
A note on computational aspects of the Steiner traveling salesman

problem

Eduardo Álvarez-Miranda ∗1 and Markus Sinnl†2

1Department of Industrial Engineering, Universidad de Talca, Curicó, Chile
2Department of Statistics and Operations Research, Faculty of Business, Economics and

Statistics, University of Vienna, Vienna, Austria

Abstract

The Steiner traveling salesman problem (StTSP) is a variant of the classical traveling salesman
problem (TSP). In the StTSP, we are given a graph with edge distances, and a set of terminal nodes,
which are a subset of all nodes. The goal is to find a minimum distance closed walk, which visits each
terminal node at least once. Two recent articles proposed solution approaches to the problem, namely,
on the exact side, Letchford et al. [9] proposed compact Integer Linear Programming models, and on the
heuristic side, Interian and Ribeiro [8] proposed greedy randomized adaptive search procedure, enhanced
with a a local search. In these papers, the exact approaches could solve instances with up to 250 nodes
to optimality, with runtimes up to 1400 seconds, and the heuristic approach was used to tackle instances
with up to 3353 nodes, with runtimes up to 8500 seconds.

In this note, we show that by transforming the problem to the classical TSP, and using a state-of-the-
art TSP solver, all instances from literature can solved to optimality within 20 seconds, most of them
within a second. We provide optimal solution values for fourteen instances, where the optimal solution
was not known.

1 Introduction and methodology

The traveling salesman problem (TSP) is one of the most prominent problems in combinatorial optimization,
and in mathematical optimization in general. The TSP and its variants have many applications areas, for
example routing problems in logistics and transportations contexts. Given a set of nodes and distances
between them, the undirected version of the TSP consists of finding a minimum distance tour that visits
each node (which might represent a final client, a retailer or a city) exactly once and returns to the first node.
Mathematically, the TSP can be defined as follows: given a graph G = G(V,E), and an edge distance function

c : E → R|E|≥0 , find a minimum total distance (Hamiltonian) tour that visits each node in V exactly once.
Note that the TSP is usually defined on a complete graph. See, e.g., [2, 3, 7] and [13], for comprehensive
studies on modeling and algorithmic aspects of the TSP and related problems.

Despite of the relevance of the TSP, in real life applications, routing and delivery operations normally
differ with respect to the TSP setting: i) road networks are normally non-complete but rather large sparse
graphs; as a matter of fact, since decades sparsity of road networks have been identified as an important
issue when tackling practical routing problems (see, e.g., [6, 11, 12]); and ii) often, not all but rather a
subset of clients must be visited. Such clients might represent those that have been previously appointed in
a particular day, or strategical clients that must be visited under all circumstances (see, e.g., [10]). In other

∗ealvarez@utalca.cl
†markus.sinnl@univie.ac.at

1

words, we are given a subset of required, visiting or terminal nodes T ⊆ V , so that the optimization goal is
to find a minimum distance closed walk, that visits each node in T at least once (and other nodes could be
visited as well). The resulting closed walk is not necessarily a Hamiltonian tour, as nodes may be visited
more than once and edges may be traversed more than once. The resulting problem was independently
introduced by [4] and [6]; it was called Steiner TSP (StTSP) in the former paper (due to the presence of
terminal nodes as in the well-known Steiner tree problem), and as road network TSP in the later one (due
to the optimization on a sparse road network instead of on a complete one). In both works, complementary
proofs of NP-hardness are provided.

Previous Work and Our Contribution The problem was introduced in the 1980s, in the following two
papers. In [4], the authors give a polynomial-time algorithm for the StTSP in series-parallel graphs. In [6],
a cutting-plane approach to the problem is proposed by the authors. In both [4] and [6], it is mentioned
that the StTSP can be solved by transforming the problem into a TSP instance. The transformation works
by first computing shortest-paths between all nodes in T , which yields the edge set E′, and then solving the
TSP on the resulting complete graph G′ = (T,E′) (see also [8] and [9]).

Recently, there has been renewed interest in the problem. In Letchford et al. [9], a compact Integer
Linear Programming (ILP) models is proposed, which allows solving instances with up to 250 nodes to
optimality, with runtimes up to 1400 seconds. Additionally, Interian and Ribeiro [8] develop a greedy
randomized adaptive search procedure, enhanced with a a local search. This heuristic approach is used to
tackle instances with up to 3353 nodes, with runtimes up to 8500 seconds. In both of these recent works, it is
mentioned that transforming the StTSP into the TSP results in computationally burdensome TSP instances.
The authors argue that while the StTSP instances are usually sparse, the TSP instances associated to G′

considers many edges that may never be used. Thus, none of these papers exploit this TSP transformation,
and in both the problem is tackled directly, using exact and heuristic approaches, respectively. Therefore,
in these papers, a comparison of the proposed algorithms with respect to the TSP-based approach was
not performed. In the next section, we provide such a comparison, using the state-of-the-art TSP solver
CONCORDE [1]. Our computations reveal that by doing so, all instances from literature can solved to
optimality within 20 seconds, most of them within a second. We provide optimal solution values for fourteen
instances, where the optimal solution was not known.

2 Computational Results

The shortest-paths needed for transforming the problem into a TSP were calculated using Dijsktra’s algo-
rithm [5] implemented in C++. To solve the resulting TSP instances, CONCORDE 03.12.19, as available
at http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm was used. The runs were made
on an Intel Core i5 with 2.9 Ghz and 8GB RAM.

2.1 Benchmark Instances

We used the benchmark instances from Letchford et al. [9] and Interian and Ribeiro [8]. The instances
are available online at http://www2.ic.uff.br/∼rinterian/instances/stsp.html, and they are classified into two
groups, as follows:

• The instances of the first group are named as STSP n-αoverβ. These instances are based on random
sparse graphs, and are generated as follows. For a given n (which denotes the number of nodes), the
probability of any node being a terminal is α/β. Letchford et al. [9] generate instances using n ∈
{50, 75, 100, 125, 150, 175, 200, 225, 250}; and for each n, α ∈ {1, 2} and β = 3 . Additionally, Interian
and Ribeiro [8] generates two instances with n = 300, α ∈ {1, 2} and β = 3.

• The second group is proposed in Interian and Ribeiro [8], and they are named as source ρpercent.
These instances are generated from different real-life graph sources. Namely, the road network of Rome
(instances rome), the main roads between European cities (instances euroroad), and the network of

2

http://www.math.uwaterloo.ca/tsp/concorde/downloads/downloads.htm
http://www2.ic.uff.br/~rinterian/instances/stsp.html

the main internet providers (instances tech-routers). The probability ρ in the instance name gives
the probability of any node being a terminal (ρ ∈ {0.05, 0.10, 0.15}).

2.2 Results

Table 1 gives a comparison of the results from Letchford et al. [9] and Interian and Ribeiro [8] our imple-
mentation of the TSP-based approach. The columns |V |, |E| and |T | give the number of nodes, edges and
terminals of an instance, respectively. Columns z[8] and t[8][s] give the solution value and runtime of the
heuristic from Interian and Ribeiro [8]. The computations in [8] were made on a Intel Core i5 with a 2.9
GHz processor and 8 GB RAM. For instances STSP*, runs with different settings of their heuristic were made
in [8]; hence, we report in the table, the runs giving the best solution value. Column t[9][s] gives the runtime
of the fastest approach from Letchford et al. [9]. The computations in [9] were made on an Intel Core i7
with 1.9 Ghz and 8 GB RAM, CPLEX 12.3 was used to solve the ILPs. A timelimit of 5000 seconds was
imposed, two instances (STSP 225-2over3 and STSP 250-2over3) could not be solved with any approach
of [9] within the timelimit. Columns z∗, t[s], tspt[s] give the (proven optimal) solution value obtained by
our implementation, the corresponding overall runtime (including the time to transform the instance), and
the time to transform the instance, respectively. An entry in italics in column z∗ indicates that for the
corresponding instance, the optimal solution value was not known before. Twelve out of these fourteen
instances correspond to those generated from [8]; and the remaining two instances are from [9]). Likewise,
a bold entry indicates that the found optimal solution value is better than the value found by the heuristic
of [8].

Table 1: Comparison with literature . An italic entry in column z∗ indicates that for this instance, the
optimal solution value was not known before a bold entry indicates that the found optimal solution value is
better than the value found by the heuristic of [8]

name |V | |E| |T | z[8] t[8][s] t[9][s] z∗ t[s] tspt[s]

STSP 50-1over3 50 69 16 789 1.71 0.00 789 0.02 0.00
STSP 50-2over3 50 69 33 978 3.95 1.48 978 0.02 0.00
STSP 75-1over3 75 105 25 830 4.06 0.00 830 0.02 0.00
STSP 75-2over3 75 105 50 1029 9.26 3.46 1029 0.07 0.00
STSP 100-1over3 100 139 33 919 7.20 0.00 919 0.05 0.01
STSP 100-2over3 100 139 66 1193 18.43 6.74 1193 0.11 0.01
STSP 125-1over3 125 179 41 1143 12.26 0.00 1143 0.04 0.01
STSP 125-2over3 125 179 83 1420 33.09 26.76 1416 0.75 0.01
STSP 150-1over3 150 215 50 1105 18.51 102.10 1105 0.10 0.01
STSP 150-2over3 150 215 100 1562 52.23 202.33 1545 0.49 0.02
STSP 175-1over3 175 252 58 1272 27.01 0.00 1272 0.06 0.01
STSP 175-2over3 175 252 116 1652 76.23 162.58 1645 2.27 0.02
STSP 200-1over3 200 291 66 1295 35.62 0.00 1295 0.07 0.01
STSP 200-2over3 200 291 133 1867 105.20 457.07 1845 1.35 0.03
STSP 225-1over3 225 326 75 1384 48.95 1420.60 1377 0.12 0.02
STSP 225-2over3 225 326 150 1928 142.26 TL 1901 2.22 0.03
STSP 250-1over3 250 367 83 1487 59.00 290.80 1487 0.12 0.02
STSP 250-2over3 250 367 166 2035 176.04 TL 1994 1.79 0.05
STSP 300-1over3 300 440 100 1629 85.95 - 1629 0.35 0.04
STSP 300-2over3 300 440 200 2205 296.76 - 2128 0.69 0.08
euroroad 05percent 1174 1417 58 31571 147.50 - 31571 0.43 0.07
euroroad 10percent 1174 1417 117 49975 354.90 - 49975 0.66 0.13
euroroad 15percent 1174 1417 176 58016 684.60 - 57793 1.42 0.18
euroroad 20percent 1174 1417 234 71967 1162.00 - 71469 2.90 0.24
tech-routers 05percent 2113 6632 105 20258 1030.50 - 20230 4.68 0.48
tech-routers 10percent 2113 6632 211 37486 3360.70 - 37383 10.47 1.01
tech-routers 15percent 2113 6632 316 51571 6850.60 - 51323 20.69 1.57
rome99 05percent 3353 8870 167 481048 1893.50 - 474569 2.73 0.67
rome99 10percent 3353 8870 335 622491 5196.20 - 605047 4.29 1.33
rome99 15percent 3353 8870 502 795535 8494.40 - 769236 4.97 2.27

From the reported results, we see that the shortest-path calculations for the transformation can be done
very fast, the longest time is under 3 seconds, for rome99 15percent, which is the largest instance and has
502 required nodes. The longest overall runtime is about 20 seconds, for instance tech-routers 15percent,

3

and only a second instance, tech-routers 10percent also takes over ten seconds to be solved to proven
optimality. When comparing columns t[8][s] and t[s], we can see the runtime of TSP-based approach is
up to three magnitudes faster than the heuristic of [8] (the specifications of the computers used in [8] and
for our runs is similar.) Moreover, for 16 out of the 30 instances, the optimal solution is better than the
solution found by the heuristic. For the instances tackled by the exact approach in [9], our implementation
is capable of solving to optimality (and in less than two seconds), the two instances which [9] could not solve
to optimality within their timelimit of 5000 seconds. In general, compared to [9], our approach seems to
scale much better as the instance becomes larger.

The good performance of the transformation approach, in spite of the fact that the transformed graph G′

has many more edges than G (e.g., 125751 against 8870 for the largest instance rome99), may be explained
by the fact that, state-of-the-art TSP algorithms like CONCORDE use many techniques to deal with the
issues associated with complete graphs (e.g., pricing-in of edge variables, see Section 8 of [1]).

Acknowledgments

E. Álvarez-Miranda acknowledges the support of the Chilean Council of Scientific and Technological Research
(FONDECYT grant N.1180670 and Complex Engineering Systems Institute ICM:P-05-004-F/CONICYT:FB0816),
and of the European Union’s HORIZON 2020 research and innovation programme under the Marie Skodowska-
Curie Actions (grant agreement N.691149, SuFoRun Project). M. Sinnl is supported by the Austrian Re-
search Fund (FWF, Project P 26755-N19).

References

[1] Applegate, D., Bixby, R., Chvátal, V., Cook, W., 2003. Implementing the dantzig-fulkerson-johnson
algorithm for large traveling salesman problems. Mathematical programming 97, 1-2, 91–153.

[2] Applegate, D., Bixby, R., Chvatál, V., Cook, W., 2006. The Traveling Salesman Problem: A Computa-
tional Study. Princeton University Press.

[3] Cook, W., 2012. In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation.
Princeton University Press.

[4] Cornuéjols, G., Fonlupt, J., Naddef, D., 1985. The traveling salesman problem on a graph and some
related integer polyhedra. Mathematical Programming 33, 1, 1–27.

[5] Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 1,
269–271.

[6] Fleischmann, B., 1983. Distance conserving reductions for nonoriented networks. Operations-Research-
Spektrum 5, 4, 195–205.

[7] Gutin, G., Punnen, A., 2002. The Traveling Salesman Problem and Its Variations. Combinatorial
Optimization. Springer.

[8] Interian, R., Ribeiro, C., 2017. A grasp heuristic using path-relinking and restarts for the steiner
traveling salesman problem. International Transactions in Operational Research 24, 6, 1307–1323.

[9] Letchford, A., Nasiri, S., Theis, D., 2013. Compact formulations of the steiner traveling salesman
problem and related problems. European Journal of Operational Research 228, 1, 83–92.

[10] McKinsey & Company, 2016. How customer demands are reshaping last-mile delivery. Accessed at
31.01.2018.

4

[11] Miliotis, P., Laporte, G., Nobert, Y., 1981. Computational comparison of two methods for finding the
shortest complete cycle or circuit in a graph. RAIRO Operations Research 15, 3, 233–239.

[12] Orloff, C., 1974. A fundamental problem in vehicle routing. Networks 4, 1, 35–64.

[13] Toth, P., Vigo, D., 2014. The Vehicle Routing Problem (2nd edn.). SIAM.

5

	Introduction and methodology
	Computational Results
	Benchmark Instances
	Results

