
Mixed-Integer Programming Approaches for the Time-Constrained

Maximal Covering Routing Problem

Markus Sinnl∗1

1Institute of Production and Logistics Management, Johannes Kepler University Linz,
Linz, Austria

Abstract

In this paper, we study the recently introduced time-constrained maximal covering routing problem.
In this problem, we are given a central depot, a set of facilities, and a set of customers. Each customer is
associated with a subset of the facilities which can cover it. A feasible solution consists of p Hamiltonian
cycles on subsets of the facilities and the central depot. Each cycle must contain the depot and must
respect a given distance limit. The goal is to maximize the number of customers covered by facilities
contained in the cycles.

We develop two exact solution algorithms for the problem based on new mixed-integer programming
models. One algorithm is based on a compact model, while the other model contains an exponential
number of constraints, which are separated on-the-fly, i.e., we use branch-and-cut. We also describe
preprocessing techniques and valid inequalities for both models.

We evaluate our solution approaches on the instances from literature and our algorithms are able to
find the provably optimal solution for 264 out of 270 instances, including 120 instances, for which the
optimal solution was not known before. Moreover, for most of the instances, our algorithms only take a
few seconds, and thus are up to five magnitudes faster than previous approaches. Finally, we also discuss
some issues with the instances from literature (e.g., in some instances, up to 90% of customers have no
facility associated with them and are thus useless; the optimal solution for many instances contains just
all remaining customers) and present some new instances.

1 Introduction

Vehicle routing problems and covering problems are important and fundamental problems in Operations
Research and Logistics. In this paper, we study the recently introduced time-constrained maximal covering
routing problem (TCMCRP), which is a generalization of well-known routing problems such as the orien-
teering problem (see e.g., [12, 13]), and in particular the team orienteering problem (see e.g., [5]), and the
maximal covering location problem (see e.g., [7]). The problem was introduced in [1] and applications in
health care were discussed. In the TCMCRP, we are given a directed graph G = (V,A), where V = 0∪F ∪C
is the set of vertices. The vertex 0 represents the central depot, F the set of facilities and C the set of
customers. The arc set A = A0F ∪AFC is defined as set of routing arcs A0F = {(i, i′) : i, i′,∈ 0∪F} (i.e., the
complete directed graph on 0 ∪ F) and assignment arcs AFC ⊆ {(i, j) : i ∈ F, j ∈ C} (i.e., the assignment
arcs are a subset of all possible facility/customer connections). Each arc (i, i′) ∈ A0F has a travel distance
dii′ > 0 associated with it. Moreover, let P represent the set of p = |P | available vehicles, and let Lv be a
distance limit for each v ∈ P . A feasible solution consists of one Hamiltonian cycle on a subset of 0 ∪ F for
each v ∈ P . Each of these cycles must contain 0 and respect the distance limit Lv, and a facility F can only
appear in at most one cycle. A customer is covered by a solution, if there exists an assignment arc in AFC

∗markus.sinnl@jku.at

1

between the customer and a facility visited in one of the Hamiltonian cycles. The goal is to find a feasible
solution, which maximizes the number of covered customers. Note that in the instances from literature, Lv
is the same for all vehicles (and despite allowing for different Lv in the definition in [1], the vehicles are also
called homogeneous in the definition), and the distance function is Euclidean (both are common assumptions
in vehicle routing problems). In this work, we use the first assumption in one of the two presented mixed-
integer programming (MIP) models, and the second assumption when deriving preprocessing procedures and
valid inequalities for both models. Figure 1 shows an exemplary instance-graph of the TCMCRP and its
optimal solution for four vehicles and a given distance limit.

(a) Instance-graph. (b) Optimal solution.

Figure 1: Exemplary instance-graph of the TCMCRP and its optimal solution for four vehicles and a given
distance limit. The blue circle is the central depot, orange boxes are facilities and green triangles are
customers. The gray edges in 1a between facilities and customers denote which customers are covered by
each facility. For better readability, the arcs between facilities, and facilities and the central depot are not
displayed. In the solution 1b, the arcs of the optimal solution are indicated in black, and all facilities and
customers not in the solution are grayed out.

Contribution and Paper Outline The TCMCRP was recently introduced in [1], where the authors
presented a flow-based MIP model, an iterated local search, a tabu search and a variable neighborhood search
for it. They evaluated their algorithms on instances derived from the well-known TSPLIB [23]. In this paper,
we develop two exact solution algorithms for the problem based on new MIP-models. One algorithm is based
on a compact model, while the other model contains an exponential number of constraints. We also describe
preprocessing techniques and valid inequalities for both models. Since for the compact model, the valid
inequalities are of exponential size, we use branch-and-cut in both solution algorithms. In a computational
study, we evaluate our solution approaches on the instances from [1]. The study reveals that our algorithms
are able to find the provably optimal solution for 120 instances, where the optimal solution was not known
before, and only 6 instances remain unsolved. Moreover, for most of the instances, our algorithms only take
a few seconds, and thus are up to five magnitudes faster than the algorithms presented in [1]. Finally, we
also discuss some issues with the instances used in [1] (e.g., not all customers have a facility associated with
it, and the optimal solution often contains just all reachable facilities; the calculation of Lv is not the same
as described in the paper), and introduce a set of new and more difficult instances.

The paper is organized as follows: In the remainder of this section, we give an overview of related work. In
Section 2, we present our two new MIP-models, together with preprocessing/variable-fixing procedures and
valid inequalities. In Section 3, we discuss additional details about the developed branch-and-cut framework,
such as separation procedures for the valid inequalities. Section 4 contains the computational study, and
Section 5 concludes the paper.

2

Related Work As the studied problem is a quite general routing/covering problem, there is naturally
a vast number of related work; the paper introducing the TCMCRP ([1]) contains a quite exhaustive and
up-to-date discussion of related problems. We thus focus the discussion about related work on the team
orienteering problem (TOP), since both of our models are extensions of models for the TOP. For a general
overview on routing problems, we refer to e.g., [24] and for a general overview on facility location/covering
problems, we refer to e.g., [17] (Chapter 5).

The TOP is an extension of the orienteering problem (OP) to multiple vehicles. The OP was first
introduced in [25]. In the OP, we are given a central depot, a set of customers which can be visited (and
provide profit if visited), and a distance limit. The goal is to find the most profitable Hamiltonian cycle on
a subset of the customers, the cycle must also contain the depot and respect the distance limit. Sometimes
the OP is defined with a start depot and an end depot, and a Hamiltonian path on a subset of the customers
from start to end is searched. Moreover, there is a variant of the OP called selective traveling salesman
problem (see [11, 16]), with additional compulsory vertices, which must be in any feasible cycle/path. There
exist also many other variants with additional side-constraints (such as capacities or time-windows), for
more details, see, e.g., the survey [13]). Regarding successful exact approaches for the OP, there are several
papers ([10, 11, 18]) using branch-and-cut approaches based on models with generalized subtour elimination
constraints (GSECs)/connectivity cuts(CCs). Similar GSECs/CCs will also be used in our approaches.

The TOP was introduced in [5], where a heuristic was proposed. The TOP extends the OP by introducing
p (homogeneous) vehicles, i.e., the goal is now to find p Hamiltonian cycles/paths containing the depot and
respecting the distance limit, instead of a single one. Note that the TOP can be seen as a special case of the
TCMCRP, with a one-to-one-correspondence between facilities and customers. A variant of the TOP with
heterogeneous vehicles (denoted as multiple tour maximum collection problem) was considered in [4]. Several
column generation, and branch-and-price(-and-cut) approaches were proposed for the TOP, see [3, 4, 14, 22].
An exponential size formulation using GSECs and solved by branch-and-cut was developed in [8, 9]. In
[2], the authors presented a compact model for the TOP based on a formulation of [19] for the sequential
ordering problem. They strengthen the model by separating CCs, and were able to solve additional instances
to optimality.

Aside from the TOP, another strongly related problem to the TCMCRP is the time-constrained maximal
covering salesman problem (TCMCSP), which was introduced in [20]. The TCMCSP is the single-vehicle
variant of the TCMCRP. In [20], the authors presented a flow-based MIP model and some heuristics for
the TCMCSP ([1] is basically the extension of the approaches in [20] to the TCMCRP). In [21], an exact
solution algorithm based on GSECs for a variant of the TCMCSP was proposed.

2 Mixed Integer Programming Models and Valid Inequalities

We first present the compact model, together with its associated preprocessing and valid inequalities, and
then the exponential-sized model, together with its associated preprocessing and valid inequalities. Note that
for the compact model, the presented valid inequalities are of exponential size, so we also use branch-and-cut
in the algorithm based on the compact model. For later use, for a subset S ⊆ 0 ∪ F , let δ+(S) = {(i, i′) ∈
A0F : i ∈ S, i′ 6∈ S} and δ−(S) = {(i, i′) ∈ A0F : i 6∈ S, i′ ∈ S} be the set of outgoing, resp., incoming arcs of
the cut induced by S.

2.1 Compact Model

This formulation follows the approach proposed for the TOP in [2]. As for this formulation, we assume that
the vehicles P are homogeneous, let L = Lv, v ∈ P . The presented formulation allows for solutions with less
than p cycles, as initial tests showed that some instances from literature were infeasible, when a solution with
exactly p cycles was sought (i.e., there were less than p facilities within the distance limit L from the central
depot). Let binary variables xii′ = 1, for (i, i′) ∈ A0F , iff arc (i, i′) is traveled by a vehicle in the solution.
Let binary variables yi = 1, i ∈ F , iff facility i is visited in the solution, and binary variables zj = 1, j ∈ C,
iff customer j is covered by the solution. Moreover, let continuous variables fii′ for (i, i′) ∈ A0F indicate

3

the traveled distance from the central depot at facility i′ for a vehicle arriving from i. Let integer variable
w ∈ {1, . . . , p} indicate the number of vehicles used in the solution. Using these variables, the TCMCRP
can be modeled as follows, we denote the model by (C).

max
∑
j∈C

zj (C-OBJ)

s.t.
∑

(i,j)∈AFC

yi ≥ zj ∀j ∈ C (C-LINK)

∑
(i,i′)∈AFC

xii′ = yi ∀i ∈ F (C-OUT)

∑
(i′,i)∈AFC

xi′i = yi ∀i ∈ F (C-IN)

∑
(0,i)∈AFC

x0i = w (C-OUT0)

∑
(i,0)∈AFC

xi0 = w (C-IN0)

f0i = d0ix0i ∀i ∈ F (C-FLOW0)∑
i′∈δ+(i)

fii′ −
∑

i′∈δ−(i)

fi′i = dii′xii′ ∀i ∈ F (C-FLOW)

fii′ ≤ (L− di′0)xii′ ∀(i, i′) ∈ A0F (C-DIST)

yi ∈ {0, 1} ∀i ∈ F (C-Y)

zj ∈ {0, 1} ∀j ∈ C (C-Z)

xii′ ∈ {0, 1} ∀(i, i′) ∈ A0F (C-X)

fii′ ≥ 0 ∀(i, i′) ∈ A0F (C-F)

w ∈ {1, . . . , p} (C-W)

The objective function (C-OBJ) and constraints (C-LINK) ensure that a customer is only counted in the
objective function, if a facility covering it is visited in the solution. Constraints (C-IN) and (C-OUT) ensure
that there is one incoming, resp., outgoing arc in the tour, if facility i gets visited. Constraints (C-OUT0)
and (C-IN0) (together with (C-W))make sure that there are at most p vehicles leaving and entering the
depot. The solution defined by the previous for set of constraints (plus integrality of the variables) will
consist of p or more cycles, at most p of them containing the depot, i.e., subtours are possible. Such subtours
are prohibited using flow-conservation constraints (C-FLOW0) and (C-FLOW), which ensure that the flow-
variables fi′i encode the distance traveled so far the tour arrives at facility i′ ∈ F . The distance limit on the
tour is modeled by constraints (C-DIST): For any facility in the solution, the traveled distance must allow
to go back to the central depot within the distance limit. Finally, constraints (C-Y) to (C-W) define the
variables.

Valid Inequalities Next, we present some valid inequalities for (C), including variable-fixing procedures,
which can be applied in a preprocessing step. As mentioned in the introduction, we assume that the
distance function is Euclidean, resp., is symmetric and satisfies the triangle inequality (thus the direct
connection between two vertices is always the shortest). Some of the valid inequalities will be based on
optimality-arguments, i.e., they disallow solutions, which would be valid for the problems, but are provably
non-optimal.

The first set of inequalities is concerned with dominance between facilities.

4

Theorem 1. Let i, i′ ∈ F , and C(i′′) = {j ∈ C : (i′′, j) ∈ AFC} for i′′ = i, i′. Suppose C(i′) ⊆ C(i). Then
the following facility dominance inequalities

yi + yi′ ≤ 1 (C-FD)

are valid for (C).

Proof. Due to the triangle inequality, a facility will only be included in an optimal solution, if it allows the
coverage of additional customers. As i covers at least the same customers also covered by i′, there is no
benefit in including i′ in any solution containing i.

The following variable-fixing exploit the distance limit L, similar ideas have been used in [2, 8, 9] for
the TOP and in [21] for the TCMCSP, they can be seen as special-case of the path inequalities for the OP
proposed in [10].

Theorem 2. Let i ∈ F with 2d0i > L. Then
yi = 0 (C-FIXF)

is valid for (C).
Let i, i′ ∈ F with d0i + dii′ + di′0 > L. Then

xii′ = 0 (C-FIXA)

is valid for (C).
Let F (j) = {i ∈ F : (i, j) ∈ AFC} for j ∈ C. If for all i ∈ F (j), we have 2d0i > L, then

zj = 0 (C-FIXC)

is valid for (C).

Proof. Obvious, as the distance limit does not allow the shortest cycle containing (i, i′), resp., i. Moreover,
if no facility covering j can be reached given the distance limit, j cannot be in any solution.

The following global constraint (C-DISTG) on the length of all p tours can also be added, as well as
constraints (C-FLOWER) which impose lower bounds on the flow-variables fii′ (see [2])∑

(i,i′)∈A0F

dii′xii′ ≤ wL, (C-DISTG)

fii′ ≥ (d0i + dii′)xii′ . (C-FLOWER)

While the inequalities in the model already ensure that the solution is connected (and hence, consists of
p cycles containing the central 0), the model can be strengthened by adding connectivity cuts (C-CC) (see,
e.g., [2]). As there exponential many of them, we separate them on-the-fly in a branch-and-cut, see Section
3.2 for the separation. ∑

(i′′,i′)∈δ−(S)

xi′′i′ ≥ yi ∀S ⊂ F, i ∈ S : |S| ≥ 2 (C-CC)

Let LB a given lower bound for the objective value, e.g., the value of the current incumbent solution
during branch-and-cut. Using LB, an optimality-based lifting of (C-CC) may be possible

Theorem 3. Let S ⊂ F with |S| ≥ 2, and let i ∈ S. Let Z(S) = |{j : (i, j) ∈ AFC , i 6∈ S}|, i.e., the number
of customers, which can be served by facilities not in S. Suppose Z(S) ≤ LB, then the following inequality
is valid ∑

(i′′,i′)∈δ−(S)

xi′′i′ ≥ 1 (C-CCL)

5

Proof. As Z(S) ≤ LB, facilities outside of S cannot serve enough customers to provide an improved solution,
thus, at least one tour must visit facilities in S to provide a solution with value better than LB.

Another lifted version of (C-CC) can be obtained using the facility dominance inequalities (C-FD).

Theorem 4. Let i, i′ ∈ S ⊆ F , and C(i′′) = {j ∈ C : (i′′, j) ∈ AFC} for i′′ = i, i′. Suppose C(i′) ⊆ C(i).
Then the following inequality is valid ∑

(i′′,i′)∈δ−(S)

xi′′i′ ≥ yi + yi′ (C-CCL2)

Proof. Both i, i′ are in S and in any optimal solution, at most one of them will be taken.

2.2 Exponential-Sized Model

This model follows the formulation of [8, 9] for the TOP and allows for heterogeneous vehicles. Binary
variables zj , j ∈ C have the same meaning as in model (C). Let binary variables yvi = 1, i ∈ F , v ∈ P , if
facility i gets visited by the tour of vehicle v ∈ P . Moreover, let binary variables xvii′ = 1, for (i, i′) ∈ A0F ,
iff arc (i, i′) is traveled by vehicle v ∈ P in the solution. Let binary variable wv = 1, v ∈ P iff vehicle v is
used in the solution. Using these variables, the TCMCRP can be modeled as follows, we denote the model
by (E).

max
∑
j∈C

zj (E-OBJ)

s.t.
∑
v∈P

∑
(i,j)∈AFC

yvi ≥ zj ∀j ∈ C (E-LINK)

∑
v∈P

yvi ≤ 1 ∀i ∈ F (E-ONEF)∑
(i,i′)∈A0F

xvii′ = yvi ∀i ∈ F, v ∈ P (E-OUT)

∑
(i′,i)∈A0F

xvi′i = yvi ∀i ∈ F, v ∈ P (E-IN)

∑
(0,i′)∈A0F

xv0i′ = wv ∀v ∈ P (E-OUT0)

∑
(i′,0)∈A0F

xvi′0 = wv ∀v ∈ P (E-IN0)

∑
(i′′,i′)∈δ−(S)

xvi′′i′ ≥ yvi ∀S ⊂ F, i ∈ S : |S| ≥ 2, v ∈ P (E-CC)

∑
(i,i′)∈A0F

dii′x
v
ii′ ≤ Lvwv ∀v ∈ P (E-DIST)

yvi ∈ {0, 1} ∀i ∈ F, v ∈ P (E-Y)

zj ∈ {0, 1} ∀j ∈ C (E-Z)

xvii′ ∈ {0, 1} ∀(i, i′) ∈ A0F , v ∈ P (E-X)

wv ∈ {0, 1} v ∈ P (E-W)

The objective function (E-OBJ) and constraints (E-LINK) are the same as in model (C). Constraints
(E-ONEF) make sure, that each facility is only visited by one vehicle (in case of distances satisfying the
triangle inequality, these constraints are redundant, as using a facility in more than one tour will only result

6

in larger distances). For each vehicle v ∈ P , constraints (E-OUT) and (E-IN) ensure that if a facility is
visited by vehicle v, the vehicle enters and leaves the facility. Moreover, constraints (E-OUT0) and (E-IN0)
ensure that each vehicle enters and leaves the depot if the vehicle is used. Thus, the previous for set of
constraints make sure that the solution for each used vehicle consists of one or more cycles, and one of these
cycles starts and ends at the depot. Connectivity cuts (E-CC) ensure, that there is only one cycle for each
vehicle. Note that they are of exponential size, separation of them is discussed in Section 3.1. The distance
limit is enforced by constraints (E-DIST). The variables are defined by constraints (E-Y) to (E-W).

Valid Inequalities Similar to model (C), several valid inequalities and variable-fixing procedures can be
defined. Some of these inequalities are adaptions of the inequalities for (C), however, there are also additional
inequalities. We first mention the adapted inequalities, before we give the additional ones.

Facility domination inequalities (C-FD) can be adapted as follows for i, i′ ∈ F fulfilling the conditions to
obtain inequalities (E-FD) ∑

v∈P
(yvi + yvi′) ≤ 1. (E-FD)

Adaption of the variable-fixings (C-FIXF), (C-FIXA) and (C-FIXC) are straightforward (we denote
them as (E-FIXF), (E-FIXA) and (E-FIXF)), and the following conflict-constraints (E-FC) for i, i′ ∈ F with
d0i + dii′ + di′0 > Lv can additionally be derived (see also the incompatibility clique cuts for the TOP in
[8, 9])

yvi + yvi′ ≤ wv. (E-FC)

Inequalities (E-FC) can be used for lifting (E-CC) for i, i′ ∈ F with d0i + dii′ + di′0 > Lv to (E-CCL),∑
(i′′′,i′′)∈δ−(S)

xvi′′′i′′ ≥ yvi + yvi′ ∀S ⊂ F, i, i′ ∈ S : |S| ≥ 2, (E-CCL)

which are valid since at most one of yvi and yvi′ can be included in a solution. Moreover, a lifted version of
(E-CC) using facility dominance, similar to (C-CCL2) can also be defined, we denote it as (E-CCL2).

In case L = Lv, v ∈ P , there can be symmetric solutions. In order to break these symmetries, the
following set of inequalities (E-SYM) can be used. Let v1, v2, . . . , v|P | denote an arbitrary ordering of the
vehicles. Inequalities (E-SYM) impose that a vehicle with lower index needs to visit at least as many facilities
in its tour than a vehicle with a higher index (see also [8, 9] for similar inequalities for the TOP)∑

i∈F
yvki ≥

∑
i∈F

y
vk+1

i , 1 ≤ k ≤ |P | − 1. (E-SYM)

.

3 Algorithmic Frameworks

In this section we discuss further details of our solution frameworks based on models (C), resp., (E).

3.1 Separation Algorithms

Model (C) has polynomial size, however, the family of valid inequalities (C-CC) is of exponential size. Thus,
we do not add all of them in the beginning, but separate them on-the-fly, when they are violated, i.e., we
use branch-and-cut. The same holds for inequalities (E-CC) of model (E). Note that aside from the fact,
that inequalities (C-CC) are defined on variables x, y, and (E-CC) on xv, yv, v ∈ P , the inequalities, and
thus their separation, is the same. We thus only describe separation of inequalities (C-CC). Depending on
whether the current (partial) solution (x∗, y∗) is integer or fractional, we use different separation routines

7

Separation of (C-CC) for Integer Solutions In case (x∗, y∗) is integer, the induced solution will consist
of p or more cycles (which can be simply detected using e.g., breadth-first-search). For each cycle S not
containing the central depot 0, a constraint (C-CC) is added. For i on the right-hand-side, we take a facility
with the largest number of associated customers, ties are broken by taking the one with smallest index.

Separation of (C-CC) for Fractional Solutions In case (x∗, y∗) is fractional, it is well-known that
connectivity cuts like (C-CC) can be separated using maximum flow computations on a graph, where the
arc capacities are set to x∗ (see, e.g., [2, 10]). A connectivity cut with facility i on the right-hand-side is
violated if the maximum flow from the central depot 0 to i is less than the value of y∗i . Let S be the set
containing i in such a minimum cut. The set S is giving a violated constraint (C-CC). In order to speed
up the separation, we sort the facilities in descending order by the values of y∗i and separate in this order.
Whenever we find a violated inequality, we remove all facilities in S for consideration of separation. The
maximum flow/minimum cut computation is done using the algorithm of [6]. This algorithm may give back
a second minimum cut S′, if this happens, we also add the violated constraint induced by S′. Moreover,
we add a small ε = 10−5 to all capacities before separation to get minimal cardinality cuts, see e.g., [15] for
more details on the last two techniques.

Separation of Lifted Inequalities (C-CCL), (C-CCL2) (E-CCL), (E-CCL2) We do not explicitly sep-
arate the lifted inequalities, but instead try to lift inequalities (C-CC) (resp., (E-CC)) when they are found
by the separation routine. This is simply done by checking, if Z(S) ≤ LB for the detected set S and the
current incumbent objective value LB in case of (C-CC) for lifting to (C-CCL). If lifting to (C-CCL) is not
successful, we try lifting to (C-CCL2) by checking all candidates fulfilling the facility dominance condition.
If there is more than one candidate, we take the one with largest LP-value, ties are broken by taking the
one with smallest index. In case of a violated inequality (E-CC) for i ∈ S, we check all i′ 6= i ∈ S, if any of
them fulfills the condition d0i + dii′ + di′0 > Lv for lifting to (E-CCL) or the facility dominance condition
for lifting to (E-CCL2). Again, if there is more than one candidate for lifting, we take the one with largest
LP-value, ties are broken by taking the one with smallest index.

Additional Details of the Separation Routine In order to avoid spending too much time in the
separation routines, we limit the number of rounds of the separation-loop to 50 in the root node of the
branch-and-cut, and to ten in all other nodes. Moreover, when using formulation (C) we initialize our model
with xii′ + xi′i ≤ yi for each i ∈ F and the five nearest i′ ∈ F to i, these constraints are a special case of
(C-CC) for |S| = 2. The corresponding inequalities in case of formulation (E) are xvii′ + xvi′i ≤ yvi . These
inequalities forbid subtours of size two. Note that they do not involve the central depot 0 as one of the
vertices, as a tour going to a single facility is feasible, and would be forbidden by a constraint x0i +xi0 ≤ yi.

3.2 Branching Priorities

Due to the structure of our models, branching on different set of variables will have different impacts on the
structure of the solutions obtainable in the nodes of the branch-and-cut tree. CPLEX, which is the branch-
and-cut solver we use, allows to give branching priorities to variables. In our implementation, we give the
highest branching priorities to the facility variables y (resp., yv), as for fixed facility variables, the customers
covered in the solution can be found by inspection, and fixed facility variables have also implications on the
arcs in the solution.

4 Computational Results

The branch-and-cut frameworks were implemented in C++ using CPLEX 12.8 as MIP solver. The runs
were carried out on an Intel Xeon X5570 CPU with 2.93GHz and 48GB memory using a single thread, with
timelimit for a run set to 600 seconds, and all CPLEX parameters (except branching priorities) are left at
their default values.

8

4.1 Comparison with the MIP Approach of [1]

In this section, we compare our approaches with the MIP approach presented in [1] using the instances
introduced in the same paper. We obtained these instances on request from the authors, and made them
available at https://msinnl.github.io/pages/instancescodes.html. These instances are denoted as
AMSAL in the following.

They are based on TSPLIB-instances with 52, 76, 100, 150, 200, 318, 417, 575, 657 and 724 vertices
For each underlying TSPLIB-instance, three different instances were created by taking 50%, 60% and 70%
of the vertices as customers, and the remaining vertices except one as facilities and one vertex as central
depot. For each facility, the customers it can cover are randomly chosen from the five nearest ones (the
TSPLIB-instances contain coordinates). Here we discovered an issue with the instances, namely, there are
often some customers, which cannot be covered by any facility, and thus are useless (this can affect up
to 90% of the customers of an instance in some cases). For most of the instances, this even led to the
situation, that all customers, which could be covered by some facility in the instance were in the optimal
solution (especially after taking account also customers unreachable due to the distance limit as described in
Theorem 2). Figure 2 depicts two instances to illustrate this issue (we refer to instances by |F|-|C|-p-L).
It is extremely pronounced, as the facility/customer-split is not chosen randomly among the vertices of the
underlying TSPLIB-instance, but the the first 50% (resp., 40%, 30%) of vertices in the TSPLIB-instance are
taken as facilities. From the figures, it can be seen that these vertices are clustered by location.

(a) Instance 125-291-2-9372.69. (b) Instance 172-402-2-1732.68.

Figure 2: Two instance-graphs of the TCMCRP from the set AMSAL from [1]. The blue circle is the central
depot, orange boxes are facilities and green triangles are customers. The gray edges between facilities and
customers denote which customers are covered by each facility.

For number of vehicles, p = 2, 3, 4 is used, and also three different values for the distance limit L are
tested. In [1], the following formula, for α ∈ {1, 0.9, 0.8} is given to define the value for L:

L =
α

p
· |F | ·

∑
i∈F∪0

∑
i′∈F∪0 dii′

(|F | · (|F |+ 1))/2

However, when verifying this formula, we noticed that it does not give the correct value, which could be
obtained with the following formula instead:

L = ·α
p
· |F | ·

∑
i∈F∪0

∑
i′∈F∪0 dii′

(|F | · (|F |+ 1))/4
.

The formula could be verified, as the respective values of L are also written explicitly in the obtained instance
files and in the result-tables in [1]. However, in some of the instance-files, there were wrong values, and also

9

https://msinnl.github.io/pages/instancescodes.html

some entries in the tables in [1] have wrong entries, in particular in Table 3 containing the so-called large
instances containing 318 nodes and more. We discuss this in more detail later. We corrected these errors
in the instance files for our computational study and our uploaded instances also consist of the corrected
instances. In total, this set contains 10 · 3 · 3 · 3 = 270 instances (ten underlying graphs, and the different
parameters for |C|, p and L). From the discussion above, one can already see, that these instances are
maybe not too meaningful for benchmarking. However, as they are the only instances from literature for the
problem, we still consider them, but also introduce new instances to evaluate our approaches in the Section
4.2.

First, we are interested in the effect of the different models and of the valid inequalities and branching
priorities. We thus compare the following six settings:

• C: Model (C) without any variable-fixing and valid inequalities.

• C+: Model (C) with variable-fixing (i.e., (C-FIXA),(C-FIXF)) and valid inequalities (C-DISTG). Note
that the resulting model is still compact.

• C++: C+ with the separation of connectivity cuts (C-CC) (and the liftings (C-CCL) and (C-CCL2))
and also branching priorities as described in Section 3.2.

• E: Model (E) without any variable-fixing and valid inequalities and lifting.

• E+: Model (E) with all variable-fixing and valid inequalities (except lifting (C-CC) to (C-CCL) and
(E-CCL2) as described in Section 3.1)

• E++: E+ including lifting (C-CC) to (C-CCL) and (E-CCL2) as described in Section 3.1, and branching
priorities as described in Section 3.2.

Figure 3 gives a plot of the runtime to optimality for the instances from set AMSAL for these settings.

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●

●●●●●
●●●●●●●●●

●●●●●
●●●●●●●●

●●●●●
●●●● ●●●●●

●●●●●●●●
●●●●●●●● ● ●● ● ●● ● ● ● ● ● ● ●●●●●● ●● ● ●

●

0

25

50

75

100

0 25 50 100 200 400 600
runtime [s]

#
in

st
an

ce
s

[%
]

Setting
● C

C+
C++
E
E+
E++

Figure 3: Runtime to optimality for instance set AMSAL and different settings.

Looking at Figure 3, the approaches based on model (E) seem more promising, as both E+ and E++

manage to solve nearly all of the instance to optimality within the given timelimit (and more than 75%
of the instances within 25 seconds). C+ and C++ (and E) have nearly identical performance (solving about
75% of the instances), and both are considerably better than C (solving about 62.5% of the instances).
Thus, it seems the variable fixing and the valid inequalities are quite helpful regardless of the model, while
connectivity cuts (C-CC) are not really improving the performance for the approach based on (C), and
lifting of connectivity cuts (E-CC) does not seem to helpful to improve the approach based on (E). As
already mentioned above (and discussed in more detail below), for the instances from this set, the upper
bound is often trivial, as the optimal solution will consist of any reachable facility. Thus, an explanation for

10

the observed performance of the different settings could be that once the variable-fixings/valid inequalities
are added, both MIP models already achieve (or are very near) the upper bound, and the runtime is mostly
dominated by the time to solve the LP-relaxation and for the internal MIP-heuristics of CPLEX to find the
optimal solution.

Next, we give a detailed overview of the results for the instance AMSAL, and settings C+ and E++, and also
compare our results with the ones reported by the MIP approach of [1]. The results in [1] were obtained
using CPLEX 12.3 on an Intel Core i7 2.93 GHz processor with 3.49 GB of RAM. Tables 1-10 gives the
results for these instances. In the tables, we report for each instance the number of nodes (|V |), the number
of facilities (|F |), the number of customers (|C|), the number of vehicles (p), the distance limit (L), the
number of customers, for which at least one facility covering it exists (|CT | ”true customers”), the number
of customers, for which at least one facility covering it is reachable from the central depot within the given
distance limit (|CR| ”reachable customers”, i.e., following Theorem 2). For each setting, we report the
runtime (t[s]), value of the best solution found (z∗), optimality gap (g[%], calculated as 100 · ((UB−z∗)/z∗),
where UB is the value of the upper bound found by the setting), and number of branch-and-bound nodes
(#nBBn; only for our settings, as these are not reported in [1]). A bold entry in z∗ indicates that optimality
has be proven (as can also be seen by the optimality gap g[%] being zero). An entry of ”-” in z∗ and g[%]
indicates that no feasible solution could be found within the timelimit. A bold entry in |CT |, resp., |CR|
indicates, that the optimal solution consists of all true, resp., reachable customers. An italic entry in the
column z∗ for the results of [1] indicates that the reported solution value has some issues, which are discussed
in detail in the following paragraph.

Note that for instances with up to 200 nodes, the facility-customer-coverage-allocation is the same for
each underlying graph and facility/customer split. This means that for the same |F|-|C|-p, the optimal
value of instances with larger L always gives an upper bound to the optimal value of instances with smaller
L. The following instances files contained wrong values for L, and accordingly, there were also wrong results
reported for these instances in [1]: instance 15-36-2-1090.05 was the same as instance 15-36-2-1368.07,
and instance 59-140-4-5005.31 was the same as instance 59-140-4-5630.98. With regard to instance
15-36-2-1368.07, the value in the instance-file and in the result-table in [1] is also not the same, it is
1386.07 versus 1386.03, with the former being the correct value when verified using the formula mentioned
in the beginning of the section. For 15-36-2-1090.05, the value of L in the table is also not the same
as the one obtained by calculation with the formula, the correct value is 1094.46. Moreover, for instances
29-70-2-5574.4, 29-70-2-4955.06, 29-70-3-4129.21, 29-70-3-3716.29 the table in [1] reports an op-
timal value of 36, while we found different (lower) optimal values. The (optimal) results for instances
25-26-4-894.71 and 25-26-4-795.30 also seem wrong compared to our results, and also conflict with the
construction of the instances, as the optimal solution value reported for the instance with lower distance
limit is larger than the one for the instance with larger distance limit Finally, in Table 3 in [1] (containing
the instances with 318 nodes and more), there are many wrong combinations of |F|-|C|-p-L (i.e., not as
occurring in the instance files). Moreover, L = 1061.21 in the table should read 51061.21, and L = 7243.53
is occurring twice in the table, while 6699.96 is occurring in an instance file, but missing in the table. As the
values of L are unique in the instances, the result of Table 3 could still be useful for comparison by assuming
that the best objective value reported for a given L gives a correct value and only |F |, |C| and p was mixed
up in the table. However, when we compared the reported solution values for a given L with our obtained
solution values for the instance with this L, it was often larger than the optimal value we found and even
larger than the number of true customers of the instance. Thus, it is not clear to us how to directly compare
the results, resp., which of the solution values in Table 3 of [1] correspond to which instance. Hence we do
not report the detailed results of [1] for instances of AMSAL with 318 nodes or more, but just note, that for
only 38 of these 135 instances, the MIP approach of [1] managed to find a feasible solution within the given
timelimit of 18000 seconds, and for 32 of them, optimality is reported (and for 112 of the other instances,
leading to a total number of 144 out of 270, for which optimality is reported in [1]).

The results show that E++ manages to solve 264 out of 270 instances to optimality and C+ 215 instances.
We note that for the larger instances, C+ often does not manage to leave the root node (see, e.g., Table 10)
within the given timelimit, as the size of the model likely becomes prohibitive. For smaller instances, the

11

performance is quite similar to E++. Moreover, for 183 of the 270 instances, the value of the optimal solution
is identical to the number of true terminals |CT | and for 236 instances, the value of the optimal solution is
identical to the number of reachable terminals |CR|.

12

Table 1: Detailed results for instance set AMSAL with 52 vertices

C+ E++ [1]
|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn t[s] z∗ g[%]

15 36 2 1368.07 23 19 0 15 0.00 0 0 15 0.00 0 0 15 0.00
15 36 2 1231.26 23 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
15 36 2 1094.46 23 12 0 12 0.00 0 0 12 0.00 0 0 15 0.00
15 36 3 912.05 23 12 0 11 0.00 0 0 11 0.00 0 0 11 0.00
15 36 3 820.84 23 9 0 9 0.00 0 0 9 0.00 0 0 9 0.00
15 36 3 729.64 23 8 0 8 0.00 0 0 8 0.00 0 0 8 0.00
15 36 4 684.04 23 8 0 8 0.00 0 0 8 0.00 0 0 8 0.00
15 36 4 615.63 23 8 0 8 0.00 0 0 8 0.00 0 0 8 0.00
15 36 4 547.23 23 1 0 1 0.00 0 0 1 0.00 0 0 1 0.00
20 31 2 1707.37 21 17 0 15 0.00 0 0 15 0.00 0 4 15 0.00
20 31 2 1536.63 21 17 0 15 0.00 0 0 15 0.00 0 1 15 0.00
20 31 2 1365.89 21 17 0 14 0.00 0 0 14 0.00 8 1 14 0.00
20 31 3 1138.24 21 13 0 13 0.00 0 0 13 0.00 0 0 13 0.00
20 31 3 1024.42 21 13 0 13 0.00 0 0 13 0.00 0 0 13 0.00
20 31 3 910.59 21 13 0 12 0.00 0 0 12 0.00 0 1 12 0.00
20 31 4 853.68 21 10 0 10 0.00 0 0 10 0.00 0 0 10 0.00
20 31 4 768.31 21 9 0 9 0.00 0 0 9 0.00 0 0 9 0.00
20 31 4 682.95 21 9 0 9 0.00 0 0 9 0.00 0 0 9 0.00
25 26 2 1988.24 21 21 0 20 0.00 0 0 20 0.00 0 30 20 0.00
25 26 2 1789.42 21 20 0 19 0.00 19 0 19 0.00 0 20 19 0.00
25 26 2 1590.59 21 20 0 18 0.00 50 0 18 0.00 0 3 18 0.00
25 26 3 1325.49 21 18 0 17 0.00 3 0 17 0.00 0 57 17 0.00
25 26 3 1192.94 21 15 0 15 0.00 0 0 15 0.00 0 2 15 0.00
25 26 3 1060.39 21 15 0 15 0.00 0 0 15 0.00 0 0 15 0.00
25 26 4 994.12 21 15 0 15 0.00 0 0 15 0.00 0 1 14 0.00
25 26 4 894.71 21 15 0 14 0.00 0 0 14 0.00 0 22 11 0.00
25 26 4 795.30 21 11 0 11 0.00 0 0 11 0.00 0 0 12 0.00

13

Table 2: Detailed results for instance set AMSAL with 76 vertices

C+ E++ [1]
|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn t[s] z∗ g[%]

22 53 2 11960.48 16 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
22 53 2 10764.43 16 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
22 53 2 9568.38 16 10 0 10 0.00 0 0 10 0.00 0 0 10 0.00
22 53 3 7973.65 16 10 0 10 0.00 0 0 10 0.00 0 0 10 0.00
22 53 3 7176.29 16 7 0 7 0.00 0 0 7 0.00 0 0 7 0.00
22 53 3 6378.92 16 7 0 7 0.00 0 0 7 0.00 0 0 7 0.00
22 53 4 5980.24 16 5 0 5 0.00 0 0 5 0.00 0 0 5 0.00
22 53 4 5382.22 16 5 0 5 0.00 0 0 5 0.00 0 0 5 0.00
22 53 4 4784.19 16 5 0 5 0.00 0 0 5 0.00 0 0 5 0.00
30 45 2 17564.36 17 16 0 16 0.00 0 0 16 0.00 0 3 16 0.00
30 45 2 15807.92 17 16 0 16 0.00 0 0 16 0.00 0 1 16 0.00
30 45 2 14051.49 17 14 0 13 0.00 11 0 13 0.00 0 14 13 0.00
30 45 3 11709.57 17 13 0 13 0.00 0 0 13 0.00 0 0 13 0.00
30 45 3 10538.61 17 13 0 13 0.00 0 0 13 0.00 0 0 13 0.00
30 45 3 9367.66 17 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
30 45 4 8782.18 17 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
30 45 4 7903.96 17 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
30 45 4 7025.74 17 7 0 7 0.00 0 0 7 0.00 0 0 7 0.00
37 38 2 22400.71 17 17 0 17 0.00 0 0 17 0.00 0 5 17 0.00
37 38 2 20160.64 17 17 0 17 0.00 0 0 17 0.00 0 2 17 0.00
37 38 2 17920.57 17 15 0 15 0.00 0 0 15 0.00 0 3 15 0.00
37 38 3 14933.80 17 14 0 14 0.00 0 0 14 0.00 0 1 14 0.00
37 38 3 13440.42 17 14 0 14 0.00 0 0 14 0.00 0 0 14 0.00
37 38 3 11947.04 17 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
37 38 4 11200.35 17 12 0 12 0.00 0 0 12 0.00 0 0 12 0.00
37 38 4 10080.32 17 11 0 11 0.00 0 0 11 0.00 0 0 11 0.00
37 38 4 8960.28 17 9 0 9 0.00 0 0 9 0.00 0 0 9 0.00

14

Table 3: Detailed results for instance set AMSAL with 100 vertices

C+ E++ [1]
|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn t[s] z∗ g[%]

29 70 2 6193.82 43 43 58 36 0.00 5954 3 36 0.00 107 350 36 0.00
29 70 2 5574.44 43 40 1 34 0.00 227 1 34 0.00 0 6 36 0.00
29 70 2 4955.06 43 35 0 30 0.00 19 1 30 0.00 21 3 36 0.00
29 70 3 4129.21 43 27 0 27 0.00 0 0 27 0.00 0 0 36 0.00
29 70 3 3716.29 43 24 0 24 0.00 0 0 24 0.00 0 0 36 0.00
29 70 3 3303.37 43 21 0 21 0.00 0 0 21 0.00 0 0 21 0.00
29 70 4 3096.91 43 21 0 21 0.00 0 0 21 0.00 0 0 21 0.00
29 70 4 2787.22 43 16 0 16 0.00 0 0 16 0.00 0 0 16 0.00
29 70 4 2477.53 43 14 0 14 0.00 0 0 14 0.00 0 0 14 0.00
39 60 2 8326.08 51 51 1 51 0.00 0 1 51 0.00 0 92 51 0.00
39 60 2 7493.47 51 51 1 51 0.00 0 1 51 0.00 0 2 51 0.00
39 60 2 6660.87 51 51 379 49 0.00 13695 1 49 0.00 0 10564 49 0.00
39 60 3 5550.72 51 49 339 48 0.00 30103 1 48 0.00 3 18000 48 2.08
39 60 3 4995.65 51 47 435 40 0.00 35216 16 40 0.00 261 5434 40 0.00
39 60 3 4440.58 51 39 20 38 0.00 3519 2 38 0.00 44 314 38 0.00
39 60 4 4163.04 51 34 0 34 0.00 0 0 34 0.00 0 10 34 0.00
39 60 4 3746.74 51 32 0 32 0.00 0 0 32 0.00 0 1 32 0.00
39 60 4 3330.43 51 27 0 27 0.00 0 0 27 0.00 0 2 27 0.00
49 50 2 10458.99 45 45 5 45 0.00 0 0 45 0.00 0 8 45 0.00
49 50 2 9413.09 45 45 1 45 0.00 0 1 45 0.00 0 27 45 0.00
49 50 2 8367.19 45 45 3 45 0.00 0 0 45 0.00 0 37 45 0.00
49 50 3 6972.66 45 45 18 45 0.00 133 1 45 0.00 0 1018 45 0.00
49 50 3 6275.93 45 45 1 45 0.00 0 1 45 0.00 0 1175 45 0.00
49 50 3 5578.13 45 43 600 42 2.38 14369 19 42 0.00 17 18000 42 2.38
49 50 4 5229.49 45 43 600 42 2.38 30545 3 42 0.00 38 18000 42 2.38
49 50 4 4706.55 45 37 1 37 0.00 0 0 37 0.00 0 127 37 0.00
49 50 4 4183.60 45 33 0 33 0.00 0 1 33 0.00 0 12 33 0.00

15

Table 4: Detailed results for instance set AMSAL with 150 vertices

C+ E++ [1]
|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn t[s] z∗ g[%]

44 105 2 9210.94 72 72 24 72 0.00 465 1 72 0.00 0 454 72 0.00
44 105 2 8289.84 72 72 117 72 0.00 2265 2 72 0.00 0 1729 72 0.00
44 105 2 7368.75 72 72 600 70 2.86 11395 28 70 0.00 153 18000 70 2.86
44 105 3 6140.62 72 72 509 72 0.00 10824 4 72 0.00 4 18000 69 4.35
44 105 3 5526.56 72 72 2 69 0.00 0 4 69 0.00 0 56 69 0.00
44 105 3 4912.50 72 68 600 64 4.51 18950 81 64 0.00 523 18000 64 1.56
44 105 4 4605.47 72 67 600 66 1.52 28826 72 66 0.00 44 18000 66 1.52
44 105 4 4144.92 72 64 600 58 1.72 37624 409 58 0.00 2969 18000 58 2.58
44 105 4 3684.37 72 54 65 49 0.00 7497 26 49 0.00 211 1555 49 0.00
59 90 2 12364.81 71 71 68 71 0.00 942 2 71 0.00 9 45 71 0.00
59 90 2 11128.36 71 71 8 71 0.00 10 1 71 0.00 0 614 71 0.00
59 90 2 9891.85 71 71 227 71 0.00 1585 2 71 0.00 0 2193 71 0.00
59 90 3 8243.20 71 71 7 71 0.00 0 8 71 0.00 0 18000 70 1.43
59 90 3 7418.88 71 71 6 71 0.00 0 5 71 0.00 4 6268 71 0.00
59 90 3 6594.56 71 71 413 71 0.00 3378 4 71 0.00 0 13768 69 2.90
59 90 4 6182.40 71 71 19 71 0.00 121 9 71 0.00 0 2920 71 0.00
59 90 4 5564.16 71 71 33 71 0.00 100 3 71 0.00 0 5404 71 0.00
59 90 4 4945.92 71 68 600 65 3.08 8771 600 65 3.08 250 18000 65 4.43
74 75 2 15315.62 64 64 5 64 0.00 0 1 64 0.00 0 32 64 0.00
74 75 2 13784.06 64 64 53 64 0.00 200 1 64 0.00 0 24 64 0.00
74 75 2 12252.49 64 64 6 64 0.00 0 2 64 0.00 2 174 64 0.00
74 75 3 10210.41 64 64 82 64 0.00 505 3 64 0.00 0 176 64 0.00
74 75 3 9189.37 64 64 289 64 0.00 1112 7 64 0.00 0 279 64 0.00
74 75 3 8168.33 64 64 52 64 0.00 160 12 64 0.00 0 18000 63 1.59
74 75 4 7657.81 64 64 70 64 0.00 159 11 64 0.00 5 3799 64 0.00
74 75 4 6892.03 64 64 111 64 0.00 320 9 64 0.00 0 417913 64 0.00
74 75 4 6126.25 64 64 13 64 0.00 0 193 64 0.00 12 7620 64 0.00

16

Table 5: Detailed results for instance set AMSAL with 200 vertices

C+ E++ [1]
|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn t[s] z∗ g[%]

59 140 2 12513.29 104 104 474 104 0.00 8092 7 104 0.00 7 89 104 0.00
59 140 2 11261.96 104 104 528 104 0.00 4292 41 104 0.00 28 173 104 0.00
59 140 2 10010.63 104 104 600 102 1.96 5104 96 104 0.00 60 18000 102 1.96
59 140 3 8342.19 104 104 600 98 6.12 4872 242 104 0.00 145 18000 92 13.04
59 140 3 7507.97 104 104 600 102 1.96 2342 254 104 0.00 90 10308 104 0.00
59 140 3 6673.75 104 103 600 99 4.04 3289 600 101 1.98 77 18000 101 1.98
59 140 4 6256.64 104 103 600 95 7.37 3623 600 89 14.61 267 18000 100 2.74
59 140 4 5630.98 104 90 600 89 1.12 7288 600 89 1.12 313 18000 88 2.27
59 140 4 5005.31 104 87 3 83 0.00 0 116 83 0.00 137 18000 88 2.27
79 120 2 16673.37 107 107 66 107 0.00 200 2 107 0.00 0 60 107 0.00
79 120 2 15006.03 107 107 317 107 0.00 1000 2 107 0.00 0 89 107 0.00
79 120 2 13338.69 107 107 14 107 0.00 0 15 107 0.00 21 262 107 0.00
79 120 3 11115.58 107 107 112 107 0.00 300 53 107 0.00 24 9168 107 0.00
79 120 3 10004.02 107 107 219 107 0.00 538 45 107 0.00 0 18000 103 3.88
79 120 3 8892.46 107 107 289 107 0.00 729 172 107 0.00 57 18000 100 7.00
79 120 4 8336.68 107 107 600 93 15.05 1497 561 107 0.00 145 18000 104 2.89
79 120 4 7503.01 107 107 600 103 3.88 972 600 - - 42 18000 103 3.88
79 120 4 6669.35 107 106 600 105 0.95 1121 600 - - 4 18000 95 11.58
99 100 2 20883.45 94 94 500 94 0.00 896 3 94 0.00 0 101 94 0.00
99 100 2 18795.10 94 94 275 94 0.00 486 2 94 0.00 0 178 94 0.00
99 100 2 16706.76 94 94 20 94 0.00 0 3 94 0.00 0 254 94 0.00
99 100 3 13922.30 94 94 465 94 0.00 360 5 94 0.00 0 96 94 0.00
99 100 3 12530.07 94 94 366 94 0.00 485 5 94 0.00 0 460 94 0.00
99 100 3 11137.84 94 94 600 82 14.63 1023 30 94 0.00 0 646 94 0.00
99 100 4 10441.72 94 94 129 94 0.00 200 21 94 0.00 0 1058 94 0.00
99 100 4 9397.55 94 94 487 94 0.00 972 45 94 0.00 10 8875 94 0.00
99 100 4 8353.38 94 94 600 88 6.82 693 140 94 0.00 29 3986 94 0.00

17

Table 6: Detailed results for instance set AMSAL for instances with 318 vertices

C+ E++

|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

95 222 2 10719.94 43 43 100 43 0.00 160 1 43 0.00 0
95 222 3 7146.63 43 43 21 43 0.00 0 6 43 0.00 0
95 222 4 5359.97 42 36 18 36 0.00 0 3 36 0.00 0
95 222 2 12059.93 40 40 13 40 0.00 0 1 40 0.00 0
95 222 3 8039.95 39 39 77 39 0.00 110 5 39 0.00 0
95 222 4 6029.97 42 40 18 40 0.00 0 15 40 0.00 0
95 222 2 13399.92 43 43 9 43 0.00 0 1 43 0.00 0
95 222 3 8933.28 39 39 5 39 0.00 0 2 39 0.00 0
95 222 4 6699.96 41 41 24 41 0.00 0 13 41 0.00 0

127 190 2 17407.31 36 36 10 36 0.00 0 2 36 0.00 0
127 190 3 11604.87 41 41 26 41 0.00 0 8 41 0.00 0
127 190 4 8703.65 37 37 27 37 0.00 0 7 37 0.00 0
127 190 2 19583.22 39 39 22 39 0.00 10 1 39 0.00 0
127 190 3 13055.48 43 43 22 43 0.00 21 3 43 0.00 0
127 190 4 9791.61 44 44 30 44 0.00 0 4 44 0.00 0
127 190 2 21759.13 40 40 25 40 0.00 12 1 40 0.00 0
127 190 3 14506.09 40 40 8 40 0.00 0 2 40 0.00 0
127 190 4 10879.57 38 38 25 38 0.00 0 7 38 0.00 0
158 159 2 22073.87 40 40 13 40 0.00 0 1 40 0.00 0
158 159 3 14715.91 37 37 22 37 0.00 0 6 37 0.00 0
158 159 4 11036.93 37 37 59 37 0.00 11 10 37 0.00 0
158 159 2 24833.10 41 41 16 41 0.00 0 2 41 0.00 0
158 159 3 16555.40 42 42 74 42 0.00 30 4 42 0.00 0
158 159 4 12416.55 39 39 81 39 0.00 0 5 39 0.00 0
158 159 2 27592.33 40 40 9 40 0.00 0 2 40 0.00 0
158 159 3 18394.89 39 39 45 39 0.00 0 4 39 0.00 0
158 159 4 13796.17 39 39 53 39 0.00 0 10 39 0.00 4

18

Table 7: Detailed results for instance set AMSAL for instances with 417 vertices

C+ E++

|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

125 291 2 9372.69 75 75 30 75 0.00 20 1 75 0.00 0
125 291 3 6248.46 72 72 441 72 0.00 483 4 72 0.00 0
125 291 4 4686.35 75 75 14 75 0.00 0 11 75 0.00 0
125 291 2 10544.28 73 73 514 73 0.00 540 1 73 0.00 0
125 291 3 7029.52 73 73 288 73 0.00 509 5 73 0.00 0
125 291 4 5272.14 71 71 256 71 0.00 330 11 71 0.00 0
125 291 2 11715.87 75 75 30 75 0.00 20 4 75 0.00 0
125 291 3 7810.58 72 72 213 72 0.00 171 2 72 0.00 0
125 291 4 5857.93 67 67 7 67 0.00 0 5 67 0.00 0
166 250 2 12877.39 63 63 176 63 0.00 90 1 63 0.00 0
166 250 3 8584.93 64 64 18 64 0.00 0 9 64 0.00 0
166 250 4 6438.69 65 65 158 65 0.00 40 9 65 0.00 0
166 250 2 14487.06 63 63 28 63 0.00 0 3 63 0.00 0
166 250 3 9658.04 61 61 27 61 0.00 0 4 61 0.00 0
166 250 4 7243.53 65 65 31 65 0.00 0 10 65 0.00 0
166 250 2 16096.74 58 58 56 58 0.00 20 2 58 0.00 0
166 250 3 10731.16 62 62 26 62 0.00 0 6 62 0.00 0
166 250 4 8048.37 63 63 26 63 0.00 0 8 63 0.00 0
208 208 2 17827.96 58 58 39 58 0.00 0 3 58 0.00 0
208 208 3 11885.31 54 54 38 54 0.00 0 8 54 0.00 0
208 208 4 8913.98 58 58 197 58 0.00 40 21 58 0.00 0
208 208 2 20056.46 58 58 25 58 0.00 0 2 58 0.00 0
208 208 3 13370.97 58 58 25 58 0.00 0 5 58 0.00 0
208 208 4 10028.23 57 57 88 57 0.00 19 17 57 0.00 2
208 208 2 22284.96 57 57 74 57 0.00 10 3 57 0.00 0
208 208 3 14856.64 59 59 50 59 0.00 2 14 59 0.00 0
208 208 4 11142.48 60 60 333 60 0.00 120 13 60 0.00 0

19

Table 8: Detailed results for instance set AMSAL for instances with 575 vertices

C+ E++

|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

172 402 2 1732.69 27 27 33 27 0.00 4 1 27 0.00 0
172 402 3 1155.12 26 26 11 26 0.00 0 6 26 0.00 0
172 402 4 866.34 30 30 16 30 0.00 0 6 30 0.00 0
172 402 2 1949.27 30 30 13 30 0.00 0 1 30 0.00 0
172 402 3 1299.51 27 27 6 27 0.00 0 3 27 0.00 0
172 402 4 974.64 28 28 5 28 0.00 0 3 28 0.00 0
172 402 2 2165.86 26 26 16 26 0.00 0 1 26 0.00 0
172 402 3 1443.91 29 29 34 29 0.00 8 6 29 0.00 0
172 402 4 1082.93 28 28 7 28 0.00 0 4 28 0.00 0
229 345 2 2589.77 27 27 24 27 0.00 0 5 27 0.00 0
229 345 3 1726.51 27 27 24 27 0.00 0 6 27 0.00 0
229 345 4 1294.88 30 30 137 30 0.00 0 10 30 0.00 0
229 345 2 2913.49 28 28 53 28 0.00 0 2 28 0.00 0
229 345 3 1942.32 29 29 24 29 0.00 0 10 29 0.00 1
229 345 4 1456.74 27 27 26 27 0.00 0 12 27 0.00 0
229 345 2 3237.21 26 26 29 26 0.00 0 6 26 0.00 0
229 345 3 2158.14 30 30 57 30 0.00 0 15 30 0.00 0
229 345 4 1618.60 29 29 16 29 0.00 0 26 29 0.00 0
287 287 2 3624.82 27 27 50 27 0.00 0 6 27 0.00 0
287 287 3 2416.55 29 29 30 29 0.00 0 14 29 0.00 0
287 287 4 1812.41 28 28 189 28 0.00 0 36 28 0.00 0
287 287 2 4077.93 30 30 233 30 0.00 10 14 30 0.00 0
287 287 3 2718.62 31 31 26 31 0.00 0 13 31 0.00 0
287 287 4 2038.96 30 30 59 30 0.00 2 34 30 0.00 0
287 287 2 4531.03 30 30 26 30 0.00 0 5 30 0.00 0
287 287 3 3020.69 30 30 600 24 25.00 0 11 30 0.00 0
287 287 4 2265.51 30 30 29 30 0.00 0 16 30 0.00 0

20

Table 9: Detailed results for instance set AMSAL for instances with 657 vertices

C+ E++

|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

197 459 2 14375.04 63 63 124 63 0.00 0 9 63 0.00 0
197 459 3 9583.36 67 67 341 67 0.00 10 16 67 0.00 0
197 459 4 7187.52 68 68 600 - - 0 539 68 0.00 61
197 459 2 16171.92 65 65 189 65 0.00 0 7 65 0.00 0
197 459 3 10781.28 67 67 271 67 0.00 0 19 67 0.00 0
197 459 4 8085.96 68 68 391 68 0.00 0 139 68 0.00 0
197 459 2 17968.80 68 68 55 68 0.00 0 5 68 0.00 0
197 459 3 11979.20 66 66 392 66 0.00 0 14 66 0.00 0
197 459 4 8984.40 67 67 319 67 0.00 40 87 67 0.00 0
262 394 2 22208.68 76 76 196 76 0.00 0 8 76 0.00 0
262 394 3 14805.79 76 76 600 64 18.75 10 36 76 0.00 0
262 394 4 11104.34 78 78 600 - - 0 90 78 0.00 0
262 394 2 24984.76 77 77 182 77 0.00 0 10 77 0.00 0
262 394 3 16656.51 78 78 170 78 0.00 0 48 78 0.00 3
262 394 4 12492.38 77 77 600 63 22.22 21 69 77 0.00 0
262 394 2 27760.85 76 76 267 76 0.00 0 13 76 0.00 0
262 394 3 18507.23 73 73 484 73 0.00 20 20 73 0.00 0
262 394 4 13880.42 81 81 88 81 0.00 0 21 81 0.00 0
328 328 2 30838.17 83 83 494 83 0.00 0 15 83 0.00 0
328 328 3 20558.78 84 84 600 - - 0 27 84 0.00 0
328 328 4 15419.08 83 83 600 - - 0 73 83 0.00 0
328 328 2 34692.94 82 82 600 - - 2 23 82 0.00 4
328 328 3 23128.62 83 83 600 - - 1 63 83 0.00 0
328 328 4 17346.47 80 80 600 - - 1 83 80 0.00 4
328 328 2 38547.71 78 78 183 78 0.00 0 14 78 0.00 0
328 328 3 25698.47 82 82 172 82 0.00 0 42 82 0.00 3
328 328 4 19273.85 81 81 409 81 0.00 0 31 81 0.00 0

21

Table 10: Detailed results for instance set AMSAL for instances with 724 vertices

C+ E++

|F | |C| p L |CT | |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

217 506 2 19912.23 176 176 600 90 95.56 3 6 176 0.00 0
217 506 3 13274.82 187 187 600 - - 2 31 187 0.00 0
217 506 4 9956.12 187 187 600 - - 32 81 187 0.00 0
217 506 2 22401.26 179 179 600 154 16.23 5 14 179 0.00 0
217 506 3 14934.17 179 179 600 133 34.59 3 67 179 0.00 10
217 506 4 11200.63 184 184 600 122 50.82 0 64 184 0.00 0
217 506 2 24890.29 180 180 600 178 1.12 100 17 180 0.00 0
217 506 3 16593.53 183 183 600 165 10.91 1 41 183 0.00 5
217 506 4 12445.15 176 176 600 97 81.44 10 81 176 0.00 0
289 434 2 29871.47 187 187 600 - - 1 88 187 0.00 3
289 434 3 19914.32 183 183 600 - - 0 88 183 0.00 3
289 434 4 14935.74 175 175 600 - - 0 195 175 0.00 0
289 434 2 33605.41 184 184 600 145 26.90 1 26 184 0.00 0
289 434 3 22403.60 176 176 600 - - 0 52 176 0.00 0
289 434 4 16802.70 183 183 600 - - 1 200 183 0.00 0
289 434 2 37339.34 177 177 600 - - 1 23 177 0.00 0
289 434 3 24892.89 182 182 600 - - 0 80 182 0.00 0
289 434 4 18669.67 174 174 600 - - 0 114 174 0.00 0
361 362 2 40848.98 205 205 600 - - 0 76 205 0.00 0
361 362 3 27232.65 200 200 600 - - 0 77 200 0.00 0
361 362 4 20424.49 214 214 600 - - 0 164 214 0.00 0
361 362 2 45955.09 195 195 600 - - 0 96 195 0.00 0
361 362 3 30636.73 207 207 600 - - 0 141 207 0.00 0
361 362 4 22977.55 204 204 600 - - 0 68 204 0.00 0
361 362 2 51061.22 208 208 600 - - 0 61 208 0.00 3
361 362 3 34040.81 206 206 600 - - 0 73 206 0.00 0
361 362 4 25530.61 216 216 600 - - 0 100 216 0.00 0

22

4.2 Evaluating our MIP Approaches on New Instances

As the previous section has shown, due to the structure of the instances from AMSAL, it is quite easy to find
tight upper bounds. Thus, the main difficulty to solve these instances to optimality is to find the optimal
solutions and our approaches seem quite effective also for this purpose. In this section, we introduce a new
set of instances, denoted as NEW. The instances are designed in such a way, that for all customers, there are
at least two facilities covering it in the underlying graph. Note that due to the nature of the problem, it
can still happen, that after applying the distance limit based variable-fixing/preprocessing as described in
Theorem 2 that some customers cannot be reached for some values of L.

The instances are made available at https://msinnl.github.io/pages/instancescodes.html and are
constructed as follows: |F | facilities and |C| customers are picked by taking random integers within [0, 1000]
as the location of them in the Euclidean plane. The central depot is placed at point (500, 500). This is done
for the following pairs of (|F |, |C|): (75, 225), (100, 300), (125, 375), for each pair three graphs are constructed.
For the facility-customer coverage, we randomly pick between two and five of the nearest facilities for each
customer. With this we ensure, that each customer can be covered (and also no trivial one-to-one relationship
between some facility and customer can occur). Based on these underlying graphs, instances are created by
choosing p ∈ {2, 3, 4}, and setting L using the following scheme for α = {0.1, 0.15, 0.2, 0.25, 0.3}: Let L(α)
be the sum of the distances of the dα|F |e nearest facilities to the central depot. The value of L is set as
L(α)/p. In total, this set contains 3 · 3 · 3 · 5 = 135 instances (three underlying graphs for each (|F |, |C|) and
the different parameters for p and L).

Again, we first analyze the effect of our different settings for the algorithms. Figure 4 gives a plot of the
runtime to optimality and Figure 5 gives plot of the optimality gap for the instances from set NEW and our
settings.

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●

●●●●
● ● ●●

● ● ● ● ● ●

0

10

20

30

40

50

0 100 200 400 600
runtime [s]

#
in

st
an

ce
s

[%
]

Setting
● C

C+
C++
E
E+
E++

Figure 4: Runtime to optimality for instance set NEW and different settings. For better readability, the y-axis
only goes up to 50% of the instances.

From the plots, we can see that these instances seem much more difficult to solve to optimality than the
ones from set AMSAL. The best performing setting, E++ only manages to solve about 38% of the instances to
optimality within the timelimit. In general, all settings except E, have a quite similar performance, however,
when looking also the optimality gap, the three settings based on (C) seem a little better than E+ and E++.

Tables 11 to 13 give detailed results for the instances of set NEWand settings C+ and E++. In the tables,
we report for each instance the number of vehicles (p), the distance limit (L) and the number of customers,
for which at least one facility covering it is reachable from the central depot within the given distance limit
(|CR| ”reachable customers”, i.e., following Theorem 2). For each setting, we report the runtime (t[s]), value
of the best solution found (z∗), optimality gap (g[%]), and number of branch-and-bound nodes (#nBBn).
A bold entry in z∗ indicates that optimality has be proven (as can also be seen by the optimality gap g[%]
being zero). An entry of ”-” in z∗ and g[%] indicates that no feasible solution could be found within the

23

https://msinnl.github.io/pages/instancescodes.html

● ● ●● ●●●
●●●

●● ● ●●●●●● ●● ●●●
● ●●● ●● ●●●●● ●● ●● ●●●

● ● ●●●● ● ●●● ● ● ● ● ●● ●●●
● ● ● ● ● ●● ● ●● ● ●

0

25

50

75

100

0 10 20 30 40 50
gap [%]

#
in

st
an

ce
s

[%
]

Setting
● C

C+
C++
E
E+
E++

Figure 5: Optimality gap for instance set NEW and different settings. For better readability, the x-axis only
goes up to 50% gap.

timelimit. A bold entry in |CR| indicates, that the optimal solution consists of all reachable customers.
In the tables, we can see that the instances with smaller distance limit seem to be easier, as more of them

can be solved to optimality compared to instances with larger distance limit. This is not too surprising,
as with smaller distance limit, the feasible region of the problem becomes smaller, and a smaller number
of facilities is reachable within the distance limit. There are ten out of 135 instances, where the optimal
solution value is equal to |CR|. In general, the instances seem to become harder when the number of nodes
is larger. Setting E++ often does not manage to leave the root node within the timelimit and also struggles
to find feasible solutions. On the other hand, C+ manages to enumerate a few thousand branch-and-bound
nodes quite often. However, the number of branch-and-bound nodes C+ manages to enumerate seems to
depend on the distance limit L, as can, e.g., be seen in Table 13, for smaller limits considerably more nodes
can be enumerated, and for intermediate limits the fewest.

24

Table 11: Detailed results for instance set NEW for instances with 301 vertices

C+ E++

p L |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

2 422.52 45 0 36 0.00 48 0 36 0.00 18
2 465.91 58 0 49 0.00 3 1 49 0.00 28
2 538.19 56 0 46 0.00 102 0 46 0.00 0
2 824.88 145 71 78 0.00 6858 30 78 0.00 485
2 900.85 206 600 99 3.72 24228 133 99 0.00 1593
2 1048.14 224 600 135 15.52 7370 557 135 0.00 2309
2 1188.67 225 600 118 37.58 6497 600 122 40.03 1217
2 1277.91 225 600 120 52.23 4373 600 145 32.60 1307
2 1461.77 225 600 162 29.25 2826 600 165 27.89 970
2 1712.49 225 600 152 41.71 2122 600 154 45.10 860
2 1801.24 225 600 162 36.56 1322 600 187 19.79 302
2 2047.24 225 600 182 23.63 627 600 - - 11
2 2336.58 225 600 162 38.89 659 600 203 10.84 340
2 2374.58 225 600 176 27.84 509 65 225 0.00 17
2 2664.08 225 600 218 3.21 949 63 225 0.00 37
3 258.17 39 0 34 0.00 0 0 34 0.00 0
3 285.40 27 0 27 0.00 0 0 27 0.00 0
3 349.69 45 0 45 0.00 0 0 45 0.00 0
3 448.37 63 0 58 0.00 40 0 58 0.00 0
3 552.02 78 1 61 0.00 741 0 61 0.00 0
3 598.50 121 6 93 0.00 3059 17 93 0.00 445
3 641.46 136 36 100 0.00 5447 14 100 0.00 277
3 789.53 179 24 104 0.00 1982 133 104 0.00 1286
3 816.54 192 329 138 0.00 32221 98 138 0.00 882
3 959.52 213 600 152 3.23 15092 600 136 28.32 1725
3 1145.94 224 600 175 7.05 4992 600 161 27.78 394
3 1151.62 225 600 189 9.55 8254 600 176 23.46 464
3 1319.82 225 600 198 8.80 7270 600 182 23.33 287
3 1522.41 225 600 189 19.05 937 600 - - 10
3 1574.57 225 600 206 9.22 608 600 175 28.57 113
4 211.30 23 0 23 0.00 0 0 23 0.00 0
4 219.33 20 0 20 0.00 0 0 20 0.00 0
4 241.75 17 0 17 0.00 0 0 17 0.00 0
4 401.70 54 0 50 0.00 147 0 50 0.00 0
4 415.60 59 0 58 0.00 21 0 58 0.00 4
4 449.44 44 0 43 0.00 0 0 43 0.00 0
4 556.82 90 8 78 0.00 2049 21 78 0.00 503
4 604.39 121 15 96 0.00 5630 4 96 0.00 69
4 644.47 123 6 94 0.00 1018 0 94 0.00 0
4 777.57 163 309 130 0.00 30637 600 128 8.20 1099
4 884.61 185 600 154 1.59 40817 600 150 6.45 896
4 920.99 199 519 157 0.00 24632 600 137 29.70 703
4 1041.71 222 600 169 8.71 10863 600 141 41.51 79
4 1176.85 225 600 195 7.03 10584 600 - - 1
4 1219.09 224 600 189 13.08 9961 600 165 33.92 191

25

Table 12: Detailed results for instance set NEW for instances with 401 vertices

C+ E++

p L |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

2 486.16 91 8 53 0.00 1446 12 53 0.00 159
2 620.83 128 34 80 0.00 5085 26 80 0.00 251
2 784.34 208 600 88 8.22 16643 271 89 0.00 2140
2 927.20 262 600 128 15.48 6879 600 126 25.23 1315
2 1086.09 294 600 154 19.50 6005 600 130 71.18 704
2 1345.72 300 600 143 73.29 764 600 153 71.02 318
2 1435.36 300 600 150 82.91 536 600 53 414.24 139
2 1672.82 300 600 139 115.83 348 600 21 1314.66 195
2 1973.23 300 600 197 52.28 236 600 177 69.49 209
2 2019.76 300 600 153 96.08 114 600 250 20.00 139
2 2309.20 300 600 188 59.57 76 600 - - 9
2 2638.19 300 600 251 19.52 118 600 - - 18
2 2690.88 300 600 242 23.97 129 600 - - 3
2 3004.45 300 600 218 37.61 276 600 - - 49
2 3331.40 300 600 287 4.53 338 504 300 0.00 69
3 357.90 44 0 41 0.00 0 0 41 0.00 0
3 377.34 53 0 46 0.00 0 0 46 0.00 0
3 400.40 75 0 65 0.00 67 0 65 0.00 0
3 699.51 186 86 119 0.00 9326 291 119 0.00 2263
3 711.49 189 600 124 1.73 31478 600 123 7.22 1787
3 724.46 178 143 117 0.00 13604 411 117 0.00 2243
3 1066.84 300 600 153 44.45 3602 600 89 181.09 50
3 1120.62 293 600 188 21.66 3556 600 81 211.68 69
3 1155.64 297 600 196 17.81 3200 600 36 621.13 55
3 1459.29 300 600 227 32.16 315 600 - - 1
3 1592.28 300 600 178 68.54 64 600 - - 1
3 1624.41 300 600 191 57.07 288 600 - - 1
3 1923.85 300 600 172 74.42 393 600 - - 1
3 2100.66 300 600 258 16.28 186 600 - - 1
3 2131.08 300 600 239 25.52 170 600 - - 1
4 260.83 44 0 44 0.00 0 0 44 0.00 0
4 308.07 43 0 43 0.00 0 0 43 0.00 0
4 331.83 44 0 44 0.00 0 0 44 0.00 0
4 489.73 102 9 82 0.00 2431 10 82 0.00 181
4 571.59 88 8 82 0.00 1031 1 82 0.00 0
4 593.91 128 6 103 0.00 833 47 103 0.00 528
4 772.92 209 600 159 3.14 20309 600 153 14.87 586
4 876.54 258 600 163 14.40 17869 600 50 309.02 176
4 909.80 266 600 199 7.77 25814 600 179 24.77 478
4 1097.81 289 600 226 10.25 4385 600 - - 1
4 1235.17 300 600 231 21.43 1426 600 - - 0
4 1265.89 300 600 248 15.41 1524 600 - - 1
4 1456.87 300 600 230 30.43 331 600 - - 1
4 1619.40 300 600 207 44.93 178 600 - - 1
4 1673.74 300 600 263 14.07 252 600 - - 1

26

Table 13: Detailed results for instance set NEW for instances with 501 vertices

C+ E++

p L |CR| t[s] z∗ g[%] #nBBn t[s] z∗ g[%] #nBBn

2 670.15 175 600 91 3.29 31892 112 91 0.00 806
2 741.09 247 600 100 7.35 13029 288 100 0.00 1670
2 768.77 229 600 106 5.46 10831 600 106 13.03 1735
2 1246.33 375 600 134 119.14 286 600 16 1811.98 45
2 1321.79 375 600 156 89.46 540 600 19 1585.15 46
2 1336.87 375 600 134 131.42 360 600 - - 33
2 1952.41 375 600 212 76.89 2 600 44 728.34 36
2 1992.25 375 600 - - 4 600 - - 48
2 2104.88 375 600 254 47.64 0 600 - - 4
2 2875.80 375 600 253 48.22 24 600 - - 1
2 2885.57 375 600 167 124.55 3 600 - - 1
2 3072.01 375 600 188 99.47 40 600 - - 1
2 3751.65 375 600 348 7.76 64 341 375 0.00 7
2 3776.04 375 600 - - 62 600 - - 1
2 3966.92 375 600 336 11.61 139 600 - - 5
3 556.28 127 20 95 0.00 2698 54 95 0.00 330
3 595.57 133 23 90 0.00 2093 101 90 0.00 512
3 673.59 171 334 118 0.00 54340 309 118 0.00 2888
3 940.28 323 600 181 21.41 4727 600 21 1085.98 100
3 956.60 339 600 164 26.99 6228 600 25 858.37 53
3 1175.17 374 600 196 52.36 593 600 28 1094.20 14
3 1355.44 375 600 214 65.99 376 600 21 1625.87 14
3 1409.29 375 600 204 76.34 203 600 - - 11
3 1726.52 375 600 282 32.98 8 600 - - 0
3 1959.48 375 600 254 47.64 1 600 - - 1
3 2020.80 375 600 275 36.36 0 600 - - 1
3 2423.42 375 600 324 15.74 45 600 - - 1
3 2532.45 375 600 313 19.81 59 600 - - 1
3 2598.26 375 600 317 18.30 29 600 - - 9
3 3085.30 375 600 358 4.75 90 600 - - 7
4 378.59 76 0 70 0.00 0 1 70 0.00 0
4 393.43 77 0 67 0.00 95 0 67 0.00 0
4 399.85 74 0 69 0.00 294 2 69 0.00 10
4 671.32 192 600 137 1.43 56926 472 137 0.00 2150
4 673.95 193 600 129 2.92 38606 600 126 14.71 1030
4 704.28 174 600 132 3.03 40595 600 132 5.30 1661
4 1012.70 355 600 220 22.25 4180 600 - - 0
4 1042.77 355 600 218 40.15 3734 600 - - 0
4 1080.47 365 600 224 28.76 2424 600 - - 0
4 1487.78 375 600 319 17.55 10 600 - - 0
4 1562.10 375 600 290 29.31 40 600 - - 0
4 1588.27 375 600 293 27.99 0 600 - - 0
4 1939.26 375 600 336 11.61 100 600 - - 1
4 2058.55 375 600 300 25.00 58 600 - - 0
4 2098.21 375 600 332 12.95 50 600 - - 0

27

5 Conclusion

In this paper, we studied the recently introduced time-constrained maximal covering routing problem. The
problem is a generalization of well-known problems such as the (team) orienteering problem and maximal
covering location. In the problem, we are given a central depot, facilities and customers. Each customer can
be served by a subset of the facilities. Moreover, we are given distances between the facilities (and central
depot), a distance limit L and a number of vehicles p. A feasible solution consists of p Hamiltonian cycles
on subsets of the facilities and the central depot. All cycles must contain the central depot and respect the
distance limit L. The goal is to maximize the number of customers covered by the facilities in the solution.
The problem was introduced in [1], where an exact mixed-integer programming (MIP) approach and several
metaheuristics were proposed.

We introduced two new MIP formulations and presented exact solution frameworks based on these MIP
formulations. We evaluated our solution approaches on the instances from literature for the problem (from
[1]). The computational study revealed, that our algorithms were able to find the provably optimal solution
for 264 out of 270 instances, including 120 instances, for which the optimal solution was not known before.
Moreover, for most of the instances, our algorithms only took a few seconds, being up to five magnitude
faster than the exact MIP approach presented in [1]. The computational study also showed that the instances
from [1] have some issues, which potentially decrease their usefulness as benchmark instances. In particular,
there are often many customers, which are not associated with any facility in the instance, and thus can
never be in any feasible solution. In many instances, the value of the optimal solution is then simply similar
to the number of the remaining customers. Moreover, there are also some wrong entries in the result-tables
of [1]. We thus also introduced a new set of more challenging instances.

There are several avenues for further work: Naturally, similar to other routing problems, additional side-
constraints based on real-life considerations can be added, such as multiple-depots, time-windows, capacities,
or uncertainty. Moreover, weighted customers and assignment-costs for customers could also be interesting
extensions. To deal with more difficult instances, such as the ones introduced in this paper, the design and
(re-)evaluation of metaheuristics could be an promising topic. We note that [1] already proposed and tested
some metaheuristics for the problem, however, as discussed, the instances used by them to evaluate their
approaches had some issues. Investigating an exact approach based on a formulation with exponentially
many variables (i.e., column generation/branch-and-price) could also be a fruitful topic, as such approaches
often work quite well for routing problems of similar type.

References

[1] Amiri, A., Salari, M.: Time-constrained maximal covering routing problem. OR Spectrum 41(2), 415–
468 (2019)

[2] Bianchessi, N., Mansini, R., Speranza, M.G.: A branch-and-cut algorithm for the team orienteering
problem. International Transactions in Operational Research 25(2), 627–635 (2018)

[3] Boussier, S., Feillet, D., Gendreau, M.: An exact algorithm for team orienteering problems. 4OR 5(3),
211–230 (2007)

[4] Butt, S.E., Ryan, D.M.: An optimal solution procedure for the multiple tour maximum collection
problem using column generation. Computers & Operations Research 26(4), 427–441 (1999)

[5] Chao, I., Golden, B.L., Wasil, E.A.: The team orienteering problem. European Journal of Operational
Research 88(3), 464–474 (1996)

[6] Cherkassky, B.V., Goldberg, A.V.: On implementing push-relabel method for the maximum flow prob-
lem. In: International Conference on Integer Programming and Combinatorial Optimization, pp. 157–
171. Springer (1995)

28

[7] Church, R., Velle, C.R.: The maximal covering location problem. Papers in Regional Science 32(1),
101–118 (1974)

[8] Dang, D.C., El-Hajj, R., Moukrim, A.: A branch-and-cut algorithm for solving the team orienteering
problem. In: International Conference on AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, pp. 332–339. Springer (2013)

[9] El-Hajj, R., Dang, D.C., Moukrim, A.: Solving the team orienteering problem with cutting planes.
Computers & Operations Research 74, 21–30 (2016)

[10] Fischetti, M., Gonzalez, J.J.S., Toth, P.: Solving the orienteering problem through branch-and-cut.
INFORMS Journal on Computing 10(2), 133–148 (1998)

[11] Gendreau, M., Laporte, G., Semet, F.: A branch-and-cut algorithm for the undirected selective traveling
salesman problem. Networks: An International Journal 32(4), 263–273 (1998)

[12] Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logistics 34(3), 307–318
(1987)

[13] Gunawan, A., Lau, H.C., Vansteenwegen, P.: Orienteering problem: A survey of recent variants, solution
approaches and applications. European Journal of Operational Research 255(2), 315–332 (2016)

[14] Keshtkaran, M., Ziarati, K., Bettinelli, A., Vigo, D.: Enhanced exact solution methods for the team
orienteering problem. International Journal of Production Research 54(2), 591–601 (2016)

[15] Koch, T., Martin, A.: Solving steiner tree problems in graphs to optimality. Networks: An International
Journal 32(3), 207–232 (1998)

[16] Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Applied Mathematics
26(2-3), 193–207 (1990)

[17] Laporte, G., Nickel, S., da Gama, F.S.: Location science, vol. 528. Springer (2015)

[18] Leifer, A.C., Rosenwein, M.B.: Strong linear programming relaxations for the orienteering problem.
European Journal of Operational Research 73(3), 517–523 (1994)

[19] Maffioli, F., Sciomachen, A.: A mixed-integer model for solving ordering problems with side constraints.
Annals of Operations Research 69, 277–297 (1997)

[20] Naji-Azimi, Z., Salari, M.: The time constrained maximal covering salesman problem. Applied Mathe-
matical Modelling 38(15-16), 3945–3957 (2014)

[21] Ozbaygin, G., Yaman, H., Karasan, O.E.: Time constrained maximal covering salesman problem with
weighted demands and partial coverage. Computers & Operations Research 76, 226–237 (2016)

[22] Poggi, M., Viana, H., Uchoa, E.: The team orienteering problem: Formulations and branch-cut and
price. In: 10th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and
Systems (ATMOS’10). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

[23] Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA Journal on Computing 3(4), 376–384
(1991)

[24] Toth, P., Vigo, D.: Vehicle routing: problems, methods, and applications. SIAM (2014)

[25] Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Operational Research Society
35(9), 797–809 (1984)

29

	Introduction
	Mixed Integer Programming Models and Valid Inequalities
	Compact Model
	Exponential-Sized Model

	Algorithmic Frameworks
	Separation Algorithms
	Branching Priorities

	Computational Results
	Comparison with the MIP Approach of amiri2018time
	Evaluating our MIP Approaches on New Instances

	Conclusion

