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Abstract

The tree t∗-spanner problem is an NP-hard problem, which is concerned with finding a spanning
tree in a given undirected weighted graph, such that for each pair of nodes the ratio of the shortest
distance in the spanning tree and the shortest distance in the given graph is bounded by t. The goal is
to find a spanning tree, which gives the minimal t. This problem is associated with many network design
applications, but in particular, in the context of architecture of distributed systems.

We introduce mixed-integer programming formulations for the tree t∗-spanner problem, and present a
branch-and-cut solution approach based on these formulations. The branch-and-cut is enhanced with an
initialization procedure and a primal heuristic. A computational study is done to assess the effectiveness
of our proposed algorithmic strategies. To the best of our knowledge, this is the first time that an exact
approach is proposed for this problem.

1. Introduction and motivation

Given an edge-weighted undirected graph G(V,E), a subgraph G′(V,E′) is called a t-spanner if the ratio,
say ruv, between Duv

G′ (the shortest distance between u and v in G′) and Duv (the shortest distance between
u and v in G) is at most t ≥ 1 for all pairs (u, v) in G. The term t-spanner was first introduced in Peleg and
Ullman (1989), in the context of designing synchronous protocols in distributed computation. Furthermore,
for a given G(V,E) the stretch factor , or simply stretch, of a subgraph G′(V,E′) corresponds to t∗ =
max(u,v)∈V ruv, i.e., the maximum ratio among all pairs of nodes in V ; t∗ can also be regarded as a worst-
case performance measure of G′ with respect to G (see, e.g., Bharath-Kumar and Jaffe, 1983; Peleg and
Upfal, 1988, for early references using this concept).

In this paper, we study the problem of finding, in a given undirected weighted graph, a spanning tree so
that the corresponding stretch factor is minimum. This problem is known as the tree t∗-spanner problem
(Tr-t∗-Sp) or minimum (max) stretch spanning tree problem, and it was first presented in (Cai and Corneil,
1995), where it was shown to be NP-hard. The problem can be formally defined as follows.

Definition 1 (Tree t∗-spanner problem) Let G = (V,E) be a given undirected graph with cost function
c : E → R≥0, and for each pair of nodes s, u ∈ V , let Dsu be the shortest distance (i.e, length of the
shortest path) between s and u for the cost function c. The tree t-spanner problem is the problem of finding
a spanning tree G′ = (V,E) of G = (V,E) so that the induced stretch factor t∗ is minimum.
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Network design problems involving t-spanners have been studied over the last three decades. They are
mainly associated with applications in the design of distributed systems and communication networks in
parallel computing (see, e.g. Althöfer et al., 1993; Awerbuch, 1985; Awerbuch et al., 1992; Bhatt et al., 1986;
Liestman and Shermer, 1993; Peleg and Ullman, 1989; Peleg and Upfal, 1988). However, t-spanners have
been also used for the reconstruction of phylogenetic trees (Bandelt and Dress, 1986) and motion planning
in robotics control optimization (see, e.g., Cai and Mark Keil, 1997; Marble and Bekris, 2017).

To algorithmically tackle t-spanners problems, approximations algorithms have been developed (see, e.g.
Althöfer et al., 1993; Cai and Corneil, 1995; Elkin et al., 2008; Peleg and Ullman, 1989; Venkatesan et al.,
1997, and the references therein). For the particular case of the Tr-t∗-Sp, (Emek and Peleg, 2009) gave an
O(log n)-approximation algorithm. Very recently, two metaheuristics for the Tr-t∗-Sp were proposed, namely
a genetic algorithm and an artificial bee colony algorithm (Singh and Sundar, 2018).

Contribution and Outline Despite of the broad body of literature devoted to studying theoretical and
practical issues of t-spanner problems, including the Tr-t∗-Sp, to the best of our knowledge, no exact ap-
proaches exist for solving these problems.

In this work, we present a first exact approach for the Tr-t∗-Sp, using mixed-integer programming (MIP).
We provide a compact first formulation, and an exponential-size formulation. While the first formulation
is tackled by directly using an off-the-shelf MIP solver, the second is approached by a specially tailored
hybrid decomposition algorithm. In order to study the effectiveness of the proposed approaches, we generate
instances according to the rules described in (Singh and Sundar, 2018), and carry out extensive numerical
experiments. The obtained results show that the Tr-t∗-Sp is an extremely challenging optimization problem,
as MIP ad-hoc methods manage to compute optimal solutions only for instances of limited size.

The paper is organized as follows. In Section 2 we give a compact mixed-integer programming formulation
of the problem. An exponential-size formulation along with branch-and-cut (B&C) algorithm, which is based
on a Benders-like decomposition, is presented in Section 3. In Section 4 we report an extensive computational
study, and final remarks and conclusions are reported in Section (5).

2. A compact MIP formulation for the Tr-t∗-Sp

The formulation presented in this section relies on a polynomial-size representation of the spanning tree
polyhedron, based on multi-commodity flows, as well as on a single-commodity flow modeling strategy for
the shortest paths. For this formulation, the following notation is needed. Besides the original graph G, we
also require its bi-directed counterpart, Gd = (V,A), where A = {(i, j), (j, i) | {i, j} ∈ E} and the arc costs
are given by cij = cji = ce for all e : {i, j} ∈ E. For a set S ⊂ V , let δ−(S) = {(i, j) ∈ A : i 6∈ S, j ∈ S}
and δ+(S) = {(i, j) ∈ A : i ∈ S, j 6∈ S} be the incoming and outgoing cutset, respectively. Finally, let
P = {(s, u) ∈ V × V : s < u} be the set of all pairs of nodes in V .

Along with the presented notation, we need three set of decision variables. Let x ∈ {0, 1}|E| be a vector
of binary variables, so that xij = 1, if edge e : {i, j} ∈ E is in the spanning tree solution, and xij = 0,
otherwise. Complementary, let y ∈ {0, 1}|A|×|P | be a vector a binary variables so that ysuij = 1 if arc
(i, j) ∈ A is part of the path between the pair (s, u) ∈ P in the solution, and ysuij = 0, otherwise. And finally,
let θ be a continuous auxiliary variable for measuring the value of the largest stretch. Using these variables
and notation presented above, we obtain the following formulation, which we will refer to as (MCF), for the
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Tr-t∗-Sp.

(MCF) t∗ = min θ (MCF.1)

s.t. θ ≥ 1

Dsu

∑
(i,j)∈A

cijy
su
ij ∀(s, u) ∈ P (MCF.2)

∑
(i,v)∈δ−(v)

ysuiv −
∑

(v,i)∈δ+(v)

ysuvi =


−1, v = s

0, v 6= s, u

1, v = u

∀v ∈ V, ∀(s, u) ∈ P (MCF.3)

ysuij + ysuji ≤xij , ∀{i, j} ∈ E, ∀(s, u) ∈ P (MCF.4)

x ∈SpT (MCF.5)

θ ≥ 0, y ∈ {0, 1}|A|×|P | and x ∈ {0, 1}|E| (MCF.6)

The objective function (MCF.1) minimizes the value θ, while constraints (MCF.2) ensure that θ encodes the
stretch factor. Constraint-set (MCF.3) ensures that for all s, u-pairs, the corresponding y-variables define a
path between s and u. We observe, that the y-variables can be relaxed to be continuous, since for each s, u-
pair they describe the shortest path problem in the graph induced by the x-variables. Constraints (MCF.4)
ensure that only those edges which are in the spanning tree (i.e., those associated x-variables taking value
1) can be used for the s, u-paths. The spanning tree topology induced by x-variables is generically modeled
by constraint (MCF.5) (further details are given below). And finally, the nature of the variable is imposed
by constraint (MCF.6).

To obtain a polynomial-size formulation, constraint (MCF.5) is modeled by the well-known multicom-
modity flow formulation for the spanning tree (see, e.g., Magnanti and Wolsey, 1995). For this formulation,
let r ∈ V be a dedicated root node, and let f ∈ [0, 1]|V \{r}|×|A| be a vector of auxiliary variables so that fkij
is the flow from r to k ∈ V \ {r} that passes through (i, j) A. With this notation, the space of spanning
trees of G can be modeled as:

∑
(i,j)∈δ−(r)

fkij −
∑

(i,j)∈δ+(r)

fkij =


−1, v = r

0, v 6= r, k

1, v = k

, ∀k ∈ V \ {r}, v ∈ V (MCF.5a)

fkij ≤wij ∀(i, j) ∈ A (MCF.5b)∑
(i,j)∈A

wij =|V | − 1 (MCF.5c)

wij + wji =xij ∀{i, j} ∈ E (MCF.5d)

f ∈ [0, 1]|V \{r}|×|A| and w ∈ {0, 1}|A| (MCF.5e)

Using constraints (MCF.5a)-(MCF.5e) to model x ∈ SpT , we get that (MCF) is a polynomial-size, i.e.,
compact, MIP formulation for the Tr-t∗-Sp. This formulation can be directly solved by an off-the shelf MIP
solver; however, it is still quite large (O(n4) variables and O(n4) constraints), which burdens the capacity of
solvers even for small instances (see Section 4 for computational results). As alternative, we present in the
following section a MIP approach, based on a formulation with fewer variables, but an exponential number of
constraints. In this approach, the constraints are separated and added on-the-fly within a B&C framework.

3. An algorithmic framework for the Tr-t∗-Sp

To obtain a formulation with a fewer number of variables, we proceed in two steps: (i) we use an alternative
formulation for imposing a spanning tree topology; and (ii) we use a Benders-like Decomposition to get rid
of the variables associated with the shortest paths.
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Instead of using constraints (MCF.5a), (MCF.5b) and (MCF.5e) for imposing a spanning tree topolgy
to the solution induced by x, we use a connectivity cut-based formulation for the Spanning Arborescence
problem (see, e.g., Magnanti and Wolsey, 1995), which is encoded by constraints∑

(i,j)∈δ−(S)

wij ≥ 1, ∀S ⊂ V | r 6∈ S (CUT.1)

(MCF.5c) and (MCF.5d); (CUT.2)

the exponential-sized set of constraints (CUT.1) ensures that there is directed path (induced by w) from r to
all nodes in V \{r}, while constraints (CUT.2) complementary ensure that the solution is cycle-free as well as a
correct linkage with the x variables. As typical for such algorithmic approaches with an exponential number
of constraints, we use a dynamic separation scheme that adds them on-the-fly within a B&C framework
(further details are given in the Section 3.1).

One of the bottlenecks of formulation (MCF) are constraints (MCF.3), which explicitly model the paths
among all node pairs in P . In order to avoid these constraints, we project them out, along with the
corresponding y variables, through a Benders-like decomposition. In this sense, we observe that the Tr-t∗-Sp
shares similarities with fixed-charge network design problems, such as the uncapacitated network design
problem (UNDP), which have been successfully tackled with Benders decomposition (see, e.g., Costa, 2005;
Magnanti et al., 1986). In the UNDP, the goal is to design a network and then route demand between node
pairs, from a given set of pairs, on the selected network, while minimizing the total design and routing cost.
Roughly speaking, at each iteration of a Benders decomposition approach for the UNDP, the solution of the
master problem corresponds to a feasible designed network, while the subproblems consist of shortest paths
problems, for the given set of node pairs, on the network induced by such master solution; the sum of the
costs of all these shortest paths is encoded as a Benders cut which is therefore added to the formulation of
the Master, and the process is repeated until a stopping criterion is verified.

Assuming a classical Benders decomposition scheme (see Costa, 2005, for further details), we have that
in the case of the Tr-t∗-Sp, the Master solution corresponds to a spanning tree, while the subproblems
correspond to shortest paths problems among all node pairs. Thus, instead of a single Benders cut, resulting
from the total cost of all shortest paths, for the Tr-t∗-Sp we add one Benders cut for each shortest path
problem, which ensures that θ will correspond to the stretch factor (see constraints (MCF.2)). In this way,
instead of using constraints (MCF.2), (MCF.3) and (MCF.4), the optimal stretch factor, and the shortest
path inducing it, can be encoded by so-called Benders optimality cuts. Hence, at a given iteration, say `,
the formulation of the `-th master problem is given by

(Master)
`

t∗` = min θ (MP.1)

s.t. θ ≥ Θ(x, l), ∀l ∈ L` (MP.2)

(MCF.5c), (MCF.5d), (CUT.1) (MP.3)

w ∈ {0, 1}|A| and x ∈ {0, 1}|E|, (MP.4)

where L` accounts for the set of the Benders (optimality) cuts found up to the `-th iteration, while function
Θ(x, l) induces the l-th Benders cut (with l ∈ L`). Note that constraints (MP.3) ensure the spanning tree
topology of the master solution. For a given master solution, say x`

′
, and a given node pair (s, u) ∈ P , the
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corresponding subproblem is given by

(Subproblem)
`′

s,u SP `
′

s,u = min
1

Dsu

∑
(i,j)∈A

cijy
su
ij (SP.1)

s.t.
∑

(i,v)∈δ−(v)

ysuiv −
∑

(v,i)∈δ+(v)

ysuvi =


−1, v = s

0, v 6= s, u

1, v = u

, ∀v ∈ V (SP.2)

ysuij + ysuji ≤ x`
′

ij , ∀{i, j} ∈ E (SP.3)

ysu ∈ [0, 1]|A|, (SP.4)

i.e., simply the (weighted) shortest path problem between u and u on the network induced by x`
′

(which is
ensured by (SP.3)). The corresponding Benders optimality cut is

θ ≥ α−
∑
e∈E

βexe, (BC)

where α is a constant associated with the dual multipliers of constraint set (SP.2), and β ∈ R|E|≥0 are the
dual multipliers associated with constraints (SP.4). This cut is added to formulation of the master problem
for imposing a stronger valid lower-bound on θ, and the process is repeated until a stopping criterion (e.g.,
a certain solution quality is attained or a time limit is reached) is met.

The decomposition scheme as described above can be regarded as classical Benders decomposition (see, e.g.,
Fischetti et al., 2017b, for a recent discussion on this), since it assumes that the master problem is solved
to optimality at each iteration. Nonetheless, in our case the master problem (MP.1)-(MP.4) is actually a
quite hard problem (due to constraints (CUT.1)), so instead of solving it to optimality at each iteration,
we rather embed the whole decomposition into a B&C scheme so that each node of the search tree, cut-set
inequalities (CUT.1) and Benders cuts (BC) are both separated from the corresponding Linear Program-
ming (LP) solution. Such strategy exploits the benefits of the both, decomposition and B&C, allowing to
hybridize the separation of both types of cuts, which ultimately leads to accelerate the improvement of both
dual and primal bounds (see, e.g., Álvarez-Miranda et al., 2015; Fischetti et al., 2017b, for recent examples
on applying this technique). Further details are given in the remainder of this section.

3.1 Separation of cut-set inequalities (CUT.1)

Let (x̃, w̃) be the LP solution at a given node of the B&C tree. If the solution is fractional, then following
separation procedure is performed. Let D̃d = (V,A, x̃, w̃) be a capacitated graph with w̃ as capacities.
Violated connectivity cuts of type (CUT.1) are identified by solving maximum flow problems on G̃d from
the dedicated root node r to all other nodes in V \ {r} (see, e.g., Fischetti et al., 2017a, for further details).
Concretely, the separation is performed using the preflow-push maximum flow algorithm (Cherkassky and
Goldberg, 1995). This max-flow-based separation is further exploited by the separation of so-called minimal
and back cuts (see Koch and Martin, 1998, for further details on these standard procedures).

Instead, if the LP solution (x̃, w̃) yields integer values, then a purely combinatorial scheme is performed.
For an arbitrary node, say v′, we construct a connected component, say H̃v′(w̃), comprised solely by those
arcs induced by w̃, using a reverse breadth-first search (BFS) strategy. If the root node r is reached, then
the construction process stops, since we have verified that v′ can be reached from r on the current solution.
On the contrary if the BFS completes the search process and the node r is not reached, then all the nodes
comprising H̃v′(w̃) induce a violated cut-set (CUT.1). To ensure connectivity of the solution, this reverse
BFS is done from each node.

3.2 Separation of Benders optimality cuts (BC)

In our approach, we embed the separation of Benders optimality cuts (BC) within the B&C framework. In
particular, at each node of the B&C tree, we first separate inequalities (CUT.1) (as described in the previous
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section), and then only separate Benders cuts for paths between nodes u and v, for which the flow to the
root node r has value one. With this, we ensure, that the Benders subproblem for this pair is feasible, as this
implies an flow of one between u and v in the space of x-variables. Note that we do not solve the Benders
subproblem for other pairs (i.e., where the subproblem is infeasible), as the resulting feasibility cuts would
just ensure connectivity of the solution (in the space of x-variables) and for ensuring connectivity of the
solution, we already separated constraints (CUT.1). The separation of Benders optimality cuts is done by
solving the LP (SP.1)-(SP.4) for each admissible u, v pair and the given x̃ at the node of the B&C tree.

3.3 Further implementation details

We initialize our model with a set of cut-set inequalities (CUT.1). These are obtained by using Wong’s
dual ascent algorithm Wong (1984) (which Wong proposed for the Steiner arborescence problem, but in the
spanning arborescence case is similar to the well-known Edmonds’s algorithm, (see Wong, 1984)) to find a
minimum spanning arborescence. Moreover, we also initialize the model with a set of Benders optimality
cuts. These Benders cuts are obtained by running our separation routine as described in Section 3.2 on the
solution x̂ implied by the minimum spanning tree (MST) of G.

To find high-quality primal solution within the B&C, we implemented a primal heuristic, which is run at
the end of every node of the B&C (and for each LP-solution at the root node of it). The primal heuristic works
by constructing a MST using edge weights ce(1− x̃e), where x̃ is the LP solution at the node. Finally, the
MST using the original edge weights is added as primal solution at initialization. The MSTs are calculated
using Prim’s algorithm Prim (1957).

4. Computational results

The B&C framework was implemented in C++ using CPLEX 12.7, which was left at default settings. The
runs were carried out on an Intel Xeon E5 v4 CPU with 2.2 GHz and 3GB memory and using a single thread.
The timelimit for a run was set to 600 seconds.

4.1 Instances

To create instances for our computational experiments, we followed the procedure described in (Singh and
Sundar, 2018) (unfortunately the instances created in (Singh and Sundar, 2018) were not available): For
a given number of nodes |V |, complete Euclidean graphs are created in a 100x100 plane. The Euclidean
distance is used as cost function. Ten random complete Euclidean graphs are constructed this way for a
given |V |. Based on each complete graph, three additional sparser graphs are constructed by removing edges
from it (while ensuring that the graph is still connected). In these graphs, 80%, 60% and 40%, respectively,
of the edges of the underlying complete graph is kept. We created instances for |V | = {10, 15, 20}. Thus, our
test-set has 120 instances. The instances are made available online at https://msinnl.github.io/pages/
instancescodes.html.

4.2 Analyzing the ingredients of the framework

To analyze the ingredient of our framework, we compare the following six different configurations.

• mcf: The compact formulation (MCF)

• b: The Benders approach, without initialization or starting heuristic or primal heuristic, and only
separation in case that the LP solution at a B&C-node is integer

• bh: b but with the staring heuristic and primal heuristic

• bhi: bh but with the initialization
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• bhif: bhi but with separation also for fractional LP solutions. In order to speed-up fractional separa-
tion, for each node in the B&C-tree except the root node, only one round of separation is done. This
turned out to be the most effective strategy for separation in preliminary runs

• bhif+: bhif but separation of fractional solutions only in the first two nodes (and the root node) of
the B&C-tree

Figure 1 gives a plot of the optimality gap for these configurations. The optimality gap is calculated as
100 · (z∗ −LB)/(z∗), where z∗ is the best solution found by the configuration and LB is the obtained lower
bound. The plot reveals, that all ingredients in the B&C bring a further improvement in the performance,
and the setting bhif+ with all improvement gives the best performance. Moreover, already in it most basic
setting b, the B&C outperforms the compact approach mcf.
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Figure 1: Optimality gap for six different configurations.

4.3 Detailed results

In Tables 1-3 we report detailed results for the instances with 10, 15 and 20 nodes, respectively, when using
setting bhif+. In these Tables, we report for each instance the runtime in seconds (t[s], with TL indicating
that the timelimit of 600 seconds was reached), the lower bound (LB), the value of the best solution found
(z∗), the optimality gap (g[%]), the number of nodes in the branch-and-bound tree (#BBn), the time spent
at the root node (tr[s]), the lower bound at the root node (LBr), the optimality gap at the root node (gr[%],
calculated as (z∗−LBr)/(z∗)), the value of the starting heuristic solution (zH), the primal gap between this
solution and the best solution found (gH [%], calculated as (zH −z∗)/(zH)), and the percentage of edges (P ),
which is in the minimum spanning tree used as starting solution and also the best solution found. Column
per gives the percentage of edges in the instance, and column id gives the ID of the instances (recall that
for each combination of number of nodes and percentage of edges, ten instances were created).

Table 1 shows that our approach can solve instances with 10 nodes easily, the longest runtime is two
seconds. Most of them can be solved already in the root node, however, for some instances there is quite a
large root gap of up to 55%. For six of the 40 instances, the minimum spanning tree solution (MST) used
as initialization is also the optimal solution. For some instances, only 44% of the edges of this MST are in
the optimal solution, however, the solution quality of the MST for this instances is often still very good, for
example for instance 0.60-5, the primal gap is under 6%.

The instances with 15 nodes (Table 2) already become more difficult. Five of the 40 instances cannot
be solved to optimality within the timelimit, all these five instances are complete graphs, thus the density
of the instances may play a role in their difficulty. All the instances with 40% of edges of a complete graph
are solved to optimality within 10 seconds. A reason for this could be that the separation becomes more
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Table 1: Detailed results for setting bhif+ and the instances with 10 nodes

per id t[s] LB z∗ g[%] #BBn tr[s] LBr gr[%] zH gH [%] P

0.40 1 0 2.34832 2.34832 0.00 0 0 2.34832 0.00 2.34832 0.00 1.00
0.40 2 0 1.82013 1.82013 0.00 0 0 1.82013 0.00 1.82013 0.00 1.00
0.40 3 0 2.36265 2.36265 0.00 0 0 2.36265 0.00 2.36803 0.23 0.89
0.40 4 1 3.12429 3.12429 0.00 24 0 2.10783 32.53 3.12429 0.00 1.00
0.40 5 0 1.94652 1.94652 0.00 3 0 1.77835 8.64 2.20777 11.83 0.89
0.40 6 0 2.54325 2.54325 0.00 0 0 2.54325 0.00 2.60153 2.24 0.67
0.40 7 1 4.11222 4.11222 0.00 189 1 1.81643 55.83 4.63938 11.36 0.78
0.40 8 0 2.02350 2.02350 0.00 0 0 2.02350 0.00 2.02350 0.00 1.00
0.40 9 0 2.94497 2.94497 0.00 24 0 1.74086 40.89 3.24482 9.24 0.78
0.40 10 0 2.63148 2.63148 0.00 0 0 2.63148 0.00 3.03134 13.19 0.78
0.60 1 1 3.04562 3.04562 0.00 336 0 1.91425 37.15 4.30049 29.18 0.67
0.60 2 1 3.00520 3.00520 0.00 158 0 1.75845 41.49 3.06337 1.90 0.89
0.60 3 1 3.28100 3.28100 0.00 259 1 1.99795 39.11 3.91895 16.28 0.56
0.60 4 0 2.34643 2.34643 0.00 1 0 2.34643 0.00 2.43503 3.64 0.89
0.60 5 1 2.81656 2.81656 0.00 4 1 2.38835 15.20 2.99377 5.92 0.44
0.60 6 0 2.81718 2.81718 0.00 0 0 2.81718 0.00 2.93219 3.92 0.67
0.60 7 1 2.77694 2.77694 0.00 13 0 2.57739 7.19 2.94739 5.78 0.67
0.60 8 0 2.47110 2.47110 0.00 0 0 2.47110 0.00 2.48188 0.43 0.78
0.60 9 0 2.22966 2.22966 0.00 0 0 2.22966 0.00 2.45688 9.25 0.56
0.60 10 1 2.50688 2.50688 0.00 3 1 2.43352 2.93 2.85075 12.06 0.67
0.80 1 1 2.87155 2.87155 0.00 607 0 1.72237 40.02 4.46661 35.71 0.67
0.80 2 1 2.81394 2.81394 0.00 0 1 2.81394 0.00 3.17401 11.34 0.89
0.80 3 1 2.55968 2.55968 0.00 3 1 2.55161 0.31 3.33238 23.19 0.67
0.80 4 0 2.20930 2.20930 0.00 0 0 2.20930 0.00 2.20930 0.00 1.00
0.80 5 1 2.20306 2.20306 0.00 532 0 1.53312 30.41 2.74632 19.78 0.44
0.80 6 1 2.58228 2.58228 0.00 134 1 1.85406 28.20 2.93700 12.08 0.78
0.80 7 1 2.31663 2.31663 0.00 753 1 1.64038 29.19 3.56665 35.05 0.67
0.80 8 1 2.04286 2.04286 0.00 0 1 2.04286 0.00 2.12304 3.78 0.67
0.80 9 1 2.36027 2.36027 0.00 0 1 2.36027 0.00 2.45045 3.68 0.56
0.80 10 0 2.14140 2.14140 0.00 0 0 2.14140 0.00 2.50277 14.44 0.78
1.00 1 1 2.72879 2.72879 0.00 351 1 1.61376 40.86 3.58893 23.97 0.56
1.00 2 1 2.11044 2.11044 0.00 0 1 2.11044 0.00 2.43338 13.27 0.89
1.00 3 2 2.61375 2.61375 0.00 869 1 1.72433 34.03 4.46504 41.46 0.56
1.00 4 0 1.70843 1.70843 0.00 0 0 1.70843 0.00 1.78039 4.04 0.78
1.00 5 1 2.19945 2.19945 0.00 207 1 1.52669 30.59 2.74632 19.91 0.56
1.00 6 1 2.68737 2.68737 0.00 38 1 1.95659 27.19 3.39304 20.80 0.78
1.00 7 2 2.18015 2.18015 0.00 423 1 1.70722 21.69 3.10123 29.70 0.67
1.00 8 1 2.13067 2.13067 0.00 0 1 2.13067 0.00 2.61161 18.42 0.56
1.00 9 0 1.89999 1.89999 0.00 0 0 1.89999 0.00 1.89999 0.00 1.00
1.00 10 1 1.89164 1.89164 0.00 435 1 1.66941 11.75 2.18449 13.41 0.78

burdensome for denser graphs, and also, there are more edges to branch when the graph is denser. Two of
the instances are solved in the root node; interestingly, one of these two instances is a complete graph. The
root gap is up to 67% (which happens for an instance with 40% edges), and on average is about 40-60%.
For only one instance, the initial MST calculated is also the optimal solution; aside from this instance, the
primal gap of the MST ranges from 2% to 36%.

Table 3 shows the results for instances with 20 nodes. For these instances, 26 of 40 remain unsolved
within the timelimit. The optimality gap for the unsolved instances is up to 54%, while the rootgap is
up to 63%. The primal gap is between about 9% and 44%. Similar to the instances with 15 nodes, the
sparser instances seem somehow easier to solve: e.g., five out of the ten instances with per = 0.40 are solved,
compared to only two out of ten with per = 1.00.

5. Conclusion

In this work, we presented two mixed-integer programming (MIP) approaches for the tree t∗-spanner problem,
namely a compact formulation based on flows, and an exponential formulation based on a Benders-like
decomposition. The Tr-t∗-Sp is an NP-hard problem with applications in the context of distributed systems,
phylogeny and robotics control. To the best of our knowledge, these two MIP approaches are the first
exact approaches proposed for this problem. Our computational study revealed that the decomposition
approach outperformed the direct resolution of the compact formulation; however, the Tr-t∗-Sp seems quite
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Table 2: Detailed results for setting bhif+ and the instances with 15 nodes

per id t[s] LB z∗ g[%] #BBn tr[s] LBr gr[%] zH gH [%] P

0.40 1 5 3.03539 3.03539 0.00 448 2 1.89751 37.49 3.10057 2.10 0.71
0.40 2 3 2.86330 2.86330 0.00 692 1 1.96414 31.40 3.29547 13.11 0.64
0.40 3 4 2.27563 2.27563 0.00 45 2 1.90858 16.13 2.77903 18.11 0.79
0.40 4 3 2.77654 2.77654 0.00 998 1 1.70453 38.61 3.58791 22.61 0.71
0.40 5 6 3.61086 3.61086 0.00 5083 1 1.85333 48.67 4.77045 24.31 0.79
0.40 6 3 3.05302 3.05302 0.00 1452 0 1.00000 67.25 4.09753 25.49 0.57
0.40 7 3 3.11067 3.11067 0.00 368 1 1.95312 37.21 3.40647 8.68 0.79
0.40 8 9 3.69861 3.69861 0.00 12908 1 1.84519 50.11 3.99590 7.44 0.93
0.40 9 2 2.70706 2.70706 0.00 12 1 2.31796 14.37 2.82260 4.09 0.79
0.40 10 2 2.19823 2.19823 0.00 5 1 1.88988 14.03 2.73135 19.52 0.86
0.60 1 4 2.88617 2.88617 0.00 46 3 2.29712 20.41 2.98787 3.40 0.79
0.60 2 23 3.16700 3.16700 0.00 14914 2 1.72844 45.42 3.71760 14.81 0.50
0.60 3 5 2.65919 2.65919 0.00 1036 2 1.74095 34.53 3.27670 18.85 0.71
0.60 4 1 2.11537 2.11537 0.00 0 1 2.11537 0.00 2.11537 0.00 1.00
0.60 5 46 3.40065 3.40065 0.00 40980 2 1.77119 47.92 4.08750 16.80 0.64
0.60 6 31 3.07007 3.07007 0.00 19592 2 1.80867 41.09 3.56183 13.81 0.79
0.60 7 3 2.53812 2.53812 0.00 160 2 1.65912 34.63 3.09176 17.91 0.86
0.60 8 288 3.11862 3.11862 0.00 163027 3 1.68370 46.01 4.27364 27.03 0.64
0.60 9 307 3.23815 3.23816 0.00 205452 2 1.71227 47.12 4.45115 27.25 0.64
0.60 10 107 3.42128 3.42128 0.00 74655 2 1.70083 50.29 4.61586 25.88 0.79
0.80 1 15 2.71151 2.71151 0.00 11970 2 1.72970 36.21 2.89126 6.22 0.86
0.80 2 7 2.89696 2.89696 0.00 149 5 1.95548 32.50 3.19431 9.31 0.64
0.80 3 15 2.81212 2.81212 0.00 10039 3 1.68344 40.14 4.11664 31.69 0.57
0.80 4 7 2.74118 2.74118 0.00 769 5 1.84790 32.59 3.20465 14.46 0.71
0.80 5 185 3.38203 3.38203 0.00 102891 3 1.65437 51.08 5.27295 35.86 0.71
0.80 6 266 3.48709 3.48709 0.00 225547 3 1.65278 52.60 3.69105 5.53 0.71
0.80 7 7 2.32213 2.32213 0.00 2400 3 1.53249 34.00 2.56296 9.40 0.86
0.80 8 488 3.12071 3.12071 0.00 292759 2 1.58470 49.22 4.21839 26.02 0.79
0.80 9 340 3.02601 3.02601 0.00 122375 3 1.66720 44.90 3.46316 12.62 0.43
0.80 10 8 2.89465 2.89465 0.00 1867 4 1.90919 34.04 3.79320 23.69 0.71
1.00 1 8 2.71151 2.71151 0.00 1675 4 2.03291 25.03 2.89126 6.22 0.71
1.00 2 TL 2.91476 3.15763 7.69 307983 3 1.56269 50.51 4.10179 23.02 0.50
1.00 3 12 2.76445 2.76445 0.00 100 7 1.97515 28.55 3.21349 13.97 0.57
1.00 4 6 2.23030 2.23030 0.00 142 4 1.73646 22.14 2.92211 23.67 0.64
1.00 5 TL 3.03838 3.38203 10.16 216054 4 1.67687 50.42 5.27295 35.86 0.57
1.00 6 TL 2.88118 3.44192 16.29 297791 5 1.70193 50.55 4.15243 17.11 0.50
1.00 7 5 2.32213 2.32213 0.00 0 5 2.32213 0.00 3.02786 23.31 0.79
1.00 8 TL 2.85241 3.12071 8.60 186070 3 1.67976 46.17 4.21839 26.02 0.57
1.00 9 TL 2.64788 2.94563 10.11 105264 5 1.67563 43.11 4.10682 28.27 0.64
1.00 10 21 2.88175 2.88175 0.00 12648 4 1.77760 38.32 3.79320 24.03 0.57

challenging even for this approach. Thus, one avenue for further research could be the development of other
exact approaches. Using Lagrangian relaxation could be interesting, as the problem would decompose in
a spanning tree problem and shortest path problems. However, dealing with the min-max-objective of the
problem could be challenging in a Lagrangian context. Complementary, since solving the problem exactly
seems quite challenging, the development of further (meta-)heuristic algorithms could also be of interest.
Moreover, extending the presented approaches to different versions of spanner-type problems, for example,
where the required graph is not a spanning tree, but must be two-connected, could be a fruitful research
topic.
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M. Fischetti, I. Ljubić, and M. Sinnl. Redesigning benders decomposition for large-scale facility location.
Management Science, 63(7):2146–2162, 2017b.

T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks, 32(3):207–232,
1998.

A. Liestman and T. Shermer. Additive graph spanners. Networks, 23(4):343–363, 1993.

T. Magnanti and L. A. Wolsey. Optimal trees. Handbooks in operations research and management science,
7:503–615, 1995.

T. Magnanti, P. Mireault, and R. Wong. Tailoring benders decomposition for uncapacitated network design.
In G. Gallo and C. Sandi, editors, Netflow at Pisa, volume 26 of Mathematical Programming Studies, pages
112–154. Springer Berlin Heidelberg, 1986.

J. Marble and K. Bekris. Asymptotically Near-Optimal Is Good Enough for Motion Planning, pages 419–436.
2017.

D. Peleg and J. Ullman. An optimal synchronizer for the hypercube. SIAM Journal on Computing, 18(4):
740–747, 1989.

D. Peleg and E. Upfal. A tradeoff between space and efficiency for routing tables. In Proceedings of the
Twentieth Annual ACM Symposium on Theory of Computing, pages 43–52. ACM, 1988.

R. C. Prim. Shortest connection networks and some generalizations. Bell Labs Technical Journal, 36(6):
1389–1401, 1957.

K. Singh and S. Sundar. Artifical bee colony algorithm using problem-specific neighborhood strategies for
the tree t-spanner problem. Applied Soft Computing, 62:110–118, 2018.

G. Venkatesan, U. Rotics, M. Madanlal, J. Makowsky, and C. Pandu Rangan. Restrictions of minimum
spanner problems. Information and Computation, 136(2):143–164, 1997.

R. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Mathematical Programming,
28(3):271–287, 1984.

11


	Introduction and motivation
	A compact MIP formulation for the Tr-t*-Sp
	An algorithmic framework for the Tr-t*-Sp
	Separation of cut-set inequalities (CUT.1)
	Separation of Benders optimality cuts (BC)
	Further implementation details

	Computational results 
	Instances
	Analyzing the ingredients of the framework
	Detailed results

	Conclusion 

