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Abstract
Many problems arising in the area of telecommunication ask for solutions with a tree-star topology.

This paper proposes a general procedure for finding optimal solutions to a family of these problems. The
family includes problems in the literature named as connected facility location, rent-or-buy and generalized
Steiner tree-star. We propose a solution framework based on a branch-and-cut algorithm which also
relies on sophisticated reduction and heuristic techniques. An important ingredient of this framework is
a dual ascent procedure for asymmetric connected facility location. This paper shows how this procedure
can be exploited in combination with various mixed integer programming formulations. Using the new
framework, many benchmark instances in the literature for which only heuristic results were available so
far, can be solved to provable optimality within seconds. To better assess the computational performance
of the new approach, we additionally consider larger instances and provide optimal solutions for most of
them too.

1 Introduction
Many problems arising in the area of telecommunication ask for solutions possessing a tree-star topology.
Consider a scenario in which, for example, servers have to be located on a network that will contain (or cache)
information. Information on the servers is updated over time, and this incurs a fixed cost for every edge in
the network along which this information is sent. Consequently, the cheapest way to update information
over servers (once a choice of which servers to open has been made) is via a tree connecting all of them. End-
clients requiring the information are served from their closest servers among a star topology. This family
of tree-star problems includes several known problems in the literature as the connected facility location,
rent-or-buy and generalized Steiner tree-star problems in graphs. The problems addressed in this paper are
described in the following.

Let I be the set of potential locations where facilities can be opened, and J be the set of customers.
Assume that I ∩ J = ∅ and that each customer must be assigned to one open facility. Potential connections
between facilities and customers are given by arc set AJ ⊆ I × J . Open facilities must be connected to
each other using the so-called core-network that consists of I and a set K of intermediate nodes. The set
S = I ∪K are called Steiner (or core) nodes. The edge set ES defines potential connections between Steiner
nodes, i.e., the core-network. In the following, we assume that the core-network is connected and that the
optimal solution contains at least two facilities. Both assumptions are without loss of generality because,
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(a) Instance of the ConFL.
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(b) Feasible solution of the ConFL.

Figure 1: Example of the ConFL with I = {i1, . . . , i4}, J = {j1, . . . , j5} and K = {k1, k2}. The solution is a
tree-star structure. Open facilities i1 and i4 are indicated in black. Facility i3 is used for connecting i1 and
i4 but is not opened.

in the first case, we can solve our problem for each component individually and, in the second case, we can
consider all single-facility solutions in a preprocessing phase.

The connected facility location problem (ConFL) consists of deciding which facilities from I to open,
how to connect them using the edges in ES and how to assign the customers to open facilities. There are
costs associated to opening facilities, connecting them through the core network, and assigning customers
to facilities. The aim of the ConFL is to find a minimum-cost solution. Figure 1a shows an instance of the
problem and Figure 1b shows a feasible solution.

In the last decade, the ConFL and variants of it have received much attention from the scientific com-
munity, both in the areas of Operations Research and Computer Science (see e.g., [8, 9, 20, 28] and the
references therein). The ConFL has been independently introduced by Karger and Minkoff [12], Krick et al.
[17], Havet and Wennink [10] to model applications arising in information/content distribution networks. It
has been also shown that the problem is of importance for applications in emergency management [31] where
facilities correspond to distribution centers, demand nodes are cities and the facilities are to be connected
over a transportation network. Gollowitzer and Ljubić [8] proposed several mathematical formulations based
on direct graphs and compared their linear-programming relaxations. Recently, the problem has been stud-
ied from a polyhedral point of view in Leitner et al. [22] (undirected model) and Leitner et al. [21] (rooted
directed model). The currently best known approximation ratio for ConFL is 3.19, see [9]. A directed
version of ConFL is as hard to approximate as the directed Steiner tree problem (also known as the Steiner
arborescene problem, see Section 3). Charikar et al. [3] provide an approximation algorithm for the latter
problem with a ratio of O(kε), for any fixed ε > 0, where k is the number of nodes that need to be connected.

The Steiner tree-star problem (STS) has been introduced by Lee et al. [18]. In this problem, we are
searching for a tree-star network of minimum cost. All customers from J are required to be leaves, and,
besides the costs incurred on the edges, non-negative costs need to paid for every node from S which is
taken in the solution. Therefore, each node in S is considered as a potential facility, and the facility opening
costs have to be paid even if no customer is attached directly to this node. The problem arises in the design
of telecommunications networks for digital data service, where nodes from S correspond to locations where
digital switching offices with bridging capabilities (called hubs) need to be installed. For the STS, Lee et al.
[19] present a branch-and-cut algorithm based on an undirected graph representation, and provide some
facet-defining inequalities. A tabu-search heuristic is given in Xu et al. [30] and a genetic algorithm in Chu
et al. [4].
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The generalized Steiner tree-star problem (GSTS) is an extension of the STS which has been introduced
in Khuller and Zhu [13], where the authors present approximation algorithms. In this problem, in contrast
to the STS, the facility set I and the customer set J do not need to be disjoint, i.e., I ∩ J 6= ∅ is allowed.
By introducing a new node ji for every i ∈ I ∩ J and a zero-cost edge {i, ji}, a GSTS instance can be
transformed into a STS instance.

A special case of the GSTS has been addressed in [26, 28], under the name of rent-or-buy problem (ROB).
In the ROB, every node in the graph can act as facility node, i.e., J ⊆ I, and there are no opening costs for
facilities. The current best approximation algorithm for the ROB has a factor of 2.92 and is given in [6].

Bardossy and Raghavan [1] introduced a variant of the ConFL in which the opening costs have to be paid
for each facility, no matter if it serves a customer or not. The ConFL, STS, GSTS and ROB are transformed
into this variant in Bardossy and Raghavan [1], which is solved heuristically using a primal-dual approach
in combination with local search. Their transformation involves increasing the number of nodes and edges.
Thus, in particular when larger graphs are considered, the performance of their approach is significantly
deteriorated.

Our paper proposes a new approach for finding provably optimal solutions for the family of tree-star
problems. The approach is based on a branch-and-cut framework using various Mixed-Integer Programming
(MIP) formulations. First, we show that all the considered tree-star problems can be seen as special cases
of the asymmetric version of the ConFL, denoted by aConFL. Then, we exploit a connection between
the dual ascent approach for the Steiner arborescence problem (see, e.g., [27, 29]) and various cut-based
formulations for the aConFL. In addition, the approach contains sophisticated reduction techniques and
heuristic procedures. In this article we also demonstrate how Benders decomposition can be used to project
out the “stars” from the underlying models.

We assess the efficiency of our approach with an extensive computational study using benchmark instances
previously proposed in [1, 8]. The implementation solves to optimality all instances from [1] for which the
optimal solutions were unknown, and it also gives a considerable speed-up on the instances from [8]. For that
reason we also introduce a new set of larger benchmark instances, some of which are solved to optimality.
Finally, the construction heuristic used in our approach turns out to be competitive in solution quality, and
much faster in runtime, when compared to the heuristic approach in [1].

The rest of the paper is organized as follows. Section 2 defines the aConFL problem and shows how to
transform each of the above-considered tree-star problems into the aConFL. In addition, the section also
gives integer programming formulations for the aConFL. Section 3 points out the connection between the
aConFL and the Steiner arborescence problem, and exploits this relation to build an efficient branch-and-cut
algorithm. It details a dual ascent algorithm that provides strong cuts for our branch-and-cut algorithm.
The section also describes reduction tests based on reduced costs obtained from the dual ascent algorithm,
and introduces construction and primal heuristics. Further implementation details of the framework are also
given in Section 3. Section 4 analyzes computational results. Section 5 summarizes the paper.

2 Mathematical Formulations
In this section we first define the aConFL and transform the four tree-star problems mentioned above into
it. We then recall directed cut-set models that have been used in the literature (see [8, 21]) and introduce an
alternative formulation with a reduced number of decision variables to model the "star"-part of the problem.

2.1 Transformation of the tree-star problems to aConFL
A main difference between the (undirected) ConFL and its asymmetric counterpart is in the structure of the
core graph, i.e., the subgraph induced by S = I ∪K. Let G = (V,Ac ∪ AJ) be a directed graph defining an
instance of the aConFL problem. Node set V is the disjoint union of core nodes S = I ∪K, customers J
and an artificial root node 0. Besides arcs connecting two core nodes, the set Ac contains arcs from the root
to each potential facility, i.e., {(0, i) | i ∈ I} ⊆ AJ . Arc set AJ ⊂ I × J defines the potential assignments of
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facilities to customers. Cost functions c : Ac ∪ AJ → R+
0 and f : I → R+

0 define costs for connecting two
nodes and assigning a customer to a facility, and for opening facilities, respectively.

Every feasible solution to the aConFL is an arborescence rooted at 0 that contains a path from 0 to all
open facilities and such that the outdegree of the rootnode 0 is one, i.e., it is connected to precisely one open
facility that is the root of the solution resulting from removing the artificial root node. As in the ConFL
every customer must be assigned to one open facility. We now detail how to transform the ConFL and the
STS to the aConFL. (Recall that the GSTS and the ROB are special cases of the STS.)

Connected Facility Location Problem Let us consider G = (V,ES , AJ), where V = S ∪ J , and the
cost functions c′ : ES ∪ AJ → R+

0 and f ′ : I → R+
0 . It is not difficult to see that the (undirected) ConFL

can be straightforwardly translated into the aConFL by bidirecting every core edge e ∈ ES . The arc costs
are defined as

css′ = cs′s = c′e ∀e = {s, s′} ∈ ES
cij = c′ij ∀(i, j) ∈ AJ
c0i = 0 ∀i ∈ I,

and the facility costs are simply adopted from the ConFL, i.e., fi = f ′i , ∀i ∈ I. Now, it is easy to see that
each feasible ConFL solution can be represented as an aConFL solution with the same costs by connecting
the artificial root 0 with one arbitrarily chosen open facility and correspondingly directing the core graph
solution edges.

Steiner Tree-Star Problem Recall that in the STS (which is defined on the same input as the ConFL),
costs have to be paid for every node i ∈ S in the solution. We therefore consider all nodes i ∈ S as potential
facilities (S = I) with associated costs f ′i that need to be paid whenever i belongs to a solution, regardless
whether a customer is connected to it or not. Thus, a valid transformation is obtained from setting all
facility opening costs fi of the corresponding aConFL instance to zero and additionally adding the original
opening costs f ′i to every arc (s, i) going into i (including the arc from the artificial root node), i.e.,

csi = c′e + f ′i ∀e = {s, i} ∈ ES , i ∈ S
c0i = f ′i ∀i ∈ I
fi = 0 ∀i ∈ I.

2.2 MIP Models
To model the aConFL, we use the following set of variables: a binary variable xa indicates if an arc a ∈ Ac
is in the solution; a binary variable ys indicates if node s ∈ S is in the solution; a binary variable zi indicates
if facility i ∈ I is opened; and a binary variable aij indicates if customer j ∈ J is assigned to facility i ∈ I.
Let A = Ac ∪ AJ . For a set H ⊂ V , let δ−(H) := {(u, v) ∈ A : u 6∈ H, v ∈ H} be the incoming cut-set
and δ+(H) := {(u, v) ∈ A : u ∈ H, v 6∈ H} and be the outgoing cut-set. Let a(L) =

∑
(u,v)∈L∩AJ

auv and
x(L) =

∑
(u,v)∈L∩Ac

xuv for L ⊆ A.
A generic MIP model for aConFL is given as follows:

min
∑
a∈Ac

caxa +
∑
i∈I

fizi +
∑

(i,j)∈AJ

cijaij (1)

(a, z) ∈ STAR (2)
(x, y) ∈ TREE (3)

zi ≤ yi ∀i ∈ I (4)
(x, y, z, a) ∈ {0, 1}|Ac|+|S|+|I|+|AJ | (5)
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where (2) is a generic way to express that the variables (a, z) shall model “stars”, i.e., the facility location
part of the solution, and (3) is a generic way to express that (x, y) variables model the “tree” part, i.e., the
Steiner arboresence in the core network. The precise formulations of (2) and (3) are given below. Connection
between the tree and the stars is given through the coupling constraints (4) that make sure that each open
facility must be part of the arborescence.

Modeling the “Stars” (2) To force that (a, z) represents stars, one can consider the standard facility
location model:

a(δ−(j)) = 1 ∀j ∈ J (6)
aij ≤ zi ∀i ∈ I, ∀j ∈ J (7)

which ensures that every customer is assigned to exactly one open facility.
Alternatively, one may reduce the number of decision variables by an order of magnitude. To this end,

replace the
∑

(i,j)∈AJ
cijaij in the objective function by

∑
j∈J wj , where wj are decision variables modeling

the allocation cost of customer j ∈ J . Thereby, the facility location part can be modeled as follows (see,
e.g., [7]):

wj +
∑
k∈I

(cij − ckj)+zi ≥ cij ∀i ∈ I, ∀j ∈ J (8)∑
(i,j)∈AJ

zi ≥ 1 ∀j ∈ J (9)

where α+ = max{0, α}. Constraints (9) ensure that for every customer, at least one facility, where it can
be assigned to is opened. Note that these constraints reduce to z(I) ≥ 1, for all j ∈ J if AJ is a complete
bipartite graph. This model can also be seen as a Benders reformulation of the facility location problem.
In Benders’ decomposition terminology, (8) are optimality cuts and (9) are feasibility cuts. See, e.g., [7] for
more details. Observe that in this model we trade off a quadratic number of assignment variables by the
quadratic number of constraints. The quality of linear programming (LP) relaxation bounds remains the
same.

Modeling the “Trees” (3) To force that (x, y) represents a Steiner arborescence, one can use the following
constraints:

x(δ−(s)) = ys ∀s ∈ S (10)
x(δ−(H)) ≥ ys ∀H ⊆ S, ∀s ∈ H (11)
x(δ+(0)) = 1. (12)

Inequalities (11) are directed cut-set constraints, ensuring that there is a path-from the root node to every
node in the solution. The cut-set constraints (11) will be referred to as ycuts in the following. Constraint
(12) ensures that only a single outgoing arc from the root node is selected. Due to the non-negative arc costs,
there always exists an optimal solution where only opened facility nodes are leaf-nodes of the “tree” part.
Thus it is enough to consider ycuts only for yi, i ∈ I. Note that Gollowitzer and Ljubić [8] used zi instead
of yi on the right-hand-side of (11), but it is easy to see that (11) dominate them due to (4). Furthermore,
constraints (4), (7), (11) are facet-defining (see Leitner et al. [21]).

Aside from ycuts, there is also another family of cut-set constraints, which ensure connectivity of a
solution. These constraints will be denoted by acuts and look as follows:

x(δ−(H)) + a(δ−(H)) ≥ 1 ∀H ⊂ V : |H ∩ J | = 1. (13)

Constraints (13) ensure that there is a directed path from the root to each customer, instead to the
opened facilities only. Gollowitzer and Ljubić [8] showed that replacing ycuts with acuts leads to a stronger
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LP-relaxation. Leitner et al. [21] showed that these inequalities are facet-defining. We refer to the model
(1),(4)–(7),(10),(11) as a Weaker Cut-Set Formulation, and to the model (1),(4)–(7),(10),(13) with acuts
instead of ycuts as Strong Cut-Set Formulation.

Valid Inequalities It is well-known that the so-called flow-balance inequalities

x(δ−(s)) ≤ x(δ+(s)) ∀s ∈ K (14)
can improve the LP-bound for Steiner tree problems, see, e.g., [14, 24]. These inequalities use the fact that,
due to non-negative arcs weights, there is always an optimal solution having no node from K as a leaf-
node. The flow-balance inequalities are also valid for the (strong) directed cut-set formulation of aConFL.
Moreover, one can also define such inequalities for facility nodes; in this case, they look as follows:

x(δ−(i)) ≤ x(δ+(i)) + zi ∀i ∈ I. (15)
Correctness of (15) follows the same arguments as for (14), i.e., only nodes where a facility is opened can be
leaf-nodes in a solution.

3 Methods from the Steiner Arborescence Problem
Both acuts (13) and ycuts (11) presented above can be separated in polynomial time using a max-flow
algorithm. In practice, however, separation of acuts is much more time-consuming than the separation of
ycuts since acuts need to be separated for every customer. The separation of ycuts (and also zcuts) only
needs to be done for every potential facility whose associated y-variable (z-variable) has a positive value
in the current LP-solution (or an LP-value greater than some threshold). Moreover, the separation graph
for acuts is the whole graph, while for ycuts it is only the core graph. Thus Gollowitzer and Ljubić [8]
concluded that the acuts are not too useful in practice. Similar conclusions were drawn in [21], where for
small scale instances using acuts is (considerably) faster, but for medium/large-scale instances the separation
time becomes prohibitive.

In this section, we show how to overcome this drawback of acuts by exploiting the connection between the
aConFL and the Steiner arborescence problem (SAP). A quick dual ascent procedure applied to the latter
problem provides a useful source of strong cutting planes (acuts) that we use to initialize the branch-and-cut
algorithm and to reduce the size of the input graph.

There is a connection between the strong cut-set formulation for the aConFL and the SAP. More precisely,
the strong cut-set formulation can be transformed in an equivalent cut-set formulation of the SAP (with
root-outgoing constraint (12)). The transformation works by splitting every facility node i into two nodes i
and i′. Every assignment arc (i, j) is replaced by an arc (i′, j) with the same cost. Moreover, an arc (i, i′)
with costs fi is introduced. The set J becomes the terminal set of the SAP. It is easy to see that the terminal
nodes can only be reached by using arcs from (i, i′), which encode the opening of facilities.

Let GT = (VT , AT ) be the graph of an instance after transformation. We have VT = K ∪ I ′ ∪ J , where
I ′ are the split facility nodes, and AT = Ac ∪ A′J ∪ AII′ , where A′J are AJ with nodes in I replaced by the
new nodes in I ′ and AII′ are the new arcs for the split facility nodes. Let xa be a binary variable assuming
value one iff arc a ∈ AT is in the solution. For a terminal j ∈ J , let Hj = {H ⊂ VT : H ∩ J = {j}, 0 6∈ H}
be the set of nodes inducing Steiner connectivity cuts, and let H =

⋃
j∈J Hj . We obtain the following SAP

model with an additional root-outgoing constraint. For easier exposition of the dual ascent algorithm, the
model is stated in "≥"-form.

min
∑
a∈AT

caxa (16)

x(δ−(H)) ≥ 1 ∀H ∈ H (17)
−x(δ+(0)) ≥ −1 (18)
x ∈ {0, 1}|AT | (19)
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Connectivity cuts (17) ensure that every customer is connected to the root node, while constraint (18)
ensures, that at most one arc going out from the root node is taken in a solution.

Connectivity cuts (17) can be easily transformed into acuts: For every arc a in a given constraint (17),
which corresponds to an arc in Ac or AJ , use the appropriate variable xa, resp. aa. This leaves us with arcs
from AII′ . Let (i, i′) be such an arc. Note that by construction, this arc is the only incoming connection to
i′. The only connection from i′ to j is the arc (i′, j). Thus, whenever (i, i′) is in a solution, (i′, j) must also
be in a solution, and we can use the a-variable corresponding to this arc (i′, j) for such arcs (i, i′) ∈ AII′ .

3.1 Generating acuts using a Dual Ascent Algorithm
It is well-known that, for the SAP, the dual ascent (DA) algorithm first proposed by Wong [29] (using a
multi-commodity flow formulation as the primal problem) usually provides good lower bounds. A basic idea
of a DA algorithm is to create a feasible dual solution whose value provides a valid lower bound to the
problem. Constraints of the dual problem that become saturated (tight) upon termination, provide a useful
information about the arcs of the input graph that can be used to build a feasible solution. The graph
induced by all saturated arcs is usually referred to as support graph.

Contrary to the approach proposed in [1] (which relies on a DA to derive heuristic solutions), our main
goal is to exploit the connection to the DA for the SAP in the context of an efficient exact approach. More
precisely, our aim is to (i) derive connectivity cuts acuts in an efficient way and (ii) make powerful reductions
based on reduced costs. Note that our description of the DA algorithm follows [27] instead of [29] since [27]
uses the directed cut model as the primal problem, which makes the connection to the obtained cuts more
clear.

Let βH be the dual variables of constraints (17) and λ be the dual variable of constraint (18). The dual
problem of the LP-relaxation of (16)-(19) is

max
∑
H∈H

βH − λ (20)∑
H∈H:(s,s′)∈H

βH ≤ css′ ∀(s, s′) ∈ AT , i 6= 0 (21)

∑
H∈H:(0,i)∈H

βH − λ ≤ 0 ∀(0, i) ∈ AT (22)

βH ≥ 0 ∀H ∈ H (23)
λ ≥ 0. (24)

In the dual problem of the LP-relaxation of the classical SAP (see [27]) there would only be constraints
of type (21). Due to the root-outgoing constraint, the dual constraints (22) of root-outgoing arcs (which
have c0i = 0 by definition) do, however, also contain the dual multiplier λ. For a fixed λ, say λ̄, constraints
(22) are similar to (21), with costs λ̄ on the right hand side. Thus, the DA algorithm for tree-star problems
needs an adaptation to handle the additional dual multiplier λ.

The DA algorithm for SAP in [27] works as follows: Let β̄H be the values of the dual variables and
c̄ss′ := css′ −

∑
H∈H:(s,s′)∈H β̄H be the reduced costs of the arcs. Let Sup be the arc-set of the support

graph, which is defined as set of all saturated arcs, i.e., arcs with reduced costs equal to zero. Let lower be
the lower bound value.

Step 1. Initialize lower and β̄H with zero, consequently, we have c̄ss′ := css′ and Sup = ∅.

Step 2. As long as there is a terminal j ∈ J , for which there is no directed path from 0 to j in the subgraph
induced by Sup do the following:

(a) Choose a terminal j not connected to the root in Sup and let Hj be the set of nodes, which
are reachable from j by a reverse breadth-first search (bfs) in Sup. Note that Hj induces a
connectivity cut (17) and we thus save it for later use in our branch-and-cut algorithm (after
transforming it to an acut).
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(b) Let ∆ = {c̄sk : (s, k) ∈ δ−(Hj)} be the minimum reduced costs of all arcs in the connectivity cut
induced by Hj .

(c) Set c̄sk = c̄sk −∆ for all (s, k) ∈ δ−(Hj). By definition of ∆, some reduced costs decrease to zero
and the associated arcs now enter Sup

(d) Increase lower by ∆ and go back to (a).

Upon termination of the algorithm, the support-graph Sup contains a directed path from the root node
to every terminal. However, for the aConFL, depending on the value of λ̄, the support-graph may contain
more than one of the arcs (0, i), and would therefore not contain a feasible solution. For example, with
λ̄ = 0, Sup would already contain all arcs (0, i), and the dual ascent would only be concerned with the
facility location part of the problem. On the other hand, setting λ̄ = M , where M is a big value, ensures
that only one of the arcs (0, i) is taken. This can be easily verified by modeling (18) with a big-M coefficient
in the objective, instead of adding it explicitly as constraint. The obtained dual problem is exactly the same
as setting λ̄ = M . Moreover, increasing the value of M does not deteriorate the quality of the lower bound
obtained by the DA algorithm (i.e., the lower bound is monotonically non-decreasing in M). This is because
both variables βH and λ are contained in the objective function and in constraints (22). Therefore, some βH
can be increased for any increase of λ.

Bardossy and Raghavan [1] (who also provide a Lagrangian viewpoint on this topic) set M to |S| ·
maxa∈AT

ca, since no path from the root to a terminal can be longer than this value. Whereas a too large
value of M does not influence the final lower bound, it has a negative effect on (i) the runtime of the dual
ascent, (ii) on the reduced costs and (iii) the overall number of detected connectivity cuts. Observe that for
a too large value of M , the value of ∆ in Step 2(b) will be determined by non-root arcs until the very end.
Hence, the smaller (but still sufficiently large) the value of M is, the earlier a root arc becomes tight in Step
2, and the earlier the DA algorithm terminates. Consequently, fewer cuts are generated and the reduced
costs c̄ss′ are higher.

To define the value of M in our case, we use the result of the following proposition.

Proposition 1. The optimal dual multiplier λ in (16)-(19) is lower than or equal to the maximum length
of a shortest path between two facility nodes mSPF .

Proof. This follows from a sensitivity analysis of (16)-(19) in combination with the combinatorial aspects
of the problem. Multiplier λ is the dual multiplier of the root-outgoing constraint (18), so it signalizes
how much the solution could potentially be improved by having two root-outgoing arcs instead of one (i.e.,
decreasing the left hand side from -1 to -2). If in any feasible solution two facilities, instead of one, can be
connected to the root-node (which does not induce any cost in the objective), the cost for connecting the
facility with the most expensive connection cost could be saved. The maximum length of all shortest paths
between two facility nodes gives an upper bound for this saving.

The following result which will be used to construct a heuristic solution in Section 3.3 provides a value
for λ̄ that guarantees that the support graph contains a feasible solution.

Proposition 2. Using λ̄ ≥ mSPF results in a support-graph containing a directed path from at least one
i ∈ I to all terminals j ∈ J .

Proof. Upon the termination of the dual ascent, there is a directed path from the root 0 to all terminals j ∈ J
in the support-graph. If the support-graph only contains a single-arc (0, i), then clearly, there is a directed
path from i to every j ∈ J . Thus, consider the case that the support-graph contains two arcs (0, i′) and
(0, i′′). Note that for each j ∈ J , this means there is a directed path to j from either i′ or i′′. By definition
of the dual ascent, (0, i) appears in any cut induced by H with i ∈ H. Thus, if (0, i) is in the support-graph,
an amount of mSPF has been pushed into cuts going to i. This in turn means that the support-graph
contains a path from any node k to i whose distance from i is at most mSPF . Hence, by definition of
mSPF , when (0, i) is contained in the support graph, it also contains a path from any other facility node
to i. Consequently, there is a path from i′ to i′′ and a path from i′′ to i′ in the support-graph. Thus, from
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both i′ and i′′, all j ∈ J can be reached. The proof for more than two root-arcs in the support-graph works
analogously.

In view of the above propositions, we set λ̄ = mSPF in our approach.

3.2 Bound-Based Reductions
Reductions using the lower bound and reduced costs provided by the DA algorithm have been successfully
used in Polzin and Daneshmand [27] for the Steiner tree problem (modeled as SAP). They are based on the
following observation.

Proposition 3. [27] Let GT = (VT , AT ) with cost function c be an instance of the SAP, let c̃ ≤ c and let
LB be a lower bound for the optimal solution of the SAP in GT = (VT , AT ) with cost function c′ = c − c̃.
For any feasible Steiner arborescence x̄, it holds LB + c̃T x̄ ≤ cT x̄.

Since the dual solution obtained by the DA algorithm with cost function c stays feasible for cost function
c′ = c− c̃, one can exploit the result of Proposition 3 by using the lower bound lower as LB and the reduced
costs c̃ produced by the DA algorithm. Consequently, Proposition (3) enables one to remove (resp., fix the
associated variables to zero) nodes and arcs from an instance in the Steiner arborescence case. In particular,
suppose we are given a feasible solution with objective value obj. Clearly, a solution x̄ can only be optimal if
cT x̄ ≤ obj, and from Proposition 3 and the discussion above it follows that c̃T x̄ ≤ obj− lower must hold, i.e.,
the cost of Steiner arborescence x̄ evaluated under the reduced costs c̃ must not be larger than obj − lower.

We now illustrate how an arc (s, s′) can be fixed to zero using this result, the procedure for eliminating
Steiner nodes follows similar arguments. Let opt((s, s′)) be the optimal value of a Steiner arborescence with
cost function c̃ containing this arc. Clearly, if opt((s, s′)) > obj − lower, (s, s′) cannot be in an optimal
solution, and thus can be fixed to zero. Finally, this check remains valid even when the value of opt((s, s′))
is underestimated by the shortest path cost from the root to s plus the shortest path cost from s′ to any
terminal and the cost of (s, s′). The correctness of this claim follows from the fact that there always exists
an optimal solution such that the only leaves in this solution are terminal nodes. This fact has also been
used in deriving valid inequalities (14) and (15).

For the elimination of potential facility nodes, recall that in our transformation facilities are modeled as
arcs (i, i′) in the SAP. Therefore, the reduction described above is also valid for the removal of facilities from
an instance. Note that, if a facility i is ”removed”, the status of the underlying node i switches from I to K.

3.3 SAP-Based Construction and Primal Heuristic
The connection between aConFL and SAP can also be used in the design of construction and primal heuris-
tics that are essential for the fast convergence of an efficient branch-and-cut framework. Moreover, the
construction heuristic is also essential for the bound-based reductions of the previous sections, which need
good upper bounds to be effective.

Let (x∗, y∗, z∗, a∗) be a solution of the LP-relaxation of the (strong) directed cut-set formulation. The
primal heuristic of Gollowitzer and Ljubić [8] consists of choosing a threshold value zT for z∗ and considering
every i ∈ I : z∗i ≥ zT as open facility. A solution is then constructed by first finding the minimum cost
customer assignment possible for these opened facilities. Then, all open facilities are considered as terminals
for the application of the MST-Steiner tree heuristic of [25]. Finally, a local search phase is done trying
to close unnecessarily opened facilities and removing the no-longer needed connections to them. Thus, the
whole procedure consists of three phases, a threshold value zT must be chosen before and the LP-values of
x∗a as well as the facility opening costs are ignored.

We use a different heuristic obtained by modifying the PrimI heuristic described in [5] for the Steiner tree
problem which is a combination of Dijkstra’s shortest path algorithm and Prim’s spanning tree algorithm.
It starts with a partial tree T consisting only of the root node and shortest paths are calculated from T to
all terminals (customers J in our case). A terminal with a cheapest shortest path is selected and added to
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T , together with all nodes lying on the path. This process is repeated until all terminals are connected. To
deal with the root-outgoing constraint one could simply run it for all facilities as root node.

There is, however, an undesired effect when directly using the PrimI heuristic on our transformed in-
stances, due to their special structure. Suppose the first terminal (i.e., customer) j is found by the heuristic.
Thus, the path from the root to j is added to T . Let i (in the form of the arc (i, i′)) be the facility used in
this connection. Since connection cost are calculated with respect to T , the costs for connecting any other
customer j′ to facility i is only cij′ while the cost to add it using another (still unopened) facility, say i′′
consists of the connection cost of this other facility in the core, the opening cost of i′′, and the assignment
cost of arc (i′′, j′). This leads to the undesirable effect that solutions constructed by the direct application
of the PrimI heuristic on the transformed instances often contain only one open facility and have a rather
poor quality. To deal with this problem, we propose a modification to obtain a construction heuristic and a
primal heuristic which are explained below.

Construction Heuristic Algorithm 1 gives a pseudo-code for the construction of an initial heuristic
solution; note that we try every i ∈ I as root node.

Data: aConFL instance and root node r ∈ I
Result: Feasible solution to aConFL containing r

1 T ← r
2 z∗ ←∞
3 ∀v ∈ V : distance(v)←∞
4 ∀v ∈ V : pred(v)← null
5 distance(r)← 0
6 pQ← (r, distance(r)) // priority queue, number is priority
7 while pQ 6= ∅ do
8 v → pop first element from pQ
9 openFacility ← false

10 if v ∈ I then
11 assignment← best assignment of customers using open facilities in T and v
12 if cost(T, path to v, assignment) < z∗ then
13 try to improve assignment by closing a facility
14 openFacility ← true

15 if openFacility = false or v ∈ T then
16 for (v, w) ∈ Ac do
17 if distance(w) > distance(v) + cvw then
18 distance(w)← distance(v) + cvw
19 pred(w)← v
20 push (w, distance(w)) to pQ
21 else
22 open v and add v and the path connecting to it to T // path is recoverable using pred
23 set distance to zero for v and all nodes on the path to it
24 push v and all nodes on the path to it to pQ with priority zero
25 update z∗ using assignment and cost of the path to v
26 postprocesing to remove leaf-nodes in T , which are not opened facilities

Algorithm 1: Construction Heuristic

The undesired effect of PrimI on the transformed instances comes from the fact that it is “too greedy”,
as it only considers one customer at a time. When looking just at a single customer opening a new facility
is most likely not done, since we would have to pay the connection cost to the new facility, opening cost and
assignment cost. Instead for connecting it to the already opened facility, we only have to pay the assignment
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cost. However, when looking into a “cluster” of customers, this situation changes since the costs for opening
a new facility are then shared among the customers in the cluster.

Our construction heuristic which attempts to incorporate this idea into the PrimI heuristic works as
follows: We label the nodes in the core-network in which the facility nodes are considered as potential
Steiner tree terminals. Whenever we encounter a new facility node i, we find the best possible assignment
of customers using this facility and the open facilities from T . If this results in a cheaper solution than the
current one, i is added to T , considered as a terminal and opened, and customers are respectively re-assigned.
If adding i to T does not improve the current solution, i is considered to be a potential Steiner node and
remains closed. Its shortest path distance label is updated and further exploited in the same fashion as in
the PrimI heuristic algorithm. Observe that the re-assignment of customers may result in closing some of
facilities being opened in previous iterations. Moreover, once a facility is added, we also check if we can get
an improved solution by closing one of the already opened facilities. In that case, we close the facility which
brings the largest improvement. We also experimented with closing more facilities in this step, but decided
to close a single facility after preliminary computations. Closed facilities are kept in T and consequently,
facilities from T may turn out unnecessary later. Hence we apply a postprocessing as in Gollowitzer and
Ljubić [8] after termination of the heuristic, where all leaf-nodes from T , which are not opened facilities,
are removed. If the assignment graph is not complete bipartite, we also add the encountered facility i, if
opening it allows the connection of a previously unconnected customer j. In preliminary computational
experiments, it turned out to be beneficial to run the construction heuristic not on the original instance, but
on support-graph produced by the DA algorithm. In this case, after running the heuristic for an i ∈ I as
root, we check, if all customer are connected in the constructed solution, and discard infeasible solutions.

Primal Heuristic Similar to Gollowitzer and Ljubić [8], we first build the assignment part. However,
we do not fix the threshold value zT , but run the complete algorithm for all potential threshold values
for given LP-solution values z∗. Once we have found the best assignment, we set the opened facilities in
this assignment as terminals, and use the PrimI-heuristic, using cij(1− x∗ij) as weight. Thus, in contrast to
Gollowitzer and Ljubić [8], our heuristic is influenced by the LP-values of the core-part and we avoid the need
to apply a post-processing procedure closing unnecessarily opened facilities. We also tried our construction
heuristic as primal heuristic, using the LP-values to set the weights. However, the current primal heuristic
worked slightly better in our computational experiments.

3.4 Implementation Details
To conclude this section, we describe the implementation details of our solution framework.

Bound-based Reductions and Variable Fixing Before starting the branch-and-cut algorithm, we
repeatedly call the DA algorithm and the construction heuristic to perform the bound-based reductions,
until no more arcs/nodes/facilities can be removed. The construction heuristic is run on the support graph
produced by the dual ascent.

We also use the dual ascent lower bounds and reduced costs to fix variables within the branch-and-cut
framework. While modern branch-and-cut solvers do reduced cost based variable fixing on their own, in our
case, the fixing is not based on the reduced cost of a single variable, but on more elaborate arguments as
described in Section 3.1.

Separation of Inequalities Since there is an exponential number of ycuts and acuts, we separate them
on-the-fly during the solution process, i.e., we use branch-and-cut. Benders optimality cuts (8) are also
separated on-the-fly. Although they are of polynomial size, their separation has proven computationally
advantageous in preliminary tests.

The separation of inequalities ycuts and acuts is done using a max-flow algorithm on a graph where
the capacities of arcs are given by the current values of the LP-solution, i.e., for ycuts, we consider the
support graph with capacities x∗, and for acuts, we consider the complete graph of an instance, where in
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addition to x∗ for the core graph, a∗ is used as capacity of the assignment arcs. We have implemented
backcuts, nested cuts and minimum cardinality cuts, see, e.g., [14, 24] for more details. In case we encounter
an integer solution during separation, we simply do a breadth-first-search to check connectivity instead of
using max-flow.

A cut-pool is used to speed up the separation of inequalities acuts. The idea is the following: Given an
LP-solution, the separation of acuts needs to be done for every customer (some preliminary experiments in
which acuts are separated only for a few customers in case of fractional LP-solutions, resulted in a very weak
performance). However, for large-scale-instances a significant slowdown of the branch-and-cut performance
can be observed when acuts are separated instead of ycuts. This can be explained by the fact that ycuts
are only separated for facilities with z∗i > 0 (or some threshold value). The number of such facilities in an
LP-solution is typically much smaller than the overall number of customers, and consequently much fewer
max-flow iterations are required when considering ycuts instead of acuts. This small number of facilities
with z∗i > 0, however, also influences the structure of the acuts for the given LP-solution. They are likely to
be very similar, since there are not many open facilities, where customers can be connected to. We try to
exploit this in a heuristic scheme to generate acuts: For a given and violated acut to a customer j, we try
to construct a violated acut for another customer j′ by simply replacing all the aij in the cut with aij′ and
leaving the remaining cut unchanged. In particular, we store all acuts separated by max-flow for a given
LP-solution so far in a cut-pool. Before we call the (expensive) max-flow separation for the next customer
j′, we try to construct a violated acut using the described procedure applied to the cuts in the pool.

When separating ycuts, we check if all facilities are on the sink-side, and add a cut with one instead of yi
on the right-hand-side in that case. We take into account the variable fixing when checking, i.e., if a facility
is fixed to zero, it does not matter, if it is on the source or sink side.

Tailing Off Preliminary computational tests have shown a slow convergence of the cut-loop, i.e., many
violated cuts have been detected and inserted into the LP, with a very minor contribution in improving the
quality of lower bound. This effect was especially pronounced for acuts. To tackle this issue, we used a
two-fold strategy: We stop the cut-loop if for five consecutive iterations the absolute increase in lower bound
value from one iteration to the next is < 0.001. Moreover, we use a parameter ρ to limit the overall number of
cut-loop iterations within a branch-and-cut node. In our experiments, we have ρ = 100 for the root node and
ρ = 20 for the other nodes. These settings only consider separation of fractional points, whereas for integer
points encountered inside of the branch-and-cut tree, the separation procedures are always performed, in
order to ensure the overall correctness of the algorithm.

Branching Priorities As already shown in [8], it is effective to set custom branching priorities taking
into account the structure of the problem, instead of letting the MIP-solver decide. Similar to [8], we set the
highest branching priority to z-variables succeeded by y-variables (note that [8] had no y-variables). The
idea is that choosing which facility to open and which nodes to be in the solution is much more important
than choosing a single arc. This is motivated by the observation that once the open facilities and nodes
in the solution are selected, the problem reduces to a spanning tree problem in the core and to a cheapest
assignment of the customers to open facilities.

4 Computational Results
The main purpose of our computational study was to compare the three basic formulations provided in
Section 2, and to investigate the effects of the DA-based cut-generation, bound-based reductions and the
role of heuristics to the overall performance of each of the basic settings. We compare our results against
three state-of-the-art approaches from the literature:

• two (slighly improved) re-implementations of branch-and-cut approaches used in [8], based on ycuts
and acuts, respectively (denoted as settings Y and A, respectively), and
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• a heuristic of Bardossy and Raghavan [1], for which the authors have shown that it outperforms all
other heuristic approaches available in the literature.

Settings Considered in the Computational Study In Table 1, all parameter settings considered in
this computational study are detailed. The three basic settings are Y, A and B. The former two correspond
to the branch-and-cut approaches used in [8], based on ycuts and acuts, respectively. The setting B is a
Benders-like branch-and-cut in which ycuts are separated along with the Benders optimality cuts (8) that
are used to model the “stars”. Whenever a basic setting is enhanced by the generation of acuts or application
of the bound-based reductions in combination with the construction heuristic (due to the DA procedure),
this is denoted by Da and R, respectively.

In each of the settings, we use the branching priorities and the primal heuristic procedure described below.
As initialization, we add xss′ + xs′s ≤ ys,∀s, s′ ∈ K, which is a subset of (rewritten) ycuts. Moreover, we
also add all inequalities (14) and (15).

Table 1: Overview on used settings in our computational study

name model DA-cuts reductions construction heur.
Y Weak Cut-Set × × ×
A Strong Cut-Set × × ×
B Benders × × ×

YDaR Weak Cut-Set X X X
ADaR Strong Cut-Set X X X

BR Benders × X X

YDa Weak Cut-Set X × X
YR Weak Cut-Set × X X

While the settings YDaR and ADaR use the full power of our framework, we only consider BR, but
not BDaR. The main reason for this distinction is because the DA-cuts are acuts, and thus they are not
directly applicable in the Benders approach (in which a variables do not exist and are aggregated into
customer allocation cost-variables wj). Settings YR and YDa are used for demonstrating the influence of
the single ingredients of our framework.

In addition, we also analyzed the performance of our construction heuristic and compared it with the
heuristic of Bardossy and Raghavan [1]. In the following, setting H denotes the construction heuristic used
in conjunction with the support-graph and bound-based reductions. Note that using H, we also provide
valid lower bounds, due to the application of the DA algorithm.

4.1 Benchmark Instances
Bardossy and Raghavan [1] created instances for all four problems considered in this work, namely ConFL,
STS, GSTS and ROB. We have evaluated our algorithms on these instances. Since these instances turned
out to be easily solvable by our new algorithmic framework (see Table 3), we created two additional sets of
larger instances following the procedure given in Bardossy and Raghavan [1]. These instances are available
for download at http://homepage.univie.ac.at/markus.sinnl/program-codes/confl/.

The instance-generation procedure works as follows: Complete Euclidean graphs are obtained from ran-
domly selecting nodes in a X by X grid, and rounding up the distance between them to the next integer
to obtain the basic edge costs. Such calculated edge costs are considered as assignment-costs, whereas the
edge-costs in the core-network are obtained by multiplying the distances by a factor M . Facility opening
costs f are set to a constant value. The number of potential facilities and customers in any instance sums
up to |V |, and different instances are created by taking 10%, 20%, . . . , 90% of V as facility nodes. Each set
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contains ten instances for a fixed number of facility/customer nodes and combination of M and f . This
results in 360 instances for each set and problem (Set1, Set2 for ConFL, STS, GSTS and Set3 for ROB). For
ConFL, 20% intermediate nodes are added. Table 2 gives the detailed parameter settings used to obtain the
instance sets. Note that, for ConFL, Bardossy and Raghavan [1] created two additional sets (Set4 and Set5)
that comprise of sparser graphs. The graph density is specified for the edges of the core-graph and for the
assignment edges (denoted by δ(ES) and δ(AJ) in the table, respectively).

Table 2: Overview on instances from/based on Bardossy and Raghavan [1]. Set1 to Set5 are from Bardossy
and Raghavan [1]; NewSet1 and NewSet2 are newly created larger version of Set1 and Set2. Note that there
are 360 instances for each set and problem.

set problems X |V | M f δ(ES) [%] δ(AJ ) [%]

Set1 ConFL, (G)STS 100 100 3 0, 10, 20, 30 100 100
Set2 ConFL, (G)STS 100 100 1, 3, 5, 7 30 100 100
Set3 ROB 100 100 1, 3, 5, 7 0 100 100
Set4 ConFL 100 100 7 30 25, 50, 75 25, 50, 75
Set5 ConFL 100 100 7 30 25, 50, 75 100

NewSet1 ConFL, (G)STS 150 500 3 0, 10, 20, 30 100 100
NewSet2 ConFL, (G)STS 150 500 1, 3, 5, 7 30 100 100

In addition, we consider ConFL instances proposed by Ljubić [23] and used in Gollowitzer and Ljubić
[8]. They are constructed by combining Steiner tree instances with uncapacitated facility location (UFL)
instances. The Steiner tree parts, which form the core graph, are from the sets C, D of ORLIB [2] and
comprise instances with up 500 to 1000 nodes and up to 25000 edges. They are then combined with different
instances from Ufllib [11], which form the assignment part to give the following sets of instances. Note that
the results reported in Gollowitzer and Ljubić [8] are for a fixed root node, i.e., a node from the instance
has been taken as root node and no artificial root was introduced. The selected root node consisted of the
facility with the smallest index. We followed this procedure in our computational tests, by modifying our
framework accordingly (e.g., since the fixed root-node is part of the instance, the root-outgoing constraint
(12) needs to be removed). In these instances, the facility location part is dominating in the cost structure.
The core edge costs are integer values from the interval [1, 10].

• Set MPQ: The UFL instances are originally from [16]. Facility opening costs and assignment costs
are rational numbers from [100, 600] and [2, 10], respectively. Two instances of the two classes MP and
MQ with sizes |I| = |J | = 200, respectively |I| = |J | = 300 have been taken.

• Set GS: The UFL instances are originally from [15]. Facility opening costs are integers from [100, 200]
and assignment costs are integers from [1000, 2000]. Two instances of the two classes gs250 and gs500
with sizes |I| = |J | = 250 and |I| = |J | = 500 have been taken. Note that for the UFL, these instances
are very hard/unsolved for state-of-the-art approaches, see, e.g., [7]. In [8], results are only reported
for instances based on C Steiner tree instances.

4.2 Results for instances of/based on Bardossy and Raghavan [1]
In this and in the following section, we report the computational results obtained by our approaches. Each
experiment has been performed on a single core of an Intel E5-2670v2 with 2.5GHz and at most 3GB RAM
memory was given to each run. The algorithms were implemented in C++ and CPLEX 12.6.1 was used as
branch-and-cut framework and all CPLEX parameters (except for restricting each run to a single-thread)
were left at their default values. A time limit of 900 seconds was set for the runs whose results are reported
in this section.

Table 3 contains results for the instances from [1] aggregated by set. In this table (and the following
ones), we report the average runtime in seconds (t[s]), the average number of nodes in the branch-and-bound
tree (n.), and the average optimality gap (gap), calculated as (OBJ − LB)/OBJ · 100, where OBJ is the
value of the best solution found and LB is the lower bound.

14



The obtained results confirm the importance of incorporating the two new ingredients, namely the dual
ascent-based cuts and the bound-based reductions, in improving the algorithmic performance. The overall
best performance is obtained by the setting ADaR (followed by YDaR): using acuts obtained by the dual
ascent (in combination with bound-based reductions) enables us to solve all the instances of all five sets
to provable optimality. In most of the cases, the optimal solution is found already at the root node of the
branch-and-cut tree in under three seconds of average computing time. On the contrary, settings Y and
B, which are both based on ycuts, fail to solve most of the instances within the given time limit, whereas
setting A requires one to two orders of magnitude larger computing times.

The results also illustrate the difference in the strength of acuts against ycuts. Settings involving acuts
(which are A, ADaR, but also YDaR – recall that YDaR separates ycuts, but it is initialized with the
dual ascent cuts, which are acuts) solve all the instances to provable optimality, whereas the settings Y, B
and BR fail to do so.

Comparing YDaR with A, we notice that A has longer computing times, but requires a smaller number
of branch-and-bound nodes. This is an indicator that acuts provide much stronger bounds than ycuts, but
are very expensive to separate, as long as their generation is not enhanced using the dual ascent. Moreover,
setting A is much slower when solving the GSTS and the ROB than STS and ConFL. This can be explained
by the fact that for the GSTS and the ROB, for each i ∈ I ∩ J , an additional facility node i′ is introduced
together with assignment arcs of zero weight. This seems to have a negative effect on the time spent in
separating acuts.

Our results reveal that all instances from [1] are solved to optimality within approximately the same
time the approach from [1] needs to find a heuristic solution. Finally, we also observe that the construction
heuristic H (combined with bound-based reductions) also works quite good on its own. Within a second, our
heuristic provides solutions whose quality is on average only 1% worse than the optimal solution. Comparing
computing times of H versus ADaR and YDaR, we notice that most of the time of the latter two settings
is consumed by the initialization heuristic (recall that the heuristic at the same time collects the family of
acuts and performs the bound based reductions).

Tables 4 to 6 report results on the created larger instances (NewSet). In these tables, the results are
aggregated according to the number of facility and customer nodes. The obtained results indicate that
increasing the number of potential facilities (even when reducing the number of customers) is in direct
correlation with the difficulty of the instances (at least for our exact approaches).

The best performing settings are again YDaR and ADaR. They allow for finding provably optimal
solution of nearly every instance within the given timelimit. A significant fraction of the computing times is
consumed by the initialization heuristic (see the runtimes of H). This is due to the calculation of mSPF to
properly set λ̄ (recall that this procedure requires an all-facility-pair shortest path calculation). We notice
that further speed-ups could be achieved if an upper bound for λ̄ is heuristically estimated instead.

Y and A perform much worse than YDaR and ADaR (e.g., for NewSet1-GSTS Y cannot even solve a
single instance within the given timelimit). B performs equally bad as Y and A. A significant improvement
is obtained by applying bound based reductions (i.e., BR), however, this approach is still not competitive
with YDaR and ADaR. Note that despite our cut-loop, Y and A often only manage to solve the root-node
within timelimit. This is in strong contrast to the results for the instances from Set1 to Set5 and can be
explained by the fact that by going from 100 to 500 nodes, the size of the model drastically increases (recall
that the core graph is a complete graph). Thus, solving the LP-relaxations and the separation problem
becomes much more time-consuming.

Moreover, the size of the core graph also explains why setting B does not really give an improvement over
Y: While the “star” part of the model gets much smaller using Benders decomposition, the size of the “tree”
part remains identical. This again emphasizes the importance of using the cuts obtained by dual ascent and
the reductions for solving these kind of instances. Having a closer look at the four individual problems (and
considering both, instances from [1] and the NewSet), the GSTS appears as the most difficult one for our
exact approaches (see, e.g., Table 6).
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Table 3: Results for instances from Bardossy and Raghavan [1].

Y YDaR A ADaR B BR H
set t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] gap

Set1 - ConFL 524 1006 9.31 2 3 0.00 12 1 0.00 1 0 0.00 528 1072 10.10 136 1226 0.85 1 1.69
Set2 - ConFL 417 926 4.56 2 2 0.00 10 1 0.00 1 0 0.00 426 907 5.19 64 418 0.22 1 1.44
Set4 - ConFL 187 974 0.99 1 1 0.00 6 1 0.00 1 0 0.00 184 989 1.26 1 27 0 1 0.40
Set5 - ConFL 153 665 0.86 1 7 0.00 6 1 0.00 1 1 0.00 149 662 1.10 5 126 0 1 3.31

Set1 - STS 452 1778 8.11 1 1 0.00 9 1 0.00 1 0 0.00 466 2342 8.53 17 453 0.1 1 0.57
Set2 - STS 310 1668 2.91 1 0 0.00 7 0 0.00 1 0 0.00 321 1900 3.21 3 17 0.02 1 0.44

Set1 - GSTS 870 512 32.33 4 1 0.00 227 0 0.00 3 0 0.00 870 556 35.41 442 1769 13.35 1 1.99
Set2 - GSTS 310 1668 2.91 1 0 0.00 7 0 0.00 1 0 0.00 321 1900 3.21 3 17 0.02 1 0.44
Set3 - ROB 755 511 31.15 3 1 0.00 99 1 0.00 2 0 0.00 826 646 35.31 318 3795 8.58 1 0.85

Table 4: Results for NewSet1 and NewSet2 - ConFL.

Y YDaR A ADaR B BR H
|I| |J| t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] gap

50 450 23 3 0.00 1 0 0.00 295 2 0.01 1 0 0.00 15 2 0.00 1 0 0.00 1 0.13
100 400 122 6 0.00 2 0 0.00 525 2 0.75 2 0 0.00 78 8 0.00 2 0 0.00 2 0.22
150 350 314 8 0.06 4 0 0.00 722 1 3.85 4 0 0.00 226 9 0.01 4 0 0.00 4 0.33
200 300 601 8 0.64 7 0 0.00 837 1 9.24 7 0 0.00 463 11 0.32 8 1 0.00 6 0.50
250 250 856 3 3.09 11 0 0.00 825 1 15.34 12 0 0.00 835 8 2.47 16 3 0.00 10 0.69
300 200 900 1 7.74 21 0 0.00 886 0 9.35 22 0 0.00 900 3 7.60 183 19 0.69 17 1.58
350 150 900 2 13.86 34 0 0.00 900 0 9.04 36 0 0.00 900 2 13.78 463 77 3.89 26 2.31
400 100 900 4 22.67 66 0 0.00 900 0 11.52 64 0 0.00 900 4 23.25 812 99 15.98 42 3.65
450 50 900 11 37.49 180 5 0.06 900 0 22.88 149 0 0.00 900 13 37.87 881 70 34.94 64 6.90

50 450 30 4 0.00 1 0 0.00 320 3 0.20 1 0 0.00 22 5 0.00 1 0 0.00 1 0.15
100 400 130 4 0.00 3 0 0.00 473 2 3.41 3 0 0.00 80 7 0.00 3 0 0.00 2 0.36
150 350 402 9 1.30 5 0 0.00 678 1 9.21 5 0 0.00 303 12 0.63 6 2 0.00 4 0.43
200 300 694 6 3.85 10 0 0.00 782 0 14.92 10 0 0.00 628 10 3.30 16 9 0.00 8 0.74
250 250 824 4 8.73 19 0 0.00 829 0 18.51 20 0 0.00 832 5 8.04 161 66 0.00 15 1.57
300 200 900 3 12.76 33 0 0.00 896 0 6.30 37 0 0.00 900 4 12.58 348 131 3.14 24 2.13
350 150 900 6 18.49 62 0 0.00 899 0 8.94 63 0 0.00 900 6 18.70 639 92 11.45 39 3.42
400 100 900 10 25.68 162 4 0.00 900 0 14.60 142 0 0.00 900 11 26.27 755 32 23.49 56 5.65
450 50 900 15 35.97 351 12 0.36 900 0 24.65 264 0 0.00 900 16 36.96 881 39 34.81 85 7.60

16



Table 5: Results for NewSet1 and NewSet2 - STS.

Y YDaR A ADaR B BR H
|I| |J| t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] gap

50 450 3 0 0.00 1 0 0.00 5 0 0.00 1 0 0.00 0 0 0.00 0 0 0.00 0 0.03
100 400 9 0 0.00 1 0 0.00 35 0 0.00 1 0 0.00 3 0 0.00 1 0 0.00 1 0.14
150 350 31 1 0.00 3 0 0.00 128 1 0.00 2 0 0.00 11 2 0.00 3 0 0.00 2 0.09
200 300 155 4 0.09 5 0 0.00 280 0 0.00 4 0 0.00 86 6 0.00 6 1 0.00 4 0.27
250 250 553 7 2.36 8 0 0.00 539 0 0.30 7 0 0.00 468 10 1.91 12 5 0.00 7 0.69
300 200 859 4 7.32 14 0 0.00 757 0 1.03 11 0 0.00 860 6 6.92 25 10 0.00 12 0.85
350 150 900 4 14.90 22 0 0.00 894 0 3.32 17 0 0.00 900 5 14.99 105 48 0.44 19 1.58
400 100 900 8 25.73 38 0 0.00 900 0 10.52 30 0 0.00 900 8 26.27 466 170 6.97 32 2.80
450 50 900 18 40.72 79 1 0.00 900 0 23.84 64 0 0.00 900 15 41.52 522 99 20.63 47 3.48

50 450 4 0 0.00 1 0 0.00 6 0 0.00 1 0 0.00 1 0 0.00 0 0 0.00 0 0.10
100 400 13 1 0.00 1 0 0.00 23 0 0.00 1 0 0.00 3 2 0.00 1 0 0.00 1 0.14
150 350 189 13 0.46 3 0 0.00 76 0 0.00 2 0 0.00 76 13 0.00 3 0 0.00 2 0.12
200 300 404 13 3.06 6 0 0.00 257 0 0.00 5 0 0.00 321 15 2.13 8 9 0.00 5 0.63
250 250 668 7 9.38 12 0 0.00 448 0 0.35 9 0 0.00 655 9 8.12 53 55 0.23 10 0.97
300 200 686 7 15.16 17 0 0.00 650 0 2.53 15 0 0.00 701 9 15.28 91 63 0.93 15 0.87
350 150 740 9 21.03 35 0 0.00 708 0 6.66 30 0 0.00 735 12 21.61 323 126 8.68 28 2.23
400 100 871 15 29.07 95 0 0.00 768 0 14.96 92 0 0.00 900 12 29.89 513 67 20.08 46 5.56
450 50 900 22 40.35 89 0 0.00 895 0 25.28 89 0 0.00 900 22 40.96 309 48 13.24 61 2.65

Table 6: Results for NewSet1 and NewSet2 - GSTS.

Y YDaR A ADaR B BR H
|I| |J| t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] gap

500 450 900 1 3.52 43 0 0.00 900 0 3.33 37 0 0.00 890 1 3.00 50 2 0.00 37 0.65
500 400 900 0 4.76 41 0 0.00 900 0 3.76 39 0 0.00 900 0 3.85 65 4 0.00 36 0.90
500 350 900 0 6.27 40 0 0.00 900 0 4.25 33 0 0.00 900 1 5.42 55 3 0.00 35 0.70
500 300 900 1 8.88 49 0 0.00 900 0 5.28 42 0 0.00 900 1 8.41 119 14 0.15 44 1.27
500 250 900 0 12.09 53 0 0.00 900 0 6.31 42 0 0.00 900 0 11.60 234 19 2.00 47 1.70
500 200 900 1 15.63 49 0 0.00 900 0 8.48 43 0 0.00 900 1 15.49 257 22 2.23 43 1.68
500 150 900 2 20.35 53 0 0.00 900 0 11.01 43 0 0.00 900 2 20.86 402 117 5.15 48 1.58
500 100 900 6 29.04 74 0 0.00 900 0 16.79 63 0 0.00 900 6 30.12 645 107 16.19 64 3.32
500 50 900 16 41.98 121 3 0.00 900 0 29.07 91 0 0.00 900 14 43.06 580 76 24.74 67 5.12

500 450 710 0 9.08 52 0 0.00 774 0 5.24 50 0 0.00 702 0 8.48 149 14 1.34 45 0.92
500 400 713 0 10.96 54 0 0.00 783 0 5.68 53 0 0.00 702 1 10.53 239 36 2.59 46 1.18
500 350 717 1 12.61 51 0 0.00 761 0 6.38 54 0 0.00 718 1 12.75 191 39 2.39 45 0.93
500 300 772 2 15.68 67 0 0.00 796 0 8.13 66 0 0.00 800 3 15.89 315 32 5.55 56 1.98
500 250 772 2 17.77 59 0 0.00 808 0 9.88 58 0 0.00 785 3 18.17 288 26 6.13 52 1.34
500 200 831 6 21.88 86 0 0.00 801 0 12.50 90 0 0.00 861 6 21.97 394 39 10.99 64 2.74
500 150 898 7 26.45 103 0 0.00 829 0 16.81 118 0 0.00 900 8 28.10 502 46 16.58 83 3.26
500 100 900 11 32.88 144 0 0.00 881 0 20.98 162 0 0.00 900 11 34.64 540 24 24.65 84 4.93
500 50 900 18 41.00 147 0 0.00 900 0 29.07 172 0 2.50 900 20 42.20 356 22 16.99 89 3.50
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4.3 Results for Instances from Gollowitzer and Ljubić [8]
We used a timelimit of 7200 seconds for the experiments reported in this section. Interestingly, the results
obtained for these instances are very different to the results reported in the previous section.

We first focus on the instances MPQ whose results are reported in Table 7. The results show that dual
ascent cuts and reductions do not have a strong (and positive) effect on the overall computing time. This
is due to the specific cost structure for MPQ instances in which the “star” cost significantly dominates the
“tree” cost. Hence, acuts are much less contributing to the strength of the lower bound of the underlying
models. This can be also observed by comparing the number of nodes in the branch-and-bound tree, which
is typically a two-digit number for MPQ whereas it is zero for the instances from/based on [1].

Our results confirm the finding of [8] that for MPQ instances, the separation of acuts seems to be quite
time consuming, and therefore the settings Y* significantly outperform their A* counterparts. The overall
best performing approach for MPQ instances is Benders decomposition (settings B and BR perform equally
well). The sparser the core graph, the larger is the speed-up obtained by the Benders decomposition, which
is in line with the previous observation that the facility location structure of these instances dominates the
costs, and consequently, influences the performance the most.

We also report the computing times and the gaps of our heuristic H. Instances MPQ were also tested in
[1]. Comparing the quality of solutions of these two heuristic approaches, we notice that our heuristic gaps
are comparable (or slightly worse) to those reported in [1]. However, computing times of H are less than
ten seconds in most of the cases, whereas [1] report computing times between 60 and 660 seconds (obtained
on an AMD Athlon 62 X2 Dual with 2.61 GHz and 3 GB of RAM).

Finally, the benchmark set GS remains the most difficult one for ConFL - not a single instance from GS
could be solved to optimality (neither in the previous literature, nor with our new approaches). Some of
our runs separating acuts also terminated due to the memorylimit. A cumulative plot of the remaining gaps
at termination is given in Figure 2. The smallest gaps are again obtained with the settings B and BR.
Compared to the results reported in [8], we manage to improve the final gaps by about 0.10-0.30%. We point
out that these improvements are not insignificant, given that GS instances are known to posses a very large
number of local optima, most of them lying within the 1% of the root lower bound.

Concerning the performance of our heuristic H, the obtained gaps are between 0.3% and 0.5% (again,
they are comparable to those reported in [1]). However, it is worth mentioning that our heuristic requires
between one and four seconds, whereas the runtimes reported in [1] are between 100 and 5500 seconds for
the same instances.

Figure 2: Results for instance-set GS from Gollowitzer and Ljubić [8]
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Table 7: Results for instances MPQ from Gollowitzer and Ljubić [8].

Y YDaR A ADaR B BR H
name t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] n. gap t[s] gap

c5-mp1 21 51 0.00 33 51 0.00 72 15 0.00 115 31 0.00 3 29 0.00 4 23 0.00 2 4.18
c5-mp2 11 39 0.00 66 17 0.00 25 7 0.00 194 9 0.00 2 16 0.00 6 12 0.00 4 10.22
c5-mq1 69 57 0.00 112 83 0.00 431 53 0.00 467 61 0.00 5 35 0.00 15 36 0.00 10 5.65
c5-mq2 78 74 0.00 765 75 0.00 981 63 0.00 3186 59 0.00 13 64 0.00 42 53 0.00 22 8.50

c10-mp1 20 17 0.00 51 31 0.00 343 33 0.00 845 29 0.00 5 15 0.00 7 18 0.00 2 6.72
c10-mp2 12 19 0.00 9 11 0.00 115 9 0.00 143 7 0.00 2 9 0.00 4 8 0.00 2 2.85
c10-mq1 46 59 0.00 83 41 0.00 501 39 0.00 1274 49 0.00 6 31 0.00 16 40 0.00 10 5.65
c10-mq2 69 81 0.00 80 77 0.00 1425 65 0.00 2945 85 0.00 12 42 0.00 22 48 0.00 13 4.35
c15-mp1 18 21 0.00 25 23 0.00 1025 21 0.00 1263 39 0.00 5 11 0.00 7 14 0.00 2 3.72
c15-mp2 14 9 0.00 11 7 0.00 123 5 0.00 223 13 0.00 3 5 0.00 5 9 0.00 2 2.59
c15-mq1 51 53 0.00 64 65 0.00 1092 45 0.00 1893 85 0.00 9 35 0.00 20 32 0.00 9 5.68
c15-mq2 55 35 0.00 54 69 0.00 2298 81 0.00 4215 55 0.00 11 22 0.00 23 18 0.00 7 3.95
c20-mp1 48 21 0.00 54 21 0.00 2427 13 0.00 4642 47 0.00 28 11 0.00 24 9 0.00 2 3.83
c20-mp2 23 5 0.00 19 5 0.00 319 13 0.00 274 11 0.00 10 3 0.00 8 0 0.00 2 2.19
c20-mq1 72 39 0.00 81 41 0.00 2148 49 0.00 2249 37 0.00 42 32 0.00 43 27 0.00 9 5.55
c20-mq2 179 39 0.00 130 27 0.00 7200 26 2.40 7200 28 2.41 87 33 0.00 75 40 0.00 9 4.07

d5-mp1 18 25 0.00 17 55 0.00 114 35 0.00 132 7 0.00 3 12 0.00 4 9 0.00 2 3.65
d5-mp2 15 31 0.00 23 37 0.00 72 21 0.00 144 23 0.00 3 17 0.00 5 17 0.00 3 3.46
d5-mq1 44 39 0.00 50 35 0.00 219 27 0.00 272 39 0.00 4 27 0.00 14 28 0.00 10 5.06
d5-mq2 45 39 0.00 52 69 0.00 296 19 0.00 408 21 0.00 7 28 0.00 18 26 0.00 9 4.27

d10-mp1 21 21 0.00 45 31 0.00 1872 23 0.00 1329 33 0.00 9 15 0.00 11 17 0.00 3 3.89
d10-mp2 18 17 0.00 50 30 0.00 1586 33 0.00 2146 35 0.00 6 9 0.00 9 12 0.00 3 3.54
d10-mq1 51 37 0.00 198 73 0.00 1813 57 0.00 1810 51 0.00 8 26 0.00 19 27 0.00 11 5.74
d10-mq2 64 39 0.00 74 41 0.00 3020 29 0.00 5532 67 0.00 14 30 0.00 21 25 0.00 9 4.13
d15-mp1 26 29 0.00 28 11 0.00 826 55 0.00 1441 59 0.00 9 12 0.00 10 13 0.00 2 4.46
d15-mp2 17 19 0.00 20 9 0.00 314 9 0.00 529 33 0.00 6 12 0.00 9 5 0.00 2 3.95
d15-mq1 44 35 0.00 49 38 0.00 1303 81 0.00 899 41 0.00 13 35 0.00 21 33 0.00 8 5.83
d15-mq2 65 29 0.00 64 45 0.00 5346 67 0.00 5647 59 0.00 16 36 0.00 25 35 0.00 8 4.12
d20-mp1 68 19 0.00 80 37 0.00 4461 19 0.00 5667 47 0.00 50 11 0.00 60 12 0.00 2 4.19
d20-mp2 71 8 0.00 84 5 0.00 2689 5 0.00 2733 11 0.00 31 5 0.00 51 5 0.00 3 2.26
d20-mq1 166 47 0.00 163 37 0.00 7200 20 2.59 7200 20 2.62 98 29 0.00 128 35 0.00 9 5.54
d20-mq2 233 69 0.00 155 39 0.00 7200 39 2.43 7200 26 2.36 143 25 0.00 131 33 0.00 8 4.23
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5 Conclusion
Tree-star structures appear in many combinatorial optimization problems, and they are particularly im-
portant for applications arising in the design of telecommunication or data management networks. In this
paper, we present an unified algorithmic framework to deal with problems from this family, namely the con-
nected facility location problem, the (generalized) Steiner tree-star problem and the rent-or-buy problem.
We investigate three important aspects for enhancing the state-of-the art branch-and-cut methods from the
literature: (i) utilization of strong cuts derived from a dual ascent procedure, (ii) application of dual-based
reductions to reduce the size of the input graphs, and (iii) incorporation of construction/primal heuristic
heuristic in these frameworks.

Our computational study reveals that these new ingredients are crucial for the solution of very large
classes of instances. As a matter of fact, the open (generalized) Steiner tree-star instances and the rent-or-
buy instances in the literature for which the optimal values were unknown, are now solved to optimality (often
within a few seconds) using our implementation. Additionally, the construction heuristic also performs very
well on its own, being competitive in solution quality with the state-of-the-art, while often outperforming it
in runtime.
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