0
Q-494-bus.mtx 494 586 43972.02 43999 0.06 42620.30 43999 3.13 125 44418 0 42477 0
R-dwt–503.mtx 503 2762 258088.51 316834 18.54 270426.00 316403 14.53 TL 317347 0 250309 1
S-sherman4.mtx 546 1341 162642.47 169284 3.92 162372.00 168914 3.87 66 171364 0 162372 0
T-dwt–592.mtx 592 2256 295127 342013 13.71 309821.00 341088 9.17 TL 342583 0 295133 1
U-662-bus.mtx 662 906 93056.25 95509 2.57 91209.90 95173 4.16 347 96009 0 91005 0
V-nos6.mtx 675 1290 208656 211923 1.54 208658.00 211908 1.53 99 214026 0 208658 0
W-685-bus.mtx 685 1282 150721.43 162327 7.15 150436.00 161821 7.04 569 162327 0 148193 0
X-can–715.mtx 715 2975 409861.59 465576 11.97 426068.00 464250 8.22 TL 465576 0 409014 1

Table 5: Results for instances class RND-lg

F1I LAG HEUR DUAL
name |V | |E| zD z∗ g[%] zD z∗ g[%] t[s] z∗ t[s] zD t[s]

random500-1000-1 500 1000 87139.6 92236 5.53 84429.00 91746 7.98 47 92851 0 83903 0
random500-1000-2 500 1000 87546.29 91361 4.18 84553.00 91124 7.21 45 91607 0 84120 0
random500-1000-3 500 1000 86763.58 90970 4.62 83530.50 90636 7.84 161 91605 0 82662 0
random500-1000-4 500 1000 87855.94 91805 4.30 84837.00 91470 7.25 47 92578 0 84551 0
random500-1000-5 500 1000 85586.29 89547 4.42 82675.00 89305 7.42 159 90019 0 82139 0
random500-1500-1 500 1500 140414.03 151689 7.43 136347.00 150407 9.35 226 152341 0 134706 0
random500-1500-2 500 1500 139672.08 152517 8.42 136926.00 151704 9.74 237 152517 0 135266 0
random500-1500-3 500 1500 139741.86 149669 6.63 135483.00 149240 9.22 224 150462 0 133744 0
random500-1500-4 500 1500 140033.31 153100 8.53 136242.00 151839 10.27 235 153315 0 135021 0
random500-1500-5 500 1500 141017.18 154663 8.82 138273.00 154249 10.36 65 155512 0 137289 0
random500-2000-1 500 2000 189879.38 214580 11.51 189065.00 213581 11.48 320 214778 0 187004 1
random500-2000-2 500 2000 193594.01 221148 12.46 192783.00 219807 12.29 325 221148 0 190568 1
random500-2000-3 500 2000 192637.36 214499 10.19 188478.00 212952 11.49 332 214499 0 186467 1
random500-2000-4 500 2000 196162.85 217207 9.69 192015.00 215966 11.09 301 217594 0 189697 1
random500-2000-5 500 2000 198630.17 220397 9.88 194450.00 219567 11.44 322 220397 0 192649 1

19

6. Conclusions

In this work, we studied the recently introduced S-labeling problem, in which the nodes get labeled using
labels from 1 to |V | and for each edge the contribution to the objective function, called S-labeling number
of the graph, is the minimum label of its end-nodes. The goal is to find a labeling φ∗ with minimum value.
We presented two Mixed-Integer Programming (MIP) formulations for the problem and developed branch-
and-cut solution frameworks based on it. These frameworks were enhanced with with valid inequalities,
starting and primal heuristics and specialized branching rules. Moreover, we showed that one of the MIP
formulations is the projection of the other and, with the help of a (heuristic) algorithm to solve the dual
in the spirit of dual-ascent algorithms, that our MIP formulations have no integrality gap for paths, cycles
and perfect n-ary trees. We gave, to the best of our knowledge, the first polynomial-time algorithm for the
problem on n-ary trees as well as a closed formula for the S-labeling number. Finally, we also presented a
Lagrangian heuristic and a constraint programming approach.

We assessed the efficiency of our proposed solution methods in a computational study. The study reveals,
that for caterpillar graphs and bipartite graphs our formulation may also have no integrality gap, unfortu-
nately, we were not able to prove any results on this. Moreover, our MIP-approaches are quite effective for
solving the S-LP to optimality on general graphs with up to around 100 nodes within the timelimit of 600
seconds, and the proposed enhancements, especially the valid inequalities, are helpful. For larger graphs with
up to 1000 nodes, the Lagrangian heuristic produces solutions with an optimality gap of about 5-15% for
most of the considered instances and the smaller-sized MIP formulation also provides good results (the size
of the MIP formulations becomes burdensome for these larger graphs). There are various avenues for fur-
ther work: i) further enhancing the presented MIP-approaches by e.g., additional valid inequalities or other
techniques; ii) development of alternative (smaller-sized) MIP-approaches or (meta-)heuristic algorithms to
deal with large-scale instances, a (combinatorial) branch-and-bound based using the dual heuristic or the
Lagrangian relaxation for providing bounds could also be interesting in this regard; iii) further investigation,
if there are additional graph classes, where the problem can be solved in polynomial-time, in particular,
bipartite graphs could be an interesting class, as our presented MIP may have no integrality gap.

Acknowledgements

The research was supported by the Austrian Research Fund (FWF, Project P 26755-N19).

References

References

T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations Research Letters, 33(1):42–54,
2005.

A. Balakrishnan, T. L. Magnanti, and R. T. Wong. A dual-ascent procedure for large-scale uncapacitated
network design. Operations Research, 37(5):716–740, 1989.

P. E. Black. Perfect k-ary tree. In Dictionary of Algorithms and Data Structures. URL http://www.nist.

gov/dads/HTML/perfectKaryTree.html. [online], accessed 25.08.2018.

G. S. Bloom and S. W. Golomb. Applications of numbered undirected graphs. Proceedings of the IEEE, 65
(4):562–570, 1977.

N. Cho and J. Linderoth. Row-partition branching for set partitioning problems. In Proceedings of the
INFORMS Computing Society Meeting, pages 119–133, 2015.

M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming. Springer Berlin, 2014.

20

http://www.nist.gov/dads/HTML/perfectKaryTree.html
http://www.nist.gov/dads/HTML/perfectKaryTree.html

A. Dehghan, M.-R. Sadeghi, and A. Ahadi. Algorithmic complexity of proper labeling problems. Theoretical
Computer Science, 495:25–36, 2013.

J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing Surveys (CSUR), 34
(3):313–356, 2002.

A. Duarte, R. Mart́ı, M.G.C. Resende, and R.M.A. Silva. Grasp with path relinking heuristics for the
antibandwidth problem. Networks, 58(3):171–189, 2011.

D. Erlenkotter. A dual-based procedure for uncapacitated facility location. Operations Research, 26(6):
992–1009, 1978.

G. Fertin and S. Vialette. On the S-labeling problem. Electronic Notes in Discrete Mathematics, 34:273–277,
2009.

G. Fertin, I. Rusu, and S. Vialette. Algorithmic aspects of the S-labeling problem. In International Workshop
on Combinatorial Algorithms, pages 173–184. Springer, 2015.

G. Fertin, I. Rusu, and S. Vialette. The S-labeling problem: An algorithmic tour. Discrete Applied Mathe-
matics, 2017.

M. L. Fisher. The Lagrangian relaxation method for solving integer programming problems. Management
Science, 27(1):1–18, 1981.

J. A. Gallian. A dynamic survey of graph labeling. The Electronic Journal of Combinatorics, 16(6):1–219,
2009.

A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics, and function using
NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), pages 11–15, Pasadena,
CA USA, August 2008.

X. T. Jin and R. K. Yeh. Graph distance-dependent labeling related to code assignment in computer
networks. Naval Research Logistics (NRL), 52(2):159–164, 2005.

R. M. Karp. Mapping the genome: some combinatorial problems arising in molecular biology. In Proceedings
of the twenty-fifth annual ACM symposium on Theory of computing, pages 278–285. ACM, 1993.

H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2
(1-2):83–97, 1955.

G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley, 1988.

E. Rodriguez-Tello, J.-K. Hao, and J. Torres-Jimenez. An effective two-stage simulated annealing algorithm
for the minimum linear arrangement problem. Computers & Operations Research, 35(10):3331–3346, 2008.

E. Rodriguez-Tello, H. Romero-Monsivais, G. Ramirez-Torres, and F. Lardeux. Tabu search for the cyclic
bandwidth problem. Computers & Operations Research, 57:17–32, 2015.

Jan Van den Heuvel, Robert A Leese, and Mark A Shepherd. Graph labeling and radio channel assignment.
Journal of Graph Theory, 29(4):263–283, 1998.

S. Vialette. Packing of (0, 1)-matrices. RAIRO-Theoretical Informatics and Applications, 40(4):519–535,
2006.

L. Wolsey. Integer Programming. Wiley, 1998.

R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical Program-
ming, 28(3):271–287, 1984.

21

	Introduction and motivation
	Mixed-Integer Programming approaches for the S-LP
	Comparison between (F1) and (F2)
	Starting and primal heuristic
	Further enhancements

	Analyzing the MIP-formulation for special classes of graphs
	A heuristic algorithm for solving the dual of formulation (F2)
	Paths and Cycles
	Perfect n-ary trees

	Additional solution approaches
	Lagrangian heuristic
	A Constraint Programming formulation

	Computational results
	Computational tests for special graph classes
	Computational tests on general graphs

	Conclusions

